Substrate-induced conformational changes in the membrane-embedded domain of the mannitol permease from E. coli, EnzymeII^{mtl}, probed by tryptophan phosphorescence spectroscopy

Gertjan Veldhuis, Edi Gabellieri, Erwin P.P. Vos, Bert Poolman, Giovanni B. Strambini, Jaap Broos

(Published in *Journal of Biological Chemistry* 2005, *280*, 35148-35156)

Abstract

Membrane-bound transport proteins are expected to proceed via different conformational states during the translocation of a solute across the membrane. Tryptophan phosphorescence spectroscopy is one of the most sensitive methods to detect conformational changes in proteins. We employed this technique to study substrate-induced conformational changes in the mannitol permease, EnzymeII^{mtl}, of the phosphoenolpyruvate-dependent phosphotransferase system from *Escherichia coli*. Ten mutants containing a single tryptophan (Trp) were engineered in the membrane-embedded IIC^{mtl}-domain, harbouring the mannitol translocation pathway. The mutants were characterized with respect to steady state and time-resolved phosphorescence, yielding detailed, site-specific information of the Trp microenvironment and protein conformational homogeneity. The study revealed that the Trp environments vary from apolar, unstructured and flexible sites to buried, highly homogeneous, rigid peptide cores. The most remarkable example of the latter was observed for position 97, as its long sub-second phosphorescence lifetime and highly structured spectra in both glassy and fluid media imply a well-defined and rigid core around the probe that is typical of β-sheet rich structural motifs. The addition of mannitol had a large impact on most of the Trp positions studied. In the case of position 97, mannitol binding induced partial unfolding of the rigid protein core. On the contrary, for residue positions 126, 133 and 147, both steady-state and time resolved data showed that mannitol binding induces a more ordered and homogeneous structure around these residues. The observations are discussed in context of the current mechanistic and structural model of EIImtl.
Introduction

The mannitol permease from the Gram-negative bacterium *Escherichia coli*, EnzymeII_{mtl} (EII^{mtl} 1/2), is responsible for the uptake and consecutive phosphorylation of mannitol (reviewed in Robillard & Broos, 1999). EII^{mtl} consists of three covalently linked domains (from amino to carboxy terminus): a membrane-embedded IIC_{mtl}-domain harbouring the mannitol-translocation pathway (Grisafi et al., 1989), and two cytosolic domains (IIB_{mtl} and IIA_{mtl}) responsible for phosphoryl transfer. EII_{mtl} becomes phosphorylated via a cascade of phosphoryl-group-transfer reactions, starting with the hydrolysis of PEP by the cytosolic kinase Enzyme I (EI). The phosphate-moiety from phosphorylated EI is transferred to HPr, a small cytosolic protein. Subsequently, His554 in the IIA_{mtl}-domain is phosphorylated by P-HPr, and transfers the phosphate to Cys384 in the IIB_{mtl}-domain. The phosphate is then donated to mannitol bound at the IIC_{mtl}-domain, resulting in the release of mannitol-1-phosphate in the cytoplasm. Phosphorylation of EII_{mtl} activates the carrier, resulting in a two-to-three orders of magnitude increase in the transport rate (Elferink et al., 1990; Lolkema et al., 1990/1991).

A *phoA*-fusion study and hydropathy analysis of the IIC_{mtl}-domain resulted in a topology model with three small periplasmic loops, two large cytoplasmic loops and six putative membrane-spanning helices (Sugiyama et al., 1991). It has been proposed that both large cytoplasmic loops fold back into the membrane-embedded part of the protein, lining up a hydrophilic pathway for the translocation of the carbohydrate (Lengeler et al., 1994). New structural insight on the basis of cysteine-scanning mutagenesis in the first proposed cytoplasmic loop provided evidence for the presence of this loop protruding, at least partly, into the bilayer (Vervoort et al., 2005). For the subcloned IIC_{mtl}-domain, a 2D projection structure at 5 Å resolution was determined by electron microscopy crystallography (Koning et al., 1995). Six regions of high density were found, possibly reflecting six membrane-spanning helices.

1. λ_{00}, peak wavelength of the 0,0-vibrational band in the phosphorescence spectrum; BW, bandwidth of the 0,0-vibrational band at 2/3-height; λ_{cg}, centre of gravity of the phosphorescence spectrum; $\Delta\rho_{cg}(T)$, change in the centre of gravity upon thermal relaxation; τ_{ph}, phosphorescence lifetime; λ_{em}, fluorescence emission maximum; Trp, tryptophan; NATA, N-acetyl-L-tryptophanamide; EII^{mut}, EnzymeII from *Escherichia coli*; GSH, reduced glutathione; mtl, mannitol; PEP, phosphoenolpyruvate; PG, 1,2-propylene glycol; C₁₀ES, decyl pentaethylene glycol ether; decylPEG, decyl(poly(ethyleneglycol))₃₀₀; DM, n-Decyl-β-D-maltopyranoside
2. Nomenclature of the enzymes: EII^{mut}, wild-type EnzymeII^{mtl}; TL, EII^{mtl} where the four native tryptophans of wild-type EII^{mtl} (at positions 30, 42, 109, and 117) have been replaced with phenylalanines; W66, W97, W114, W126, W133, W147, W167, W188, and W198 refer to single-Trp EII-mutants based on TL; IIC-TL and IIC-W97 refer to the subcloned IIC_{mtl}-domain of TL and W97, respectively
Of the available spectroscopic techniques, Trp phosphorescence spectroscopy is one of the most sensitive approaches to study changes in protein conformation, due to the extremely slow (radiative) de-excitation rate of the triplet excited state (~0.2 sec⁻¹). This makes Trp phosphorescence 10⁸ times more sensitive for quenching processes than Trp fluorescence. A conformational change, nearby or more remote from the Trp probe, is expected to induce a different quenching pattern on this time-scale, and thus a change in the phosphorescence lifetime (τₚ). The observation of multiple τp’s for a single Trp position reflects the presence of different protein conformational states, which do not rapidly interchange on the time-scale of τₚ. The ability to quench the Trp triplet state is governed by the local viscosity (η), and the relation between τp and η is well established (Strambini & Gonnelli, 2005; Strambini & Gonnelli, 1995). The information obtained by measuring τp, combined with the recording of emission spectra of the protein in both the glass-state and in the fluid state, provides site-specific, structural information about the Trp microviscosity (η), micropolarity, and protein conformational heterogeneity. Together with fluorescence, phosphorescence can distinguish whether a residue is placed in a superficial, mobile and solvent exposed location in the protein or when it is in a buried and rigid part.

