Chapter 4

Length of stay in the ICU, case mix and severity of illness

Rui Moreno¹, Dinis Reis Miranda²

¹ Intensive Care Unit, Hospital de Santo António dos Capuchos, Lisboa, Portugal
² ICU Research Group, Department of Surgery, University Hospital of Groningen, the Netherlands

Submitted for publication
INTRODUCTION

In the last 15 years a large effort has been made to build and improve general outcome prediction models. The models were developed on large databases of intensive care patients. The important characteristic of the models is that they used data collected at admission to the ICU [1] or during the first 24 hours after admission in the ICU [2-4]. Outcome prediction is computed after using advanced statistical techniques to select and attribute weights to the variables in the collected data. These models have been used in the evaluation of the performance of intensive care [5-8], in the comparison of the ICUs [9-11] and to assess comparability of groups in clinical trials [12-15].

More recently, the applicability of the models to populations, which differs from the ones where they have been developed and validated, was challenged [16,17]. The exact extension to which different patient mix characteristics (e.g. type of patient, location in the hospital before ICU admission, diagnostic category of admission) affect the performance of general outcome prediction models is not completely known but it is assumed to be significant [16-19].

Another potential problem is that the models used today focus on the prediction of the outcome at hospital discharge. The rationale behind this choice is that hospital mortality can be well defined, is a very relevant outcome and it minimises the impact of different policies of discharge at ICU level when comparing outcomes. However, the choice of a precise point in time rather than the evaluation of survival curves, can introduce analytic difficulties in those cases when the binary outcome of interest (survivor/non-survivor) is very far way in time from the moment when data was collected for prediction. It has been shown that the determinants of mortality change over time and that models based on clinical data collected at admission or at 24 hours in the ICU, can loose their prediction accuracy with time [20,21]. This rational led several authors [20-25] to propose the use of data collected at different points in time to adjust predictions made shortly after admission.

The extent to which the performance of a model developed and calibrated upon first 24 hours data is affected by the length of stay (LOS) in the ICU has not been formally tested. It is generally assumed that the model applies to all treated patients, independently of their LOS in the ICU. This assumption is usually applicable since about half the patients leave the ICU within 48 hours of admission and only 14% stay more than three weeks in the ICU [26]. This explains perhaps why the most (though not all) populations were the models were found not to accurately predict mortality, were generally associated with particular conditions with longer LOS [27-30]. If the ICUs deal with various aggregates of patient baseline characteristics known to have a significant impact on LOS (medical patients or patients admitted from the ward, other ICU or other hospital), or if the mortality rate is high, the different performance of the models across different LOS groups can introduce bias in the comparison of predicted and observed mortality among the ICUs. As a matter of fact, the
differences of clinical performance at ICU level might be explained only by the application of a general model to a sub-set of patients in which the model does not perform with sufficient accuracy.

The aim of the present study is threefold:

 to analyse the relations between patient baseline characteristics and LOS;
 to explore the influence of two hospital characteristics (type of hospital and the presence of step-down units) on LOS;
 to analyse the effects of LOS on the predictive performance of the new Simplified Acute Physiology Score (SAPS II) [4].

MATERIALS AND METHODS

THE DATABASE

The study used the database of the Foundation for Research on Intensive Care in Europe (FRICE) concerning data collected during a concerted action of the Biomed 1 program of the Commission of the European Communities, called EURICUS-I (BMH1-CT93-1340), addressing the effects of organisation and management on the effectiveness and efficiency of ICUs in Europe, and which methods and results will be published elsewhere, including the collection of medical data and non-medical data on 89 ICUs of 12 countries of Europe.

In each country, the selection of the ICUs was made to include units of hospitals of different types (university and non-university) and different sizes. In other words, in order to generate the largest possible variation of organisation and management variables, the ICUs were selected so that at least each country would participate with 4-8 ICUs operating at different levels of care [31].

PATIENT DATA

Data were collected during a 4-month period (October 3, 1994 to January 31, 1995) on 16060 patients, consecutively admitted to the ICUs in EURICUS-I. The exclusion criteria for SAPS II followed those expressed in the original description [4]: patients younger than 18 years of age, readmission’s, acute coronary care patients, burns and patients in the post-operative period after coronary artery by-pass surgery. The exclusion of the patients with less than 8 hours in the ICU was not done in order to evaluate the variations in performance of SAPS II according to the length of stay.

