The Hubbard model with orbital degeneracy and in polarizable media
van den Brink, Jeroen Gregorius Johannes

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1997

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Contents

1 Introduction .. 5
 1.1 Introduction ... 5
 1.2 Motivation .. 6
 1.3 The Hubbard Model Hamiltonian 7
 1.3.1 Correlation Gap 8
 1.3.2 Infinite Dimensions 9
 1.4 Extensions of the Hubbard Model 11
 1.4.1 Atomic Polarizability 11
 1.4.2 Longer Range Coulomb Interaction 13
 1.4.3 Orbital Degeneracy 13
 1.5 Scope ... 13

2 Screening of Coulomb potential in insulators 15
 2.1 Introduction ... 15
 2.1.1 Atomic polarizability 17
 2.1.2 The Clausius-Mossotti relation 17
 2.2 Screening of the Coulomb potential 18
 2.2.1 Continuum limit 20
 2.2.2 Partial continuum limit 21
 2.2.3 Exact results 25
 2.3 Conclusions ... 33

3 Extended Hubbard model at half filling 37
 3.1 Introduction ... 37
 3.2 Conductivity gap .. 38
 3.3 Exciton .. 41
 3.4 Exchange .. 42
 3.4.1 Single band system 43
 3.4.2 Charge transfer system 45
 3.4.3 CuO2 system .. 45
 3.5 Conclusions .. 49
4 Charged excitons in doped extended Hubbard model systems 53
 4.1 Introduction ... 53
 4.2 Charged Exciton ... 54
 4.3 Finite Temperature .. 58
 4.4 C_{60} .. 59
 4.5 Conclusions ... 60

5 New phases in an extended Hubbard model explicitly including atomic polarizabilities 63
 5.1 Introduction ... 63
 5.2 A Hamiltonian describing Screening .. 65
 5.3 Screening of the Gap .. 67
 5.4 New Phases .. 68
 5.5 Conclusions .. 70

6 Spin-orbital Excitations 73
 6.1 Introduction ... 73
 6.2 Degenerate Hubbard Model 74
 6.3 Spin-Orbital Hamiltonian 76
 6.4 Groundstate .. 77
 6.4.1 Mean Field Solution 77
 6.4.2 Two-Spin Solution 78
 6.5 Ferro-Ferro system ... 79
 6.5.1 Equations of motion 80
 6.5.2 Boundstates .. 82
 6.5.3 Almost Degeneracy 85
 6.6 Conclusions .. 86

7 Optical conductivity in A_3C_{60} (A=K, Rb) 89
 7.1 Introduction ... 89
 7.2 Formalism and model 90
 7.3 Results .. 93
 7.4 Multiplet effects ... 94
 7.5 Discussion .. 97

8 Self consistent Born approximation for t-t'-t''-J model 101
 8.1 Introduction ... 101
 8.2 Hole Green’s function with fixed pseudo-spin G_d 103
 8.2.1 Finite Temperature Correction for G_d 104
 8.2.2 Results for G_d 107
 8.3 Hole Green’s function with fixed spin G_c 108
 8.3.1 Finite Temperature Correction for G_c 109
 8.3.2 Sum rules ... 111
 8.3.3 Results for G_c 112
 8.4 Conclusions .. 114
Introduction

In the theoretical description of the electronic structure of solids, the basis is given by the Bloch functions. The propagation of one single electron in a periodic solid due to the internal forces in the solid (average Coulomb field) due to the other electrons, has been very successful in explaining and predicting a wide range of properties of these solids. A more interesting aspect of effective one-electron theory is that the electronic structure can be treated as such, i.e. without using any free parameters. However, if we want to include the effect of interband transitions, the electronic structure must be treated in a more realistic way. In this context, we will focus on the application of effective one-electron theory to metals. A fundamental example is the case of layered structures and the transition metal oxides. Many of these oxides, for example, the perovskites, are predicted to be metals in single electron theory, but are in fact insulators with a large band-gap.

The basis of one-electron theory is caused by the assumption that the electronic structure is an average field of the other electrons. In order to understand this, it is necessary to consider what the consequences are of the averaging of the Coulomb field. The electrons have a kinetic energy and the interaction between the electrons can be defined by the average distance and deviations from the average. The potential energy of the electrons due to the Coulomb interaction is the interaction energy between the electrons. In the limit, we assume that the interactions between the electrons contribute to the total energy and that the electronic structure of the electron associates with their propagation is of secondary