The dependence on temperature and salinity of dissolved
Bakker, Dorothee C.E.; de Baar, Henricus; Jong, Edwin de

Published in:
Marine Chemistry

DOI:
10.1016/S0304-4203(99)00017-1

IMPORTANT NOTE: You are advised to consult the publisher’s version (publisher’s PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher’s PDF, also known as Version of record

Publication date:
1999

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
The dependence on temperature and salinity of dissolved inorganic carbon in East Atlantic surface waters

Dorothee C.E. Bakker *, Hein J.W. de Baar 1, Edwin de Jong
Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, Texel, Netherlands
Received 19 June 1998; accepted 26 January 1999

Abstract

Recurring latitudinal patterns of the dissolved inorganic carbon (DIC) content and the fugacity of CO₂ (fCO₂) were observed in East Atlantic surface waters with strong gradients at hydrographic fronts. The dissolved inorganic carbon chemistry clearly displayed the effects of oceanic circulation and of persistent surface water processes. In two cases inorganic carbon components could be used as an indicator of the origin of hydrographic features. Surface water fCO₂ below the atmospheric value, low DIC and low salinity north of the equator were ascribed to a combination of high rainfall and low wind speed in the Intertropical Convergence Zone and of biological uptake of CO₂. Low surface water DIC and salinity delineated the Congo outflow. Along the cruise tracks calculated titration alkalinity (TA) had an almost linear relationship with salinity, while DIC had an apparent dependence on temperature and salinity. The latter dependence was tested by comparing observed DIC to DIC estimated from fCO₂ and a reference value of TA normalised to salinity. Different scenarios of temperature, salinity, fCO₂ and nutrient contents were applied. Changes of DIC were found to be indeed related to both temperature and salinity. The latitudinal distribution of DIC could be inferred with an accuracy of 17 µmol kg⁻¹ and a standard deviation of 13 µmol kg⁻¹ from in situ salinity, in situ temperature and the reference values of TA and nutrient contents normalised to in situ salinity (scenario D). The applied technique of estimating DIC from temperature and salinity is a powerful diagnostic tool to evaluate the spatial distribution of DIC. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: dissolved inorganic carbon; East Atlantic Ocean; salinity; temperature

1. Introduction

The continuing increase of the atmospheric content of the greenhouse gas carbon dioxide (CO₂) may give rise to global warming (Houghton et al., 1996). Estimates of the net oceanic uptake of CO₂ contain a large uncertainty as a result of the large natural air–sea exchange of CO₂, which has a considerable spatial and temporal variability. Worldwide measurements of surface water CO₂-characteristics and of the related air–sea exchange of CO₂ are being made in order to better assess the oceanic uptake of CO₂ (Poisson et al., 1993; Takahashi et al., 1993, 1997; among others). In this context it is important to understand the processes that affect the
Table 1

Surface water parameters for the cruises ANT XI/1 and XI/5 of R.V. Polarstern

<table>
<thead>
<tr>
<th></th>
<th>ANT XI/1</th>
<th>ANT XI/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ports</td>
<td>Bremerhaven—Capetown</td>
<td>Capetown—Rotterdam</td>
</tr>
<tr>
<td>Temperature</td>
<td>on-line</td>
<td>on-line</td>
</tr>
<tr>
<td>Salinity</td>
<td>on-line</td>
<td>on-line</td>
</tr>
<tr>
<td>fCO_2</td>
<td>on-line</td>
<td>on-line</td>
</tr>
<tr>
<td>DIC</td>
<td>on-line</td>
<td>on-line</td>
</tr>
<tr>
<td>TA</td>
<td>calculated</td>
<td>calculated</td>
</tr>
<tr>
<td>Si(OH)$_4$</td>
<td>discrete</td>
<td>discrete</td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>discrete</td>
<td>discrete</td>
</tr>
<tr>
<td>PO$_4^{3-}$</td>
<td>discrete</td>
<td>discrete</td>
</tr>
<tr>
<td>‘Relative chlorophyll' (XI/1), fluorescence (XI/5)</td>
<td>on-line</td>
<td>on-line</td>
</tr>
</tbody>
</table>

The fugacity of CO$_2$ (fCO_2), dissolved inorganic carbon (DIC), contents of silicate (Si(OH)$_4$), nitrate (NO$_3^-$) and phosphate (PO$_4^{3-}$) were determined either on-line or for discrete samples. Titration alkalinity (TA) was calculated from DIC and fCO_2. Measurements of ‘relative chlorophyll' (XI/1) and fluorescence (XI/5) were not calibrated.

distribution of dissolved inorganic carbon (DIC) components in oceanic surface waters.