For each patient a simple set of variables was collected including all the variables described
for the original SAPS II system. Basic demographic characteristics including age, location in
the hospital before admission to the ICU, type of patient (medical and scheduled/unscheduled
surgical), were also collected as well as the principal diagnostic category on admission at the
ICU using a list of 78 mutually exclusive diagnoses [3]. Basic characteristics of the ICU and
of the hospital were also evaluated.

Patients were followed up to the hospital discharge and their survival status was then
registered. The patients still in the hospital or with unknown outcome on May 1, 1995 (three
months after the end of data collection) were dropped from the study (113 patients).

Informed consent of the patients or next of kin was considered not necessary and was waived
by the Institutional Review Board of the participating hospitals.

METHODS

The evaluation of the overall goodness of fit of SAPS II was done by formal testing of
discrimination and calibration. Discrimination was evaluated by the total area under the ROC
curve, computed by a modification of the Wilcoxon statistics, as proposed by Hanley and
McNeil [32]. Calibration was assessed by Hosmer-Lemeshow goodness-of-fit test 6, collapsing
the table based on deciles of the estimated probabilities, and comparing the
observed versus expected number of patients in each of the 20 cells to determine whether the
discrepancies are acceptably small [33,34]. Observed/expected (O/E) mortality ratios were
computed dividing the observed number of deaths by the number of deaths estimated by the
model. Confidence intervals for this ratio were computed using a parametric approach, as
described by Rapoport et al. [35].

In the evaluation of the relations between the LOS and severity of illness stratified analyses
were performed after dividing the patients according to their LOS in the ICU. The
performance of SAPS II was then accessed in each of these mutually exclusive subgroups
using the techniques described above.

In a further step a regression model was developed, relating severity of illness to LOS. We
considered in this analysis all the patients with a SAPS II between the 2.5 and the 97.5
percentile. In order to increase the number of patients in each SAPS II group, we aggregate
SAPS II score at 5 point intervals. Then, the database was spliced randomly into development
(2/3 of the patients) and validation samples (1/3 of the patients) and a model relating severity
of illness to mean LOS in each group was estimated in the development sample and its results
cross-validated into the validation sample.

The evaluation of the impact of patient related characteristics on LOS was done stratifying
patients according to severity of illness (SAPS II), type of patient (medical, scheduled surgery
and unscheduled surgery), location in the hospital before ICU admission (operative
theatre/recovery room, emergency room, ward and other ICU/other hospital) and diagnostic
category of admission (using a list of 78 mutually exclusive diagnoses [3]).

The evaluation of the impact of hospital related characteristics on LOS was done stratifying
patients according to type of hospital (< 300 beds, 300-500 beds, > 500 beds and university) and to the presence or absence in the same hospital of step-down units. In 9 hospitals (10%) the presence or absence of step-down units could not be assessed and they were excluded from the respective analysis.

Chi-square statistics were used to test for the statistical significance of categorical variables and one-way analysis of variance was used to assess continuous variables. All statistical tests were two-sided, and a significance level of 0.05 was used except when stated otherwise. In the comparison of the LOS we used Mann-Whitney U test (two groups comparison) or Kruskal-Wallis H test (multiple groups comparison), since the distribution was highly skewed. Results are presented as median (interquartile range) except when stated otherwise.

Data analysis and statistics were performed using the Statistical Package for Social Sciences (SPSS) version 6.0.1 for Windows at the University Hospital of Groningen, the Netherlands.

RESULTS

The 89 participating ICUs comprised a diverse sample of ICUs, in 12 countries of Europe, with 35 (39 %) being in university hospitals. Median hospital size was 534 beds, with 39 % of the ICU beds in hospitals with less than 500 beds, 50 % in hospitals with 500 - 1000 beds, and 11 % in hospitals with more than 1000 beds. Median number of beds per ICU was 8 (interquartile range 6 to 10 beds). During the study period, data were collected on 16060 consecutive admissions.