The wild-type EIIₘₜl protein has four Trp residues all located in the membrane-embedded IICₘₜl-domain. The fluorescence and phosphorescence characteristics of single-Trp mutants have pointed towards a large variation in polypeptide structure among the sites 30, 42, 109 and 117, as well a distinct response to the binding of mannitol and phosphorylation (Broos et al., 2000/2002/2004; Swaving-Dijkstra et al., 1996a/1997). The present study extends this approach with ten single-Trp mutants,
containing Trps in either putative trans-membrane helices or cytoplasmic loops of the IICmtl-domain (Figure 1). The mutants were based on the functional Trp-less (TL) EIImtl construct (Swaving-Dijkstra et al., 1996a), in each case replacing an aromatic residue with a Trp between residues 66 – 198, encompassing the first half of the IICmtl-domain. The positions in the proposed topology model are helix II (W66), a loop protruding the membrane (W97), the following cytoplasmic loop (W114 and W126), helix III (W133 and W147), helix IV (W167), and the following loop (W188 and W198).

Prominent among the findings reported here is the presence of an unexpectedly rigid, presumably \(\beta\)-sheet rich segment in the loop between helices II and III, protruding the lipid bilayer. More surprisingly, this structural part becomes largely unfolded upon binding of the substrate mannitol. There appeared to be no influence of the IIBAmtl-domain on the structural characteristics of this part of the protein, as inferred from observations with IIC-W97, lacking the cytoplasmic domains. Furthermore, the region from residues 125 – 150 becomes more structured upon mannitol binding.

Materials & methods

Chemicals and reagents

D-[\(1^3\)H(N)]Mannitol (17.0 Ci/mmol, batch no. 3499-326) was purchased from NEN Research Products. D-[\(1^{14}\)C]Mannitol (59.0 mCi/mmol, batch no. 78) was purchased from Amersham Biosciences. Radioactivity measurements were performed using Emulsifier Scintillator Plus obtained from Packard (Groningen, The Netherlands). Q-Sepharose and SP-Sepharose Fast Flow were from Amersham Biosciences. Ni-NTA resin was from Qiagen Inc. L-Histidine (spectroscopic grade) and imidazole were from Fluka. NaCl (Suprapur) was from Merck, Darmstadt, Germany. For phosphorescence measurements, water, doubly distilled over quartz, was purified by the Milli-Q Plus system (Millipore Corp., Bedford, MA). Spectroscopic grade 1,2-propylene glycol (PG) was from (Merck). Decylpoly(ethyleneglycol) 300 (decylPEG) was obtained from Kwant High Vacuum Oil Recycling and Synthesis (Bedum, The Netherlands). C\textsubscript{10}E\textsubscript{5} (decyl pentaethylene glycol ether) was synthesized and purified as described (Swaving-Dijkstra et al., 1996a). n-Decyl-\(\beta\)-D-maltopyranoside (DM), Anagrade©, was from Anatrace. All other chemicals were of the highest purity grade available from commercial sources. His-tagged versions of EI and HPr were created using standard genetic tools as will be described elsewhere.

Construction of single-Trp mutants

The construction of the functional Trp-less EIImtl (TL) construct with a N-terminal 6His-tag will be published elsewhere (Vos, E.P.P., manuscript in preparation). In this construct all four native Trp residues at positions 30, 42, 109, and 117 were replaced.
Phosphorescence spectroscopy on EnzymeII

with phenylalanines. The mutations resulting in the single-Trp mutants using TL as a basis (W66, W97, W114, W126, W133, W147, W167, W188, and W198) were introduced using the Quik Change Site-Directed Mutagenesis kit from Stratagene. In each mutant a phenylalanine was replaced with a Trp, except for W66, where a tyrosine was mutated into a Trp. The sequences were confirmed by nucleotide sequence analysis. The IICmtl-mutants were constructed by cutting the plasmids harboring the wild-type IICmtl-6His (with a C-terminal 6His-tag) (Meijberg et al., 1998a), and TL and W97 (EII-constructs; see above), with restriction enzymes BbvC1 and Eco47III (at amino acid positions 15 and 237, respectively). The 665 bp fragment was isolated from the TL and W97 mutants and ligated into the wild-type IICmtl-6His plasmid, without this 665 bp fragment, yielding IIC-W97, and IIC-TL, respectively.

Cell growth, isolation of ISO membrane vesicles, and protein purification

The plasmids harbouring the single-Trp-mutated mtlA-genes (pMamtlaP,6HisEIIItl-F→W or pMamtlaP,IIICtl-F→W-6His) were transformed and subsequently grown in bacterial strain E. coli LGS322 [F thi-1, hisG1, argG6, metB1, tonA2, supE44, rpsL104, lacY1, galT6, gatR49, gatA50, MtlA', p, mlD', ΔgatR'TMDA-recA] as described (Boer et al., 1994). ISO membrane vesicles were prepared by passage of the cells through a French Press at 10,000 Psi, essentially as described (Broos et al., 1999). The membrane vesicles were washed once in 25 mM Tris-HCl, pH 7.6, 5 mM DTT, plus 1 mM NaN₃, and quickly frozen in small aliquots in liquid nitrogen prior to storage at –80°C. Membrane vesicles used for experiments were placed at 37°C for quick thawing and directly placed on ice until further used.

All single-Trp EIImtl-mutants were purified using Ni-NTA affinity chromatography as described (Veldhuis et al., 2005a). To remove all traces of the tryptophan phosphorescence quencher histidine (used to elute the protein from Ni-NTA) from the EIImtl-mutant preparations, pooled Ni-NTA fractions were diluted 5 times in buffer (25 mM Tris-HCl, pH 7.6, 2 mM GSH, plus 0.25% C₁₀E₅), loaded onto Q-Sepharose, washed with 20 column volumes of the same buffer, and subsequently eluted in a single step using 4 column volumes of the above buffer, supplemented with 400 mM NaCl (Suprapuri, Merck). All fluorescence and phosphorescence measurements were performed using this buffer.