DIC in seawater consists of roughly 0.5 to 1% CO$_2$, 0.002% carbonic acid (H$_2$CO$_3$), 90% bicarbonate (HCO$_3^-$) and 9% carbonate (CO$_3^{2-}$):

$$DIC = [CO_2] + [H_2CO_3] + [HCO_3^-] + [CO_3^{2-}]$$

(1)

The fugacity of CO$_2$, fCO_2 (μatm), is the ratio of the concentration of dissolved CO$_2$ in seawater [CO$_2$$_{eq}$], which includes the negligible amount of carbonic acid, to its solubility K'_0 (mol kg$^{-1}$ atm$^{-1}$) (Weiss, 1974):

$$fCO_2 = [CO_2]_{eq}/K'_0$$

(2)

An increase in temperature or salinity would decrease the solubility of CO$_2$. The titration alkalinity (TA, μ eq kg$^{-1}$) is the equivalent of all bases that can accept a proton to the carbonic acid endpoint (Sverdrup et al., 1942; Dickson, 1981):

$$TA = [HCO_3^-] + 2[CO_3^{2-}] + [B(OH)_4^-]$$

$$+ [\text{minor bases}] + [OH^-] - [H^+]$$

(3)

Bicarbonate and carbonate constitute roughly 98% of TA at pH 8.1.

Both physical and biological processes affect the surface water CO$_2$-chemistry of the oceans (Brewer, 1986; Bakker et al., 1997). DIC and TA are conservative parameters during mixing. Photosynthetic uptake of CO$_2$ lowers DIC and fCO_2. Biological uptake of ammonium (NH$_4^+$) or nitrate (NO$_3^-$) slightly changes TA. Precipitation of calcareous material decreases DIC and TA. Air–sea exchange of CO$_2$ changes the content of the inorganic carbon species in seawater, but leaves TA unaltered. The relatively slow air–sea exchange of CO$_2$ does not keep up with other processes acting upon the DIC components. Hence, the CO$_2$-content of oceanic surface waters is generally out of equilibrium with the atmospheric mixing ratio of CO$_2$. The observed distribution of surface water fCO_2 is strongly related to oceanic circulation in East and South Atlantic waters (Bakker et al., 1999a).

This article will relate the distribution of DIC in East Atlantic surface waters to temperature and salinity for two cruises in October–November 1993 and May–June 1994 (Table 1, Fig. 1). In two low salinity areas the inorganic carbon chemistry will be used to unravel the origin of these hydrographic features. The apparent dependence on temperature and salinity of DIC will be tested by comparing observed DIC to DIC estimated from fCO_2 and a reference value of TA normalised to salinity for different scenarios of salinity, temperature, fCO_2 and nutrient contents.

2. Methods

2.1. Meteorological and hydrographic parameters

Measurements were performed during cruises ANT XI/1 and XI/5 of R.V. Polarstern (Table 1,
Fig. 1. Cruise tracks of the southbound cruise ANT XI/1 in October–November 1993 and of the northbound cruise ANT XI/5 in May–June 1994 of R.V. Polarstern in the East Atlantic Ocean (Table 1).

The ship’s data-acquisition system provided 10 min values for water temperature and salinity at 8 m depth, air temperature, atmospheric moisture content, atmospheric pressure at sea level, wind direction and wind speed at 10 m above sea level. Salinity is expressed on the Practical Salinity Scale.

2.2. Dissolved inorganic carbon

The content of DIC in water from 12 m depth was determined every 10 min by a coulometer (Stoll, 1994) modified for semi-continuous operation. In the extractor a subsample was acidified with 8.5% phosphoric acid (H₃PO₄) and flushed with nitrogen. The evolved CO₂ was captured in an ethanol–amine solution, which was photometrically backtitrated by the coulometer (Johnson et al., 1987). Regular calibration was performed against DIC standard seawater samples supplied by A.G. Dickson (DOE, 1994). Accuracy and precision of the coulometer were 1.5 μmol kg⁻¹ (after Stoll, 1994).