After applying the patient exclusion criteria described above, the data of 11574 patients were available to the study (72.1 %): 9114 survivors (78.7 %) and 2460 non-survivors (21.3 %). The median number of analysed patients per ICU was 109 (interquartile range 75-161). Basic characteristics of the studied population are described in Table 1. Median LOS was 2.1 days (interquartile range 0.9 to 5.7 days), significantly longer ($p < 0.001$) in non-survivors (median 3.4 days, interquartile range 1.0 to 10.4 days) than in survivors (median 1.9 days, interquartile range 0.9 to 4.8 days) (Figure 1). Median LOS presented very large variations between ICUs, with values ranging from 0.9 days (interquartile range 0.8 to 1.4 days) to 11.8 days (interquartile range 4.2 to 26.6 days).
Table 1. Basic descriptive characteristics of the studied population.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Countries</td>
<td>12</td>
</tr>
<tr>
<td>European areas</td>
<td>13</td>
</tr>
<tr>
<td>Number of ICUs</td>
<td>89</td>
</tr>
<tr>
<td>Number of analysed patients</td>
<td>11574</td>
</tr>
<tr>
<td>Number of patients per ICU (a)</td>
<td>109 (75-161)</td>
</tr>
<tr>
<td>Age, years (mean ± SD)</td>
<td>59.4 ± 17.2</td>
</tr>
<tr>
<td>Type of Patient (%)</td>
<td></td>
</tr>
<tr>
<td>Medical</td>
<td>56.8</td>
</tr>
<tr>
<td>Surgical, scheduled</td>
<td>23.3</td>
</tr>
<tr>
<td>Surgical, unscheduled</td>
<td>19.9</td>
</tr>
<tr>
<td>Mechanical ventilation (% (b))</td>
<td>41.4</td>
</tr>
<tr>
<td>SAPS II score (a)</td>
<td>31 (21-44)</td>
</tr>
<tr>
<td>SAPS II probability of hospital mortality (a)</td>
<td>11.7 (4.2-32.6)</td>
</tr>
<tr>
<td>ICU mortality (%)</td>
<td>15.0</td>
</tr>
<tr>
<td>LOS in the ICU, days (a)</td>
<td>2.1 (0.9-5.7)</td>
</tr>
<tr>
<td>Hospital mortality (%)</td>
<td>21.3</td>
</tr>
</tbody>
</table>

ICU, Intensive care Unit; SD, standard deviation; LOS, length of stay; SAPS II, new Simplified Acute Physiology Score.

\(a \): median, (interquartile range)

\(b \): during the first 24 hours in the ICU

Figure 1. Hospital outcome and length of stay in the ICU. Data are presented as percentage of patients still in the intensive care unit (ICU). Non-survivors (n = 2460) (*) presented a significantly longer (\(p < 0.001 \)) length of stay in the ICU than survivors (n = 9114) (•).
LOS AND TYPE OF PATIENT

The LOS was longer in medical patients (median 2.9 days, interquartile range 1.2 to 6.7 days) than in unscheduled surgery patients (median 2.5 days, interquartile range 0.9 to 7.0 days) and scheduled surgery patients (median 1.0 days, interquartile range 0.9 to 2.6 days). The difference of LOS between medical/unscheduled surgery patients and scheduled surgery patients was significant ($p < 0.001$).

LOS AND LOCATION IN THE HOSPITAL BEFORE ADMISSION TO THE ICU

Location in the hospital prior to ICU admission presented a significant impact on LOS ($p < 0.001$). LOS was longer for patients admitted from other ICUs/other hospitals (median 4.0 days, interquartile range 1.7 to 10.9 days), intermediate for patients admitted from the ward (median 3.2 days, interquartile range 1.3 to 7.7 days) and from the emergency room (median 2.3 days, interquartile range 1.0 to 5.0 days), and shorter for patients admitted from the operative theatre/recovery room (median 1.2 days, interquartile range 0.9 to 3.1 days).

LOS AND DIAGNOSTIC CATEGORY OF ADMISSION

Within each diagnostic category of admission, the LOS in the ICU presented a significant relation with the surgical status of the patient in cardiovascular, respiratory, neurological and other diagnostic categories ($p < 0.001$); for gastrointestinal and trauma diagnostic categories no such relation could be demonstrated (Table 2). Inside the same operative status, differences were also apparent between different diagnostic categories, with non-operative respiratory and trauma (non-operative and post-operative) patients having the longer LOS.

Table 2. Diagnostic category of admission (3) and length of stay in the ICU.