The Trp-less IIC-TL and single-Trp IIC-W97 mutants were purified using a somewhat different strategy. Briefly, membrane vesicles (of ~20 mg/mL total membrane protein), harbouring the overproduced IIC-mutants, were solubilized at ~2 mg/mL in 25 mM Tris-HCl, pH 7.6, 400 mM NaCl, 10 mM 2-mercaptoethanol, 1% (w/v) DM, plus 10 mM imidazole for 15 minutes at room temperature. After spinning down the non-solubilized material (10 minutes, 250,000 g, 4°C), the supernatant was mixed with washed Ni-NTA resin by stirring for 1 hour at 4°C. After draining the flow-through, the column was subsequently washed with 10 column volumes buffer A (25 mM Tris-HCl, pH 7.6, 200 mM NaCl, 0.35% decylPEG, 10 mM 2-mercaptoethanol, plus 10 mM imidazole), and 10 column volumes buffer B (25 mM
Tris-HCl, pH 7.6, 150 mM NaCl, 0.25% decylPEG, plus 10 mM 2-mercaptoethanol). The his-tagged IIC^{mtl}-mutants were batch-wise eluted from Ni-NTA with 80 mM L-Histidine (in 25 mM Tris-HCl, pH 7.6, 150 mM NaCl, 0.25% decylPEG, plus 10 mM 2-mercaptoethanol). To remove the histidine, the same purification procedure as for the single-tryptophan EII^{mtl}-mutants was followed, using SP-Sepharose instead of Q-Sepharose.

For both the EII^{mtl}- and IIC^{mtl}-mutants, purification resulted in suitable protein samples for phosphorescence spectroscopy, typically at protein concentrations ranging from 5-15 μM. Protein purity of the samples was confirmed with SDS-PAGE analysis, and estimated to be more than 95%.

Mannitol binding and phosphorylation
Mannitol binding to detergent-solubilized membrane proteins was performed as described (Veldhuis et al., 2004). The non-vectorial PEP-dependent phosphorylation activity of EII^{mtl} was measured as described (Robillard & Blaauw, 1987). Briefly, the assay mixture contained 25 mM Tris-HCl, pH 7.6, 5 mM DTT, 5 mM MgCl₂, 5 mM PEP, 350 nM EI, 17 μM HPr, with or without 0.25% decylPEG, and rate-limiting amounts of EII^{mtl} (nanomolar regime). After incubation of the mixture for 5 minutes at 30°C, the reaction was started by adding 1 mM ¹⁴C-mannitol. The reaction was quenched at given time intervals by loading the samples on Dowex AG1-X2 columns (1 mL resin). After washing the column with 4 column volumes of H₂O, formed ¹⁴C-mannitol-1-P was eluted using 2 column volumes of 0.2 N HCl and quantified by liquid scintillation counting.

Fluorescence spectroscopy
For the purification of EII^{mtl} and IIC^{mtl}, care was taken to minimize fluorescent impurities in all used buffers (Swaving-Dijkstra et al., 1996b). Steady-state measurements were performed on a Fluorolog3-22 spectrofluorimeter (Jovin Yvon) at 20°C. Excitation was at 295 nm with an excitation slit-width of 2 nm and an emission slit-width of 5 nm. All spectra were corrected for background fluorescence of the used buffers and instrument response. The changes in fluorescence after addition of 1 mM mannitol were calculated by integration of the spectra from 305-399 nm.

Phosphorescence spectroscopy
For phosphorescence measurements in fluid solutions, O₂ removal was achieved by the alternative application of moderate vacuum and inlet of ultra pure N₂ (Strambini et al., 2004). The samples were placed in specially designed T-shaped spectroisil quartz cuvettes (4 mm ID round tubing in the optical section, Hellma, Mullheim/Baden, Germany) and rocked very gently, because of the surfactant, for about 10 min to achieve complete exchange of O₂ for N₂. The cuvette was connected to the N₂/vacuum line by peek tubing (1/16") and the sample was fully isolated from the atmosphere by a septum (Hamilton 76003, Alltech, Lancashire, UK) plus O-ring seal
assembly (Strambini et al., 2004). Based on the phosphorescence lifetime of the protein alcohol dehydrogenase from horse liver, which exhibits one of the highest sensitivities to O₂ quenching, this procedure lowered the O₂-level below 2 nM.

Phosphorescence spectra and decays were both measured with pulsed excitation (λex = 288 nm) on a home made apparatus (Strambini et al., 2004), modified to implement spectral measurements by means of CCD camera. Pulsed excitation was provided by a frequency-doubled Nd:Yag-pumped dye laser (Quanta Systems, Milan, Italy) with pulse duration of 5 ns and a typical energy per pulse of 0.5 - 1 mJ. For spectra measurements the emission was collected at 90° from the excitation and dispersed by a 0.3 m focal length triple grating imaging spectrograph (SpectraPro-2300i, Acton Research Corporation, Acton, MA) with a band pass ranging from 1.0 to 0.2 nm. The emission was monitored by a back-illuminated 1340×400 pixels CCD camera (Princeton Instruments Spec-10:400B(XTE), Roper Scientific Inc., Trenton, NJ) cooled to -60°C. In low temperature glasses, the phosphorescence spectrum of Trp was overlapped by a relatively intense background from solvent impurities and tyrosinate, an emission that decayed to negligible levels during the initial 3-4 s from the excitation pulse. Background-free Trp spectra were obtained by opening the mechanical shutter controlling the emission to the spectrograph after a delay of 3 s. In fluid solutions, where the lifetime of Trp phosphorescence is much shorter than the 6 s in glassy media, spectra were recorded by integrating multiple excitation pulses at a repetition frequency up to 10 Hz. To block overlapping prompt fluorescence and short-lived background from the detector, laser excitation was synchronized to a fast mechanical chopper opening the emission slit 35 μs after the laser pulse. In general, even with the shortest-lived protein phosphorescence less than 100 pulses were sufficient to obtain satisfactory S/N-ratios. Besides averaging multiple pulses, the S/N-ratio of very weak signals, which are characterized by relatively broad spectra, was further improved by horizontal binning of channels (2 to 4 channels), with no effect on spectral resolution. Under these extreme conditions the background signal, represented by a broad band peaked around 500 nm, was not negligible and was subtracted from the total spectrum, by using the spectrum of a TL control.