2.3. The fugacity of CO₂ of water and marine air

Marine air from 20 m above sea level was pumped at a rate of 80 cm³ s⁻¹. Seawater from 12 m depth was sprayed into an equilibrator at a rate of 40 to 50 cm³ s⁻¹ (Bakker et al., 1997). Warming of the water between sampling and the equilibrator varied from 0.1°C during ANT XI/5 to 1.5°C near the ice (XI/1). The CO₂-content of the headspace of the equilibrator and of marine air was measured with a gas chromatograph (GC) (Bakker et al., 1997). A 19-min
GC-run consisted of three calibration gases and samples for marine air and seawater. Calibration gases supplied by BOC (UK) had been calibrated against NOAA-certified standard gas mixtures. The GC had two sampling loops: one with an open outlet for sampling of calibration gases and marine air, a second as part of a closed system with the headspace of the equilibrator. CO2 was separated from other gases and was reduced to methane (CH4), which was detected by the flame ionisation detector (FID). At temperatures above 18°C samples were dried with silica gel.

The fugacity of CO2 (fCO2) in seawater was calculated from the mixing ratio of CO2 in the headspace, atmospheric pressure, the formulae of Weiss (1974), and the temperature correction of Copin-Montégut (1988, 1989). The precision of fCO2 in surface water was estimated as 0.7 µatm for Antarctic waters (Bakker et al., 1997). The precision of the mixing ratios of CO2 in dry air was estimated as 0.6 µmol mol⁻¹ for Antarctic regions, with an accuracy better than 0.8 µmol mol⁻¹ (Bakker et al., 1997). The accuracy and precision of fCO2 measurements in the tropical regions was lower than in Antarctic regions as a result of drying of the samples and the larger moisture correction.

2.4. Titration alkalinity

Titration alkalinity (TA) along the cruise tracks was calculated from fCO2, DIC and interpolated values of silicate and phosphate for the definition of Dickson (1981) and the constants of Roy et al. (1993).

2.5. Fluorescence

During ANT XI/1 in situ fluorescence of seawater at 12 m depth was registered by the COMED data acquisition system (courtesy of Mr. K. Ohm, Prof. G. Krause, AWI and Dr. R. Wilkomm, University of Oldenburg). The fluorescence sensor was factory calibrated to the chlorophyll a content. Fluorescence of water from 8 m depth was measured with a Turner-Design TD 10 fluorometer in through-flow mode during ANT XI/5.

2.6. Nutrient contents

At regular intervals seawater from 12 m depth was sampled in duplicate. The samples were filtered across an Acrodisc 0.2 µm filter. One set of samples was stored at 2°C for determination of silicate (Si(OH)4), the other was kept frozen for analysis of phosphate (as HPO4²⁻ and H₂PO₄⁻) and nitrate (NO₃⁻). Measurements were performed one to seven weeks after sampling at the home laboratory.

3. Results

3.1. Latitudinal surface water characteristics

The cruises ANT XI/1 and XI/5 extended along the East Atlantic Ocean in October–November 1993 and May–June 1994 (Table 1, Fig. 1). The cruise tracks traversed three major hydrographic regions: the northern and the southern subtropical gyre and the Antarctic Circumpolar Current (ACC) (Fig. 2). Continental slopes were crossed at 48°N (XI/1, XI/5) and at 29°S (XI/5). The ice edge was at 57.3°S 9.2°E in November 1993 (XI/1).

A recurring latitudinal distribution was observed for surface water temperature, salinity, DIC and fCO2 in the East Atlantic Ocean (Fig. 3). Oceanic circulation left its imprint upon the surface water CO2-characteristics (Bakker et al., 1999a). Differences in the parameters between the two cruises partly resulted from the different cruise tracks and seasonal changes (Figs. 1 and 3). The temperature of subtropical and temperate waters was higher in autumn than in spring (Fig. 3a). Two regions, a region with low surface water salinity north of the equator and the outflow of the Congo River, displayed remarkable surface water characteristics and will be discussed in some detail.