<table>
<thead>
<tr>
<th>Diagnostic category of Admission</th>
<th>Non-operative</th>
<th>Post-operative</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. Median (IQ)</td>
<td>No. Median (IQ)</td>
<td></td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>2173 2.6 (1.2-4.9)</td>
<td>805 1.4 (0.9-3.0)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Respiratory</td>
<td>1608 4.5 (1.8-10.4)</td>
<td>542 1.2 (0.9-3.1)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>423 2.1 (1.0-5.5)</td>
<td>1771 2.0 (0.9-5.3)</td>
<td>NS</td>
</tr>
<tr>
<td>Neurological</td>
<td>720 2.9 (1.0-7.8)</td>
<td>617 1.0 (0.8-2.9)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Trauma</td>
<td>347 4.3 (1.8-13.5)</td>
<td>432 4.1 (1.4-11.7)</td>
<td>NS</td>
</tr>
<tr>
<td>Other</td>
<td>1456 1.8 (0.8-4.3)</td>
<td>680 0.9 (0.8-1.7)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

No., number of patients; IQ, interquartile range; NS, non significant.

LOS AND SEVERITY OF ILLNESS

Median SAPS II score was 31 (interquartile range 21 to 44) and median SAPS II probability of hospital mortality was 11.7% (interquartile range 4.2 to 32.6%). In the analysed sample the area under the ROC curve for SAPS II was 0.816 (standard error 0.005). Hosmer-
Lemeshow goodness-of-fit test C was 284.5 ($p < 0.001$) for SAPS II, implying that the combined discrepancy between observed and expected outcomes in survivors and in non-survivors was out of the sampling variance or, in other words, that the model did not accurately predict the outcome of the patients in this cohort. Overall O/E mortality ratio was 0.95 (95% confidence interval 0.92 to 0.98).

SAPS II predicted risk of death, computed in the first 24 hours of admission was significantly higher in patients with longer stays in the ICU, with values ranging from 16.6% for patients with a LOS less than 1 day to 45.8% for patients with a LOS greater than one month. However, the relation between SAPS II score and LOS was not linear, with lower LOS in both extremes of severity (very low and very high SAPS II), as shown in Figure 2. This non-linearity could be explained by different relationship between SAPS II score and LOS in survivors and non-survivors (Figure 2). SAPS II was able, in this sample to explain 66% in the variations of the LOS.

The performance of SAPS II in this population was substantially affected by the length of stay in the ICU of the analysed patients, both in its discriminative power and on calibration. As presented in Figure 3, the area under ROC curve presented a significant relation with the LOS, with values ranging from 0.888 (standard error 0.009) for patients remaining in the ICU less than 1 day to 0.594 (standard error 0.018) for patients with a LOS greater than two weeks. Calibration was also affected by the LOS. As presented in Table 3 Hosmer-Lemeshow test C and O/E mortality ratios were both affected by LOS, mainly in the patients with longer stays. The effect of these findings will depend on the particular composition of the population admitted to the ICU, since the percentage of patients with a LOS greater than 7 days varied at ICU level from 5.2% to 63.2% of the admitted patients and the percentage of patients with a LOS greater than 15 days varied at ICU level from 0% to 42.9% of the admitted patients.

Table 3. Hosmer-Lemeshow goodness-of-fit test C and observed/expected mortality ratios according to length of stay in the ICU (LOS).