Phosphorescence decays were monitored by collecting the emission at 90° from vertical excitation through a filter combination with a transmission window of 405-445 nm (WG405, Lot-Oriel, Milan, Italy; plus interference filter DT-Blau, Balzer, Milan, Italy). The photomultiplier (EMI 9235QA, Middlesex, UK) was protected against fatigue from the strong excitation/fluorescence pulse by a mechanical chopper synchronized to the laser trigger, which closed the emission slit during the excitation pulse. The time resolution of this apparatus depends on the chopper speed and for the experiments reported here was maintained constant to 35 μs, the same as for spectral acquisitions. The photocurrent was amplified by a current-to-voltage converter (SR570, Stanford Research Systems, Stanford, CA) and digitised
by a computerscope system (ISC-16, RC Electronics, Santa Barbara, CA) capable of averaging multiple sweeps. Typically, less than 100 sweeps were sufficient even for the shortest decays. The background emission, as determined by measurements carried out on a TL protein and on the surfactant-containing buffer, made an important contribution during the first 200-250 µs. Therefore, phosphorescence lifetimes shorter than 200 µs could not be determined accurately and only the amplitudes of these short components could be estimated from the fluorescence-normalized phosphorescence intensities (Strambini et al., 2004). To this end, parallel measurements were made of the intensity of prompt fluorescence from each excitation pulse. Prompt fluorescence was collected through a 310-375 bandpass filter combination (WG305 nm plus Schott UG11) and detected by a UV-enhanced photodiode (OSD100-7, Centronics, Newbury Park, CA). An analogue circuit was used to integrate the photocurrent and its output was digitised and averaged by a multifunctional board (PCI-20428, Intelligent Instrumentation, Tucson, Texas) utilizing Lab View software. The prompt fluorescence intensity was used to account for possible variations in the laser output between phosphorescence and background measurements as well as to obtain fluorescence-normalized phosphorescence intensities. All phosphorescence decays were analysed in terms of a sum of exponential components by a non-linear least squares fitting algorithm (Global Unlimited, LFD, University of Illinois).

Results

Catalytic properties of single-Trp mutants
The Trp-less and single-Trp EII- and IIC-mutants were tested for mannitol binding and the results are summarized in Table 1. All mutants bound mannitol with high affinity in the nanomolar range, comparable to the wild-type protein (Veldhuis et al., 2004), except W198 (K_D of 375 nM), W97 and IIC-W97, which showed a significant decreased binding affinity with K_D-values of about 2 µM. The specific phosphorylation activities in intact membrane vesicles were more or less the same for all EII mutants and comparable to wild-type and TL (Swaving-Dijkstra et al., 1996a), indicating the functionality of all mutants. Phosphorylation activity for the IIC-mutants could not be measured, since they lack the IIBA mtl-domains for phosphoryl-group transfer.

Fluorescence and phosphorescence characteristics of single-Trp mutants
For all mutants we have determined (i) the fluorescence spectrum in buffer at room temperature, (ii) the high-resolution phosphorescence spectrum in a propylene glycol/buffer glass at 140 K, and (iii) the phosphorescence spectrum together with (iv) the phosphorescence decay in buffer at 273 K. Except for the glass-state
measurements at 140 K (see Materials & Methods), the low background contribution of the TL proteins (both for EII and IIC) was not significantly different from that of the buffer and allowed us to correct the signals for the generally small contribution of the background. These observations were similar as made previously (Broos et al., 2000).

Table 1. Mannitol binding properties of the single-Trp mutants

<table>
<thead>
<tr>
<th>Mutant</th>
<th>EII mtl TL</th>
<th>EII mtl W66</th>
<th>EII mtl W97</th>
<th>EII mtl W114</th>
<th>EII mtl W126</th>
<th>EII mtl W133</th>
<th>EII mtl W147</th>
<th>EII mtl W167</th>
<th>EII mtl W188</th>
<th>EII mtl W198</th>
<th>EII mtl W198</th>
<th>IIC mtl TL</th>
<th>IIC mtl W97</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70</td>
<td>141</td>
<td>1950</td>
<td>59</td>
<td>105</td>
<td>64</td>
<td>160</td>
<td>34</td>
<td>30</td>
<td>375</td>
<td>358</td>
<td>2230</td>
<td></td>
</tr>
</tbody>
</table>

Detergent-solubilized membrane vesicles; the errors in K_D are typically below 10% (Veldhuis et al., 2004)

(i) Fluorescence spectra at room temperature

The fluorescence emission maximum (λ_{Em}) provides an estimate of the polarity of the Trp environment as λ_{Em} for the free chromophore increases from 300 nm in non-polar butanol to 350 nm in aqueous solutions (Konev, 1967). Only the emission of W97 and IIC-W97 showed a blue-shifted maximum ($\lambda_{Em} = 318$ nm). The other mutants displayed maxima above 325 nm. The emission maxima of W97 and IIC-W97 are similar to that of tryptophan in hexane (320 nm), suggesting a very hydrophobic, non-polar environment for these residues.

(ii) Phosphorescence spectra in glasses at 140 K

In a rigid medium, as a low temperature glass, the spectrum of Trp displays a pronounced vibronic structure with a well-resolved 0,0-vibrational band. While the wavelength of the 0,0-vibrational band, $\lambda_{0,0}$, is related to the polarity-polarizability of the indole environment (Galley, 1976), its bandwidth (BW, the width at 2/3 height) reports on the structural homogeneity of the site (Herschberger et al., 1980). For free Trp in homogeneous solutions, $\lambda_{0,0}$ ranges from 406 nm for a polar aqueous solution, to 411 nm for a completely non-polar hydrocarbon solvent (Galley, 1976). In proteins, $\lambda_{0,0}$ ranges from 403 - 420 nm (Herschberger et al., 1980). In micellar solutions, as for detergent-solubilized EII or IIC, the solvent can be either aqueous or non-polar, depending on whether a particular region of the protein surface is solvated by water or...
by the lipid tails of the surfactant. Hence, only $\lambda_{0,0}$-values outside the range 406 - 411 nm imply effective burial of the indole within the folds of EII or IIC.

The highest spectral resolution is obtained with Trp residues buried in proteins having a unique conformation around the Trp site (e.g. W72 of transhydrogenase from *Rhodospirillum rubrum*; $\text{BW} = 3.2 \text{ nm}$) (Broos et al., 2003). Spectral broadening occurs on exposure of the aromatic ring to the solvent ($\text{BW} = 5.7 \text{ nm}$ for Trp in PG/water) and can be large (up to 15 nm), when the protein structure is not uniform at the Trp site, either because of local disorder or due to the presence of distinct conformers.

Examples of phosphorescence spectra at 140 K, showing the range of spectral resolutions, are given in Figure 2A for mutants W97 (well resolved) and W147 (broad). The values of $\lambda_{0,0}$ and BW, derived from the phosphorescence spectra at 140 K, are reported for all mutants in Table 2. According to the $\lambda_{0,0}$-values, only residue 97 is located in a polar site (406.7 nm). For the other mutants, $\lambda_{0,0}$ is between 409.0 and 411.7 nm, wavelengths compatible with predominantly non-polar environments. These findings indicate that in none of the mutant proteins the chromophore is exposed to the aqueous phase, either because the spectrum is to the red of that of Trp free in solution ($\lambda_{0,0} > 406 \text{ nm}$) or because in the case of W97 it is much better resolved ($\text{BW} < 5.7 \text{ nm}$). We also note that for W97, phosphorescence and fluorescence spectra apparently lead to opposite conclusions regarding the polarity of the Trp microenvironment, polar for the former, non-polar for the latter. However, a blue-shifted fluorescence spectrum can also be indicative of a polar site that is too rigid to relax (shift to the red) during the fluorescence lifetime (Galley, 1976). The phosphorescence spectrum shows that for W97 the latter interpretation is the correct one. A similar observation was made for W72 in transhydrogenase from *Rhodospirillum rubrum* (Broos et al., 2003).