3.1.1. Low Salinity Region

The region between 2.0° and 10.0°N (XI/1) and between 0.6° and 8.0°N (XI/5) had a pronounced minimum in salinity and a maximum in temperature and will be indicated as the Low Salinity Region (LSR) (Fig. 3). Surface water of the LSR had fCO2
below the atmospheric value, low DIC, TA, fluorescence and low nutrient contents. Strong gradients of surface water salinity, DIC, \(f_{CO_2} \) and TA occurred at the edges of the LSR. Similar low salinity waters with low \(f_{CO_2} \) were encountered in June–July 1986 (Oudot and Andrie, 1989) and in October 1995 (Lefèvre et al., 1998). They were ascribed to a combination of high precipitation and biological activity (Lefèvre et al., 1998). The observation of the LSR during several cruises in different seasons suggests that the LSR is a recurring or even a permanent feature.

The position of the LSR corresponded to that of the Intertropical Convergence Zone (ITCZ) slightly north of the equator. The southward displacement of the LSR between October 1993 (XI/1) and May–June 1994 (XI/5) followed the seasonal movement of the ITCZ. The North Equatorial Countercurrent (NECC) probably flowed eastward within the LSR. At 5.22°N 16.45°W within the LSR salinity gradually increased by 0.5 unit at a constant temperature from 0 to 40 m depth on 1 June 1994 (XI/5) (Bakker et al., 1999b). The relatively fresh water of the LSR and the shallow mixed layer had probably originated from high precipitation and low wind speed related to the ITCZ (Dessier and Donguy, 1994). Local maxima in DIC between 1.8° and 3.0°N and of \(f_{CO_2} \) between 8.0° and 8.2°N in May–June 1994 (XI/5) may have resulted from local upwelling.
The expected effect on DIC and fCO$_2$ of dilution of (sub-)tropical surface water by rainwater is calculated for ANT XI/1 (Table 2). Rainwater is assumed to contain a negligible amount of DIC and TA. On the northern edge of the LSR a decrease in salinity of one unit corresponds to a calculated decrease in DIC by 55 μmol kg$^{-1}$ and in fCO$_2$ by 14 μatm at a constant temperature. The change of fCO$_2$ by dilution is, however, counteracted by the observed, simultaneous increase in temperature by 1.9°C. Observed DIC and fCO$_2$ are 36 to 50 μmol kg$^{-1}$ and 21 to 38 μatm lower than the calculated values for conservative mixing of rainwater and adjacent (sub-)tropical surface water.
Two mixing lines with the equations:

\[
\text{DIC} = 99.3S - 1575 \\
\text{DIC} = 95.5S - 1415
\]

(4)

(5)

can be distinguished between surface water in the LSR and nearby (sub-)tropical water with high salinity (Table 3, Fig. 4). The large negative offset on the y-axis of the mixing lines suggests that surface water in the LSR did not originate from dilution of adjacent (sub-)tropical surface water by rainwater alone. In addition to precipitation, biological uptake of CO\(_2\) may have lowered surface water fCO\(_2\) and DIC in the LSR, as suggested by Lefèvre et al. (1998). Although the observed surface water fluorescence is low (Fig. 3f), ocean colour observations indicate algal blooms in a band between 5\(^\circ\) and 10\(^\circ\)N from late May to December (Longhurst, 1993). The temporal and spatial variability of the algal blooms follows the seasonal displacement of the NECC (Longhurst, 1993). Estimates of the annual average of the daily primary production for the eastern tropical Atlantic Ocean range from 36 to 82 mmol C m\(^{-2}\) day\(^{-1}\) (Longhurst et al., 1995; Monger et al., 1997).
Table 2