<table>
<thead>
<tr>
<th>LOS (days)</th>
<th>No.</th>
<th>Chi-square</th>
<th>p</th>
<th>Observed Deaths</th>
<th>Predicted Deaths</th>
<th>Mortality ratio (95% confidence intervals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-</td>
<td>3267</td>
<td>50.03</td>
<td>< 0.001</td>
<td>585</td>
<td>543</td>
<td>1.08 (1.02-1.13)</td>
</tr>
<tr>
<td>1-</td>
<td>2278</td>
<td>36.14</td>
<td>< 0.001</td>
<td>348</td>
<td>403</td>
<td>0.86 (0.79-0.93)</td>
</tr>
<tr>
<td>2-</td>
<td>1366</td>
<td>22.32</td>
<td>0.004</td>
<td>235</td>
<td>282</td>
<td>0.83 (0.75-0.92)</td>
</tr>
<tr>
<td>3-</td>
<td>882</td>
<td>33.12</td>
<td>< 0.001</td>
<td>158</td>
<td>192</td>
<td>0.82 (0.72-0.93)</td>
</tr>
<tr>
<td>4-</td>
<td>621</td>
<td>46.02</td>
<td>< 0.001</td>
<td>113</td>
<td>146</td>
<td>0.78 (0.66-0.89)</td>
</tr>
<tr>
<td>5-</td>
<td>459</td>
<td>47.87</td>
<td>< 0.001</td>
<td>102</td>
<td>122</td>
<td>0.84 (0.71-0.96)</td>
</tr>
<tr>
<td>6-</td>
<td>365</td>
<td>34.19</td>
<td>< 0.001</td>
<td>85</td>
<td>102</td>
<td>0.83 (0.69-0.97)</td>
</tr>
<tr>
<td>7-</td>
<td>276</td>
<td>39.16</td>
<td>< 0.001</td>
<td>86</td>
<td>87</td>
<td>0.99 (0.84-1.13)</td>
</tr>
<tr>
<td>8-14</td>
<td>981</td>
<td>106.74</td>
<td>< 0.001</td>
<td>311</td>
<td>317</td>
<td>0.98 (0.91-1.06)</td>
</tr>
<tr>
<td>≥ 15</td>
<td>1079</td>
<td>457.94</td>
<td>< 0.001</td>
<td>437</td>
<td>391</td>
<td>1.12 (1.05-1.18)</td>
</tr>
</tbody>
</table>

No., number of patients

Figure 2. Length of stay in the ICU according to the new Simplified Acute Physiology Score
(SAPS II) score. Top: survivors; middle, non-survivors; bottom: overall population. The bars indicate the number of patients in each group.

Figure 3. Area under the receiver operating characteristic (ROC) curve and length of stay in the ICU. Results are presented with standard error; bars denote the number of patients in each group.

In order to further evaluate the relations between LOS and SAPS II, the database was randomly spliced into development (n = 7357 patients) and validation (n = 3679 patients) samples, after excluding the patients with a SAPS II less than 7 or greater than 79 (n = 472 patients).

After aggregation of SAPS II at 5 points intervals and computing the mean observed LOS in each group, a regression equation was fitted in the development sample and then cross-validated in the validation sample. A model with the square and the cube of SAPS II group as independent variables provided the best fitting, with an R square of 0.97 on the development sample (Figure 4). In the validation sample, the developed model presented a good fitting, with an R square between predicted and observed also of 0.97 (Figure 4).
Figure 4. Predicted versus observed length of stay in the ICU (LOS). Top: development sample (n = 7357 patients); bottom: validation sample (n = 3679 patients). In both panels are displayed the observed LOS (●) and the predicted LOS (*). The bars indicate the number of patients in each group.

LOS AND HOSPITAL CHARACTERISTICS

LOS presented significant differences ($p < 0.001$) according to the type of hospital (Table 4), with longer LOS in university hospitals. These differences remained significant after correction for the severity of illness ($p < 0.001$).

The presence of a step-down unit in the same hospital did not reduce LOS. In ICUs located in hospitals with a step-down unit (n = 23), median (interquartile range) LOS was 2.18 days (0.95 to 6.00 days) vs 2.00 days (0.92 to 5.25 days) in ICUs located in hospitals without step-down units (n = 57). This difference was statistically significant ($p < 0.001$). A difference in severity could be demonstrated, with the patients in ICUs located in hospitals without step-down units being more severely ill (SAPS II 35.66 ± 18.66 vs 32.45 ± 17.84, $p < 0.001$). The differences in LOS remained significant ($p < 0.001$) after correction for the severity of illness. In the ICUs located in hospitals with step-down units, only a median of 5.7% (interquartile range 0 to 18.7%, range 0% to 69.3%) of the survivors were transferred to step-down units.

Table 4. Length of stay in the ICU (LOS) according to type of hospital.