Figure 2. High-resolution phosphorescence spectra of W97 and W147. (A) in PG/buffer glass at 140 K, (B) in buffer at 273 K. Excitation wavelength $\lambda_{\text{ex}} = 287 \text{ nm}$.

![Figure 2](image-url)
The BW of the 0,0-vibrational band is in most cases larger than for solvent exposed Trp (BW = 5.7 nm). The lower spectral resolution in these mutants indicates multiple local configurations of the polypeptide and therefore structural heterogeneity. Exceptions are W97, IIC-W97 (BW = 3.4 nm) and W114 (BW = 4.6 nm), which exhibit the best-resolved spectra. These sites are therefore rather homogeneous, implying an ordered local peptide structure. In the case of W97, whose spectral resolution is among the highest ever reported for a globular protein fold, the spectrum is indicative of a unique, sharply defined structure around the chromophore, typical of tight β-sheet/barrel folds. Relative to W97, the BW and local disorder increases progressively in the order W114 < W188 ~ W66 ~ W167 < W198 ~ W126 < W133, to become large with W147 (11.9 nm), suggesting a corresponding increase in conformational freedom at these sites.

Table 2. Phosphorescence spectral energies and bandwidth of the 0,0-vibrational peak of the single-tryptophan mutants (all values are in nm; typical errors are: \(\lambda_{00} \pm 0.1 \) nm; BW ± 0.2 nm; \(\lambda_q \pm 0.3 \) nm)

<table>
<thead>
<tr>
<th>Mutant</th>
<th>(\lambda_{00})</th>
<th>BW</th>
<th>(\lambda_q^{140})</th>
<th>(\lambda_q^{273})</th>
<th>(\Delta \lambda_q(T))</th>
<th>(\Delta \lambda_q^{140})</th>
<th>(\Delta \lambda_q^{273})</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIImtl W66</td>
<td>411.7</td>
<td>6.8</td>
<td>442.0</td>
<td>447.1</td>
<td>+5.1 & 0 & 0 & +2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W97</td>
<td>406.5</td>
<td>3.4</td>
<td>436.8</td>
<td>441.3</td>
<td>+4.5</td>
<td>+2.3 & +7.8 & +3.3</td>
<td></td>
</tr>
<tr>
<td>W114</td>
<td>409.0</td>
<td>4.6</td>
<td>439.3</td>
<td>445.3</td>
<td>+6.0</td>
<td>+0.6 & 0 & +1.5</td>
<td></td>
</tr>
<tr>
<td>W126</td>
<td>409.2</td>
<td>7.5</td>
<td>440.9</td>
<td>447.3</td>
<td>+6.4</td>
<td>+0.6 & -0.2 & 0</td>
<td></td>
</tr>
<tr>
<td>W133</td>
<td>409.9</td>
<td>8.5</td>
<td>440.1</td>
<td>446.6</td>
<td>+6.5</td>
<td>-0.5 & -1.9</td>
<td>-0.8</td>
</tr>
<tr>
<td>W147</td>
<td>410.2</td>
<td>11.9</td>
<td>441.3</td>
<td>449.6</td>
<td>+8.3</td>
<td>-0.9 & -1.3 & -1.8</td>
<td></td>
</tr>
<tr>
<td>W167</td>
<td>409.0</td>
<td>6.8</td>
<td>439.3</td>
<td>448.4</td>
<td>+9.1</td>
<td>0 & -0.6 & +2.3</td>
<td></td>
</tr>
<tr>
<td>W188</td>
<td>410.0</td>
<td>6.5</td>
<td>440.3</td>
<td>447.6</td>
<td>+7.3</td>
<td>0 & +1.4 & +0.1</td>
<td></td>
</tr>
<tr>
<td>W198</td>
<td>410.0</td>
<td>7.4</td>
<td>440.3</td>
<td>447.1</td>
<td>+6.8</td>
<td>-0.9 & 0 & +2.2</td>
<td></td>
</tr>
<tr>
<td>IICmtl W97</td>
<td>406.5</td>
<td>3.4</td>
<td>436.8</td>
<td>441.3</td>
<td>+4.5 & +2.3 & +7.8 & +3.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a \) Values refer to the phosphorescence spectra in glasses (T = 140 K).
\(^b \) Center of gravity of the phosphorescence spectra, calculated according to \(\lambda_{CG} = (\sum \lambda_i I_i)/\sum I_i; I_i \) is the phosphorescence intensity at \(\lambda_i; \) LT refers to measurements conducted at 140 K, HT refers to 273 K.
\(^c \) \(\Delta \lambda_q(T) = \lambda_q^{140} - \lambda_q^{273} \)
\(^d \) Values refer to the shifts induced by the addition of 1 mM mannitol; \(\Delta \lambda_q^{140} = \lambda_q (273 K) - \lambda_q^{140}(273 K) \).

(iii) Structural flexibility from thermal spectral relaxation in buffer at 273 K

The gain in protein flexibility, as the temperature of glassy solutions is raised above the glass-transition state T_g (T_g ~ 200 K), allows the local structure to readjust itself around the triplet state dipole and achieve the lowest energy configuration. Thermal relaxation causes a red shift and broadening of the spectrum (Strambini & Gonnelli, 1985/1995). At near ambient temperature thermal population of near isoenergetic peptide conformations may also contribute to the loss in spectral resolution. As a rough guide, the larger the red shift and spectral broadening the more flexible and unstructured the protein site is. The average change in spectral energy (red shift) is

101
generally indicated by the change in the center of gravity of the spectrum, \(\Delta \lambda_g(T) \) \[\lambda_g = \frac{\sum \lambda_i P_i}{\sum P_i} \], with \(P_i \) the phosphorescence intensity at \(\lambda_i \), a quantity that, unlike \(\lambda_{0,0} \), takes into account the conformational heterogeneity.

Examples of spectral relaxations occurring in changing from the glass state at 140 K to liquid buffer at 273 K are shown in Figure 2B for mutants W97 and W147. In either case the spectrum becomes red shifted and broad, relative to the glass state. However, the spectrum of W97 maintains a clear vibronic structure even after thermal relaxation, indicating that the environment at position 97 is ordered and rigid also in fluid solutions. On the contrary, upon thermal relaxation the spectrum of W147 became considerably more red shifted and broad; the loss of resolution reduced the 0,0-vibronic band into a mere shoulder. Thus, this region of EIImut is relatively flexible, free to sample a variety of local structures.