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Temperature °C</th>
<th>Salinity</th>
<th>DIC (μmol kg⁻¹)</th>
<th>TA (μmol kg⁻¹)</th>
<th>fCO₂ (μatm)</th>
<th>DIC mix (μmol kg⁻¹)</th>
<th>TA mix (μmol kg⁻¹)</th>
<th>fCO₂ con</th>
<th>fCO₂ in situ</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.0°N</td>
<td>27.04</td>
<td>36.10</td>
<td>2008.2</td>
<td>2395.4</td>
<td>353.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>9.9°N</td>
<td>28.40</td>
<td>35.62</td>
<td>1954.2</td>
<td>2364.5</td>
<td>320.0</td>
<td>1982.1</td>
<td>2363.5</td>
<td>347.2</td>
<td>366.1</td>
</tr>
<tr>
<td>7.5°N</td>
<td>29.00</td>
<td>35.10</td>
<td>1917.7</td>
<td>2315.5</td>
<td>327.7</td>
<td>1953.2</td>
<td>2329.0</td>
<td>339.4</td>
<td>365.2</td>
</tr>
<tr>
<td>1.0°S</td>
<td>26.15</td>
<td>36.22</td>
<td>2042.2</td>
<td>2423.5</td>
<td>360.4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>0.2°S</td>
<td>27.35</td>
<td>35.61</td>
<td>1983.5</td>
<td>2368.9</td>
<td>347.0</td>
<td>2007.8</td>
<td>2382.7</td>
<td>351.0</td>
<td>368.0</td>
</tr>
<tr>
<td>3.0°N</td>
<td>28.00</td>
<td>35.08</td>
<td>1927.9</td>
<td>2300.2</td>
<td>347.6</td>
<td>1977.9</td>
<td>2347.2</td>
<td>342.9</td>
<td>368.8</td>
</tr>
</tbody>
</table>

For rainwater negligible contents of DIC and TA are assumed. The fCO₂ after mixing is calculated both at a constant temperature of 27.04°C for the northern edge and of 28.00°C for the southern edge (fCO₂ con) and at in situ temperature (fCO₂ in situ) with the constants of Roy et al. (1993).

In the very different Antarctic ecosystem of the Polar Front a decrease of surface water fCO₂ by 1.1 to 1.4 μatm day⁻¹ during 5 weeks was largely ascribed to the uptake of CO₂ by a spring bloom (Bakker et al., 1997). The corresponding primary production was 40.8 to 97.3 mmol C m⁻² day⁻¹. Air–sea exchange of CO₂ counteracted the decrease of fCO₂ by 0.1 μatm day⁻¹ for an average wind speed of 10.7 m s⁻¹. In the LSR, where wind speed is low, primary production of at least 36 mmol C m⁻² day⁻¹ may well result in a significant decrease of surface water fCO₂ and DIC.

The abrupt salinity changes on the edges of the LSR suggest that hydrographic processes supported its development and persistence. The convergence between the SEC and the NECC could have supported the strong salinity gradient on the southern boundary of the LSR. Upwelling in the Guinea Dome and along the divergence between the NECC and the NEC could have caused the observed gradients of salinity, DIC and fCO₂ on the northern edge of the LSR in June 1994 (XI/5). The LSR might represent a relatively light surface water cell bounded by downwelling on its southern edge and upwelling on its northern edge. An origin of the water of the LSR as primarily Amazon River water is unlikely, as no similar low salinity waters were observed west of 25°W during two cruises in November 1991 and February 1993 (Bakker et al., 1999a).

Strong salinity gradients of 1 to 2 units occurred on the edges of the LSR. Salinity changes of as much as 3 units were previously observed at 8°N 26°W and at 5°N 28°W in September–October 1988 (Arnault et al., 1992). Climatological maps of sea surface salinity (Tchernia, 1980; Reid, 1994; Tomczak and Godfrey, 1994) do not indicate such strong salinity gradients in the tropical Atlantic Ocean. A similar absence of a strong salinity gradient in clima-

Table 3

<table>
<thead>
<tr>
<th>LSR-north 7.5°–15.0°N</th>
<th>LSR-south 1.0°–4.0°N</th>
<th>Congo-outflow 5.0°–10.0°S</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (μmol kg⁻¹)</td>
<td>99.3</td>
<td>95.5</td>
</tr>
<tr>
<td>b (μmol kg⁻¹)</td>
<td>-1375</td>
<td>-1415</td>
</tr>
<tr>
<td>r</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>σₚ⁻¹ (μmol kg⁻¹)</td>
<td>8.6</td>
<td>5.5</td>
</tr>
<tr>
<td>#</td>
<td>254</td>
<td>208</td>
</tr>
</tbody>
</table>

Symbols indicate the correlation coefficient (r), the standard deviation (σₚ⁻¹) and the number of data points (#).
3.1.2. Congo outflow

Water with low salinity of 33.0 to 35.6 and a low DIC-content of 1888 to 2036 μmol kg⁻¹ delineated the Congo outflow between 4.7° and 8.5°S (XI/1) (Fig. 3). The black, opaque water had a high temperature of 26.2°C to 27.9°C, a difference of fCO₂ across the sea surface of −4 to 43 μatm, low fluorescence and a low NO₃⁻-content.