<table>
<thead>
<tr>
<th>Type of hospital</th>
<th>< 300 beds</th>
<th>300-500 beds</th>
<th>> 500 beds</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICUs</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>35</td>
</tr>
<tr>
<td>Step-down units</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>LOS a</td>
<td>2.0 (0.9-4.5)</td>
<td>2.2 (1.0-5.5)</td>
<td>2.0 (0.9-4.9)</td>
<td>2.4 (0.9-6.6)</td>
</tr>
<tr>
<td>SAPS-II b</td>
<td>31.7 ± 17.9</td>
<td>33.6 ± 17.9</td>
<td>33.5 ± 18.4</td>
<td>34.6 ± 18.4</td>
</tr>
</tbody>
</table>

aSAPS II, new Simplified Acute Physiology Score
b: days, median (interquartile range)

DISCUSSION

We analysed the relationships between some relevant patient and hospital characteristics and LOS in the ICU. The results of the study have shown that after correction for the severity of illness LOS was longer in medical patients, in patients admitted from other ICUs/other hospitals or from the ward, in patients with non-operative respiratory or trauma (non-operative or post-operative) diagnoses and in those admitted to university hospitals. These
associations confirm the results of previous studies [6,7,35-37], but are different from others [38].

Rather unexpected was the relation between the presence or absence of step-down units in the hospital and the LOS in the respective ICU, even after correction for the severity of illness. The LOS on ICUs operating in hospitals with step-down units was longer than in those hospitals without step-down units. This goes indeed against the cost-effectiveness argument in favour of the implementation of step-down units, that the presence of step-down units would facilitate the early discharge of patients from the ICU with a consequent reduction on the use of the more expensive beds. [39-41]. However, step-down units can only reduce LOS, allowing early discharge of patients if they work in close contact with the ICU and admit an important part of the survivors. This was not verified in this study, with only a small percentage of the survivors discharged from the ICUs to those units, and this fact can probably explain the observed results. Certainly, more research is needed in how to improve the interrelations between ICUs working at different levels of care.

Overall, non-survivors presented a longer LOS than survivors. When severity is taken into account a complex pattern appears with a linear relation between severity of illness and LOS only in survivors, although variation increases with increasing severity of illness. For non-survivors, as severity of illness increases LOS first increases and then falls. We can submit the hypothesis that this phenomenon can be explained by a combination of early deaths in patients in which markers of physiologic dysfunction did not had time to develop (and consequently with low SAPS II scores) and the rather quick death of patients who were very severely ill. This non-linearity of the relation between severity of illness and LOS in non-survivors can have important consequences in the standardisation of the LOS and in its use as a marker of resources utilisation. Several papers in the literature describe equations to predict LOS, based mainly in the severity of illness [7,35], sometimes with correction for non-linearity [7] and then using the discrepancies between predicted and observed LOS as an indicator of the effectiveness in the use of resources. This approach assumes that the LOS can be used as a proxy for resource utilisation and that severity of illness is a main determinant of LOS. In other words, it is assumed that it is possible to establish a relation between severity of illness and resources use [42]. The non linearity of the relation described is very similar to that found by Oye et al [43] between APACHE II and total Therapeutic Intervention Scoring System (TISS) per admission. This relationship can be expected since non-survivors are responsible for a major part of total resources use in intensive care [44], and challenges the use of linear procedures to relate severity of illness to resources use through the use of standardised LOS, since the pattern of increasing LOS with increasing severity of illness can only be demonstrated in survivors. Our work demonstrated also that this relation can be modelled but we should expect the stability of the equation to be dependent from the proportion of survivors and non-survivors in the target population.

The impact of LOS on the performance of SAPS II deserves attention. In this population, the overall goodness of fit was poor for SAPS II; if the model kept its discriminative power, as measured by the area under ROC curve (0.816 vs 0.86 in ENAS database [4]), calibration was very poor, with significant differences between predicted and observed mortality. When
both parameters were analysed according to LOS, it was seen that SAPS II looses quickly its discriminative power, performing hardly better than chance (area under ROC curve 0.594, standard error 0.018) in patients with a LOS greater than two weeks. Calibration, was also affected, with greater values for the Hosmer-Lemeshow statistic in the groups with longer LOS. This poses serious problems to the customisation of the model, since if for calibration probably easy modifications of the predictive equation will be enough to customise it [17,45,46], when a system loses its discriminative power there is hardly something left to be done [47].

In conclusion, the results of this study have shown that the length of stay of ICU patients is influenced by patient and hospital characteristics other than solely the severity of illness of the patients. The mortality predictive performance of the SAPS-II loses significantly its accuracy when concerning groups of patients with LOS greater than one week. The results of this study could not document that the existence of step-down units do have an beneficial influence on the use of the ICU facilities.

ACKNOWLEDGEMENTS

The authors thank the participating staff of all the ICUs for their full collaboration on data collection efforts.

REFERENCES