The magnitude of the spectral shift, \(\Delta \lambda_g(T) \), for the different mutants is given in Table 2. The parameter \(\Delta \lambda_g(T) \) is not simply correlated to the local flexibility of the environment as, other things being equal, it depends on the blue or red nature of the low temperature (starting) spectrum. That is because the maximum red shift of a high-energy site (blue low temperature spectrum) is greater than that of a low energy site. When the starting spectral energy is taken into account, by decreasing/increasing the shift depending on whether \(\lambda_g \) (140 K) is to the blue/red of a reference state, we find that \(\Delta \lambda_g \) (corrected) increases in the order W97 < W114 < W126 < W133 < W66 ~ W198 < W188 < W167 < W147, which should reflect the ranking in local fluidity of the matrix around the indole group.

(iv) Structural fluidity and homogeneity as derived from the phosphorescence lifetime, \(\tau \), in buffer at 273 K
Another sensitive parameter of the local protein/solvent mobility is the intrinsic phosphorescence lifetime, which decreases from about 6 s in rigid matrices to (sub) milliseconds in fluid solutions (Gonnelli & Strambini, 2005). Time-resolved measurements provide also information on the structural homogeneity of the protein site, as stable states of the protein ensemble differing in local flexibility will exhibit distinct lifetimes resulting in multi-exponential phosphorescence decays.

The phosphorescence decays of W97 and W167 in buffer at 273 K are shown in Figure 3 as extreme examples of decay kinetics among the various mutants. The decay of W97 was the slowest and most uniform of all mutants, with an average lifetime (\(\tau_{av} \)) of 576 ms. This is over 1000 fold longer than \(\tau \) of Trp exposed to the solvent (the lifetime of NATA in the same medium) and is characteristic of Trp residues buried in ordered, rigid cores of the polypeptide normally rich in \(\beta \) secondary structure. On the contrary, the phosphorescence emission of W167 was very short-lived and heterogeneous, with most of the intensity decaying with sub millisecond
Phosphorescence spectroscopy on EnzymeII

lifetimes. Because the detergent gave a strong background signal during the first 200 μs (Figure 3, buffer), the lifetime of shorter-lived components could not be determined with accuracy. The results, however, do emphasize that W167 is in a very fluid site, possible through contact with the non-polar tails of the surfactant, and that its emission is effectively quenched by collision with reactive side chains and/or quenching impurities in the solvent.

The decay was heterogeneous with every mutant, showing that each protein site probed by Trp adopts multiple local conformations in the micellar medium. The lifetime components, \(\tau_i \), and corresponding amplitudes, \(D_i \), derived from a discrete exponential fitting of the phosphorescence decay are collected in Table 3. The table also reports the average lifetime, \(\tau_{av} = \Sigma \tau_i D_i \), or the range in \(\tau_{av} \) when the initial part of the emission is overlapped by the background signal. Among the various mutants, \(\tau_{av} \) ranks in the order W97 >> W126 > W147 > W198 > W114 > W133 > W188 > W66 > W167. The lifetime of W97 is characteristic for a Trp in a compact rigid core while those of W126, W147, W198, W114 and W133 are characteristic for residues buried within more or less flexible peptide folds, largely shielded from the solvent. The lifetime of the remainder W188, W66 and W167 places the probe in superficial loose sites which, based on the non-polar nature of the environment, are probably in contact with the hydrophobic tails of the surfactant.

Effect of mannitol binding on the fluorescence and phosphorescence emission

Mannitol binding changes the fluorescence and phosphorescence characteristics of some mutants considerably (W97 and IIC-W97), but leaves practically unaltered that of others (W188). The change in fluorescent emission intensities was for most mutants below 5 % (data not shown), together with shifts of the maxima less than 2
nm. The exceptions are W66 with an 11% decrease in intensity and for the Trp at position 97 (W97 and IIC-W97) with 46% decrease in intensity together with a considerable red shift of 4 nm. According to the phosphorescent properties of the mutants, mannitol binding to the IIC\(^{-mtl}\)-domain changes the polypeptide structure only in selected regions, some of which become more ordered and rigid (W133 and W147), while others become looser or more unfolded (W66 and W97). Examples of these opposite behaviors are provided by the phosphorescence properties of W97 and W133, as shown by the spectra in the glass-state at 140 K (Figure 4), the spectra in buffer at 273 K (Figure 5), and the phosphorescence lifetime in buffer at 273 K (Figure 6).

Table 3. Lifetimes and amplitudes of the phosphorescence decay

<table>
<thead>
<tr>
<th>Mutant</th>
<th>(\tau_1^*) (ms)</th>
<th>(a_1) (%)</th>
<th>(\tau_2) (ms)</th>
<th>(a_2) (%)</th>
<th>(\tau_3) (ms)</th>
<th>(a_3) (%)</th>
<th>(\tau_{av}) (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EII(^{-mtl})</td>
<td>W66 < 0.2</td>
<td>74 0.33</td>
<td>22 8.4</td>
<td>4 0.41</td>
<td>0.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+mtl</td>
<td>< 0.2</td>
<td>85 0.37</td>
<td>13 5.2</td>
<td>2 0.15</td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W97</td>
<td>--</td>
<td>--</td>
<td>102 29 790 71</td>
<td>576</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+mtl</td>
<td>1.49</td>
<td>42 8.1</td>
<td>56 64</td>
<td>2 6.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W114</td>
<td>< 0.2</td>
<td>20 1.05</td>
<td>41 2.6</td>
<td>39 1.40</td>
<td>1.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+mtl</td>
<td>--</td>
<td>--</td>
<td>0.37</td>
<td>58 2.38</td>
<td>42 1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W126</td>
<td>< 0.2</td>
<td>74 10</td>
<td>5 47</td>
<td>21 10.85</td>
<td>11.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+mtl</td>
<td>1.79</td>
<td>35 10</td>
<td>44 52</td>
<td>21 15.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W133</td>
<td>< 0.2</td>
<td>60 0.47</td>
<td>21 4.96</td>
<td>19 1.05</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+mtl</td>
<td>--</td>
<td>--</td>
<td>0.81</td>
<td>19 7.15</td>
<td>81 5.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W147</td>
<td>1.78</td>
<td>80 8.7</td>
<td>17 52</td>
<td>3 4.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+mtl</td>
<td>1.97</td>
<td>80 10</td>
<td>16 56</td>
<td>4 5.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W167</td>
<td>< 0.2</td>
<td>82 0.30</td>
<td>16 2.93</td>
<td>2 0.11</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+mtl</td>
<td>< 0.2</td>
<td>90 0.36</td>
<td>8 3.14</td>
<td>2 0.09</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W188</td>
<td>< 0.2</td>
<td>75 1.1</td>
<td>18 5.75</td>
<td>6.8 0.59</td>
<td>0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+mtl</td>
<td>< 0.2</td>
<td>75 0.64</td>
<td>20 8.5</td>
<td>5 0.58</td>
<td>0.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W198</td>
<td>< 0.2</td>
<td>10 1.52</td>
<td>64 6.6</td>
<td>26 2.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+mtl</td>
<td>< 0.2</td>
<td>40 1.67</td>
<td>44 8.5</td>
<td>16 2.1</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIC(^{-mtl})</td>
<td>W97</td>
<td>--</td>
<td>--</td>
<td>130 12</td>
<td>630 88</td>
<td>570</td>
<td></td>
</tr>
<tr>
<td>+mtl</td>
<td>1.79</td>
<td>40 9.8</td>
<td>53 14</td>
<td>7 6.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Lifetime decays, \(\tau_i\), and corresponding amplitudes, \(a_i\), from 2-3 exponential component fitting of the phosphorescence decay.