A mixing line with the equation:

\[
\text{DIC} = 54.0S + 109
\]

has been obtained between water in the Congo outflow and adjacent surface water (Table 3, Fig. 4). The relationship indicates an average DIC-content of 109 μmol kg⁻¹ for the river water, neglecting changes in DIC after the water entered the ocean. This value is half of the HCO₃⁻-content of 220 μmol kg⁻¹ for the river Congo (Probst et al., 1992). Decomposition of part of the river’s total organic load of 830 μmol kg⁻¹ (Nkounkou and Probst, 1987) would have increased the DIC-content, while export production would have decreased DIC.

3.2. Relationships between the surface water parameters

The complex behaviour of surface water temperature, salinity, DIC, fCO₂, and TA was examined in order to identify functional relationships between the parameters.

3.2.1. Temperature and salinity

The relationship between temperature and salinity changed from the equator towards the poles (Fig. 5a). Maximum temperatures occurred in two regions with relatively low salinity: the LSR and the Congo outflow. Highest salinity was observed at temperatures of 22–26°C in subtropical waters. Salinity and temperature decreased from subtropical areas towards temperate and subantarctic regions in a distinct band for each hemisphere. Surface water of the North Sea had low salinity and a temperature of 12–14°C.

3.2.2. The dependence of DIC on salinity and temperature

Individual regions of the East Atlantic Ocean had a distinct behaviour of DIC relative to salinity and
Fig. 5. Surface water values as a function of salinity for the cruise ANT XI/1 in October–November 1993 in the East Atlantic Ocean. Parameters are temperature (a), fCO$_2$ (b), dissolved inorganic carbon (DIC) (c), DIC normalised to a salinity of 35 (d), calculated titration alkalinity (TA) (e), and TA normalised to a salinity of 35 (TA$_s$) (f). Abbreviations are ACC—Antarctic Circumpolar Current and LSR—Low Salinity Region. ‘Temperate’ denotes temperate waters. ‘Ice’ indicates the presence of sea ice.

Temperature (Fig. 5c, Fig. 6c). Surface water DIC increased as salinity increased and temperature slightly decreased from the LSR to adjacent (sub-) tropical waters. DIC normalised to a salinity of 35 (DIC$_{35}$) was almost independent of salinity for these waters (Fig. 5d). This suggested a dependence of DIC on salinity from the LSR to adjacent waters.

From subtropical to temperate waters DIC was relatively constant for decreasing temperature and salinity, while DIC$_{35}$ showed a linear increase with both parameters (Fig. 5c–d, Fig. 6c–d). The effects of temperature and salinity changes on DIC apparently counteracted each other in these waters.

From temperate to Antarctic waters the increase of DIC was opposed to the decrease of temperature and salinity (Fig. 5c, Fig. 6c). The decrease of temperature and salinity enhanced the solubility of CO$_2$ and shifted the carbonate equilibria,
which promoted the increase of DIC towards colder waters.

3.2.3. The relationship between fCO$_2$, temperature, salinity and DIC

Surface water fCO$_2$ was independent of salinity (Fig. 5b). The dependence of fCO$_2$ on temperature and DIC varied for the oceanic regions (Bakker et al., 1999a) (Fig. 6b, Fig. 7a).

3.2.4. The dependence of TA on temperature and salinity

The linear relationship between TA and salinity (Fig. 5e) disappeared by normalising TA to a salinity of 35 (TA$_{35}$) (Fig. 5f). This indicated a highly conservative behaviour of TA for most of the research area and explained the resemblance between the figures of salinity and TA against temperature (Fig. 6a and e). Processes, such as precipitation and dissolution of calcareous material, biological uptake
Fig. 7. Surface water values of the fugacity of CO$_2$ (f$_{CO_2}$) (a), and calculated titration alkalinity (TA) (b), as a function of dissolved inorganic carbon (DIC) for the cruise ANT XI/1 in the East Atlantic Ocean in October–November 1993. Abbreviations are ACC—Antarctic Circumpolar Current and LSR—Low Salinity Region. ‘Temperate’ denotes temperate waters.

of nitrogen components and mixing in of water, apparently did not greatly affect TA normalised to a salinity of 35. TA$_{35}$ was relatively independent of temperature except in tropical waters (Fig. 6f).