\(^b\) Because of the strong background emission during the initial 200 \(\mu\)s, lifetimes shorter than this value could not be determined with accuracy. In these cases, the range in average lifetime, \(\tau_{av} = \Sigma a_i\tau_i\), is given, considering \(\tau_i\) either equal to 0 or to 0.2 ms. Errors in \(\tau_{av}\) values between repeated measurements are \(\leq 10\%\).

From the low temperature spectrum, local changes in the polarity of the Trp environment can be inferred from the shift in \(\lambda_{0,0}\) (\(\Delta\lambda_{0,0} \neg m l\)) while variations in the degree of structural uniformity can be deduced from the change in bandwidth of the 0,0 band (\(\Delta BW_{ml}\)). For W133 a slight blue shift (\(\Delta\lambda_{0,0} \neg ml = -0.5\) nm) of the spectrum was observed, together with a substantial increase in spectral resolution (\(\Delta BW_{ml} = -\)
1.9 nm), indicative of a structuring effect in that region upon mannitol binding (Figure 4B). The effect was opposite and more dramatic for W97 (Figure 4A). The spectrum showed a pronounced red shift ($\Delta \lambda_{0,0}^{\text{mtl}} = +2.3$ nm), implying a substantial change in composition of the groups surrounding the aromatic ring, which remains shielded from the aqueous phase. Furthermore, the extensive broadening of the spectrum ($\Delta \text{BW}_{\text{mtl}} = +7.8$ nm) is indicative of a multiplicity of different environments, and therefore loss of any organized structure. The magnitudes of both $\Delta \lambda_{0,0}^{\text{mtl}}$ and $\Delta \text{BW}_{\text{mtl}}$ for all mutants are reported in Table 2. Based on these parameters a sharpening of the structure is reported for the Trps in W126, W133, and W147, whereas unfolding is observed for W97, W167, and W188. A slight change in the environment ($\Delta \lambda_{0,0}^{\text{mtl}}$), without affecting structural uniformity, is also found in the region of W114, and W198.

Figure 4. Phosphorescence spectra of mutants W97 and W133 in PG/buffer glass at 140 K. Without (solid) and with (dotted) 1 mM mannitol.

Figure 5. Phosphorescence spectra of mutants W97 and W133 in buffer at 273 K. Without (solid) and with (dotted) 1 mM mannitol.

The effect of mannitol binding on the thermal relaxation of the spectrum and on the phosphorescence lifetime for mutants W97 and W133 is shown in Figures 4, 5 & 6. The differences in $\Delta \lambda_{g}^{\text{mtl}}$ and $\Delta \tau_{av}^{\text{mtl}}$ report on the influence of mannitol binding on
the local flexibility of the various sites of the IIC-domain. For W133 the spectrum in buffer becomes sharper and blue-shifted ($\Delta \lambda_g^{mtl} = -0.8$ nm). This implies that the surrounding polypeptide structure becomes more ordered, in full accord with a better-resolved low temperature spectrum. The phosphorescence decay of W133 becomes more uniform and the average lifetime increases by about 6-fold (Figure 6 and Table 3), confirming an increased structural uniformity and rigidity when mannitol is bound. For W97, binding of mannitol enhanced thermal relaxation of the spectrum ($\Delta \lambda_g^{mtl} = +2.4$ nm), which became broad and little resolved. The increase in flexibility was even more evident from the drastic almost 100-fold shortening of the phosphorescence lifetime, τ_w, decreasing from 576 to 6.4 ms. According to the lifetime, the tight rigid core enveloping W97 is lost in the mannitol-bound complex, suggesting that the process involves extensive unfolding of the local secondary structure. The spectral alteration induced by mannitol binding permits to attribute the shorting of the lifetime to a drastic increase in flexibility, rather than to potential intramolecular quenching reactions by cysteine, histidine, or tyrosine, triggered by the conformational change.

The results obtained with other mutants are summarized in Tables 2 & 3. For visual inspection, the changes induced by binding of mannitol on λ_g and on τ_w are also displayed in Figure 7. The two flexibility parameters are well correlated and report roughly the same trend on the structural influence of mannitol in various sites of the IIC-domain. Thus, a structuring effect is reported in the region of W133 and W147 by $\Delta \lambda_g^{mtl}$, in the region of W126, W133, and W147 by $\Delta \tau_w^{mtl}$. The structure becomes looser in the region of W66, W97, W114, W167, and W198 on the basis of both $\Delta \lambda_g^{mtl}$ and $\Delta \tau_w^{mtl}$. No change in the spectrum or lifetime was observed for W188.
Discussion

Experimental knowledge about the dynamics of membrane-bound transport proteins during their catalytic cycle is scarce and limits the elucidation of the transport mechanism, including transporters of which the 3D structure has recently been solved. The high sensitivity of tryptophan phosphorescence spectroscopy makes this an excellent tool to investigate membrane protein dynamics and heterogeneity.

In this investigation, we have characterized ten single-tryptophan mutants of the mannitol transporter (EIImtl) from \textit{E. coli}, both in a mannitol-bound and unbound state. The Trp positions were chosen to probe various structural elements of the membrane-embedded IICmtl-domain (Figure 1). We showed previously that phosphorescence spectroscopy is suitable for studying membrane proteins, provided that the protein samples are pure, oxygen removal is efficient and the detergent does not introduce quenching components and has a low background luminescence (Broos et al., 2000). Our data show that the microenvironments of the studied Trp positions vary from exposed and flexible sites to a very rigid protein matrix, and that mannitol binding induces large conformational changes in the IICmtl-domain at several of these positions.

Figure 7. Effects of mannitol binding on the flexibility of the IICmtl-domain at various positions. The change in flexibility induced by mannitol binding is expressed as the ratio of the average lifetime with and without mannitol (τ_{mtl}/τ_0) and as the difference in the centre of gravity, $\Delta \gamma_{\text{mtl}}$ (●), of the phosphorescence spectra of the mutants with and without mannitol at 273 K. Error bars indicate the range of the ratios of the lifetime values, reported in Table 3.
For all mutants, except W97 and IIC-W97, the Trps are in non-polar environments, shielded from the aqueous phase. The non-polar nature of W66, W167 and W188, and their high flexibility could be indicative for exposed positions in contact with the hydrophobic tails of the detergent belt that surrounds the IICmtl-domain. Residues 66 and 167 are predicted in helices II and IV, respectively (Figure 1). Taking their spectral characteristics into account these residues are therefore probably in contact with the hydrophobic core of the lipid bilayer.

In Figure 7 the changes in microviscosity of the different residue positions induced by binding of mannitol are summarized. Until this study, changes in flexibility were expressed as the ratio of lifetimes with and without bound ligand (e.g. τ_{mtl}/τ_0). Implementation of a sensitive CCD-camera in the experimental setup made it possible to estimate the changes in emission spectra in the glass- and fluid state, upon mannitol binding ($\Delta \phi_{\text{mtl}}$), in a routine fashion. An advantage of this parameter, compared with τ_{mtl}/τ_0, is that the latter can be biased by nearby quenching groups, challenging the relation between τ_7 and local flexibility. Interestingly, our data show that in the case of mannitol binding both the τ_{mtl}/τ_0 and $\Delta \phi_{\text{mtl}}$ parameters correlate very well (Figure 7). Earlier, it was observed that the microenvironments of W30 and (to a lesser extent) of W42 changed upon mannitol binding (Broos et al., 2000). Taken together, mannitol binding induces significant conformational changes at most of the studied Trp positions in the IICmtl-domain, ranging from W30 – W198.

During the catalytic cycle of EIImtl, an interaction is established between the IIBmtl and IICmtl-domains (Robillard & Broos, 1999). A calorimetry study showed that upon mannitol binding 50-60 residues become shielded from the aqueous phase (Meijberg et al., 1998b). Since the effect was not observed for the IICmtl-mutant (lacking IIBAmtl), the data were interpreted as a docking of the IIBmtl-domain onto the IICmtl-domain. Except for W97, the involvement of the IIBAmtl-domains phosphorescent properties of EIImtl upon mannitol binding has not been investigated. The similarity of the phosphorescence data between W97 and IIC-W97, however, show that large conformational changes occur in the IICmtl-domain in the absence of the IIBAmtl-domains. Binding of mannitol results in loss of structure in mutants W66, W97, W114, W167 and W198, the microenvironment of the Trp becomes more structured in W126, W133, and W147. A chemical cross-linking study showed that a cysteine at position 124 can form a disulfide bridge with Cys384 in the IIBmtl-domain (Van Montfort et al., 2001). Possibly, the structuring observed for W126, W133 and W147 upon binding of mannitol is a result of mannitol induced interdomain interactions.

The most remarkable phosphorescence properties were observed for the tryptophan at position 97: a highly resolved phosphorescence spectrum both in the
Phosphorescence spectroscopy on EII_{mtl}
glass-state at 140 K and in the fluid state at 273 K, together with a uniform and long phosphorescent lifetime. In fact, the spectrum of W97 in buffer at 273 K (Figure 2B) is one of the best-resolved spectra ever reported. Tryptophan phosphorescence lifetimes in the sub-second to second range are not common for proteins in fluid media and have only been observed for proteins with tryptophan residues in well-defined, rigid protein cores, invariably formed by β-sheets/barrels. Examples are: W48 of azurin (τ = 0.63 s)(Cioni et al., 2004), W314 of horse liver alcohol dehydrogenase (τ_{av} = 0.65 s)(Gonnelli & Strambini, 1995), W109 of alkaline phosphatase from <i>E. coli</i> (τ = 2 s)(Gonnelli & Strambini, 1995) and W72 of the NAD(H)-binding component (dl) of <i>Rhodospirillum rubrum</i> transhydrogenase (τ = 2.9 s)(Broos et al., 2003). Thus, the phosphorescence properties of the tryptophan in mutant W97 strongly suggest that it is embedded in a β-sheet structure. Prediction of β-strands is in general difficult for (membrane) proteins. Although accurate estimation of the amount of β-sheet structures in the IIC_{mtl}-domain was not possible by FTIR analysis, a strong signal in the region of 1630 – 1634 cm⁻¹ suggests that the protein contains a considerable fraction of β-sheet structure (Robillard et al., 1996). The fact that the emission properties are identical both for W97 and IIC-W97 indicates that at least one β-sheet like core is located in the IIC_{mtl}-domain. Binding of mannitol induces a drastic change in the environment of Trp-97, indicative of local unfolding of the protein. Such a large effect of substrate binding on the phosphorescence spectrum and on the lifetime has not been reported before.

EII_{mtl} forms stable dimers both in the native membrane and in the detergent solubilized state, i.e., when solubilized by a PEG-based detergent like C₁₀E₅ (Boer et al., 1994; Khandekar & Jacobson, 1989; Lolkema et al., 1993a; Pas et al., 1987; Roossien & Robillard, 1984; Robillard, 1984; Stephan & Jacobson, 1986b). The high resolution of the spectrum of W97 without mannitol suggests that both Trp residues in the dimer of W97 are in a similar microenvironment. The large difference in lifetime between free and mannitol-bound W97 indicate that mannitol binding influences both Trp residues in the dimer of W97 in a similar manner when mannitol interacts at the single binding site present in the dimer (Veldhuis et al., 2005a).

Currently, no information is available where sugar translocation takes place in EII_{mtl} or the other sugar translocators belonging to the PTS-family. The data presented in this paper shows for the first time that a significant part of the sugar translocation domain undergoes structural changes including unfolding of a rigid protein core around residue position 97. The large impact of the Phe97 to Trp mutation on the mannitol binding affinity suggests that it is located close to the mannitol binding site. The localization of the studied tryptophan residues with respect to the mannitol binding site is currently investigated via fluorescence resonance energy transfer experiments using a chromophoric analogue of mannitol (Broos et al., 2002).