4. Discussion

4.1. Scenarios that estimate DIC from salinity and temperature

The above suggests that the spatial variability of DIC along the eastern boundary of the Atlantic Ocean was related to both temperature and salinity, while TA was primarily affected by salinity. The dependence of surface water DIC on temperature and salinity is studied by comparing observed DIC to DIC estimated for different scenarios of temperature and salinity (Table 4). With these scenarios surface water DIC was calculated along the cruise tracks from f$_{CO_2}$ and a reference value of TA and nutrient contents normalised to salinity (TA$_{S}$, PO$_{4}^{3-}$, Si-(OH)$_{4}$). The latter values of TA and the nutrient contents were obtained for each data point by multiplying their reference value (TA$_{ref}$, PO$_{4}^{3-}$, Si-(OH)$_{4,ref}$) with the ratio of salinity (S) to the reference salinity (S$_{ref}$):

\[
TA_{S} = TA_{ref}S/S_{ref} \tag{7}
\]

The use of a reference value for TA does not take into account the mixing in of water with a different ratio of TA relative to salinity and biological changes of TA. The constants of Roy et al. (1993) are applied.

Reference points were chosen at 26.4$^\circ$N 18.6$^\circ$W (XI/1) and at 26.4$^\circ$N 18.3$^\circ$W (XI/5) (Table 5). Surface water characteristics of the reference points are referred to as ‘reference values’. Reference val-

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Temperature</th>
<th>Salinity</th>
<th>f$_{CO_2}$</th>
<th>TA</th>
<th>PO$_{4}^{3-}$</th>
<th>Si-(OH)$_{4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>In situ</td>
<td>S_{ref}</td>
<td>$xCO_{2,air}$</td>
<td>TA$_{ref}$</td>
<td>PO${4}^{3-}{ref}$</td>
<td>Si-(OH)$_{4,ref}$</td>
</tr>
<tr>
<td>B</td>
<td>T_{ref}</td>
<td>In situ</td>
<td>$xCO_{2,air}$</td>
<td>TA$_{S}$</td>
<td>PO${4}^{3-}{S}$</td>
<td>Si-(OH)$_{4,S}$</td>
</tr>
<tr>
<td>C</td>
<td>In situ</td>
<td>In situ</td>
<td>$xCO_{2,air}$</td>
<td>TA$_{S}$</td>
<td>PO${4}^{3-}{S}$</td>
<td>Si-(OH)$_{4,S}$</td>
</tr>
<tr>
<td>D</td>
<td>In situ</td>
<td>In situ</td>
<td>In situ</td>
<td>TA$_{S}$</td>
<td>PO${4}^{3-}{S}$</td>
<td>Si-(OH)$_{4,S}$</td>
</tr>
<tr>
<td>E</td>
<td>In situ</td>
<td>In situ</td>
<td>In situ</td>
<td>TA$_{S}$</td>
<td>In situ</td>
<td>In situ</td>
</tr>
</tbody>
</table>

The subscript ‘ref’ denotes a value at the reference point at 26.4$^\circ$N (Table 5). The subscript ‘S’ indicates a reference value normalised to in situ salinity along the cruise tracks (Eq. (7)). Either surface water f$_{CO_2}$ in equilibrium with a constant mixing ratio of CO$_2$ in dry air ($xCO_{2,air}$) or in situ f$_{CO_2}$ is used.
Table 5
Surface water values for temperature, salinity, DIC, TA, the difference in fCO$_2$ between water and air (δ/CO$_2$ (w–a)), phosphate (PO$_4^{3–}$) and silicate (Si(OH)$_4$) at the reference points for ANT XI/1 and XI/5.

<table>
<thead>
<tr>
<th>Cruise</th>
<th>ANT XI/1</th>
<th>ANT XI/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude (°N)</td>
<td>26.4</td>
<td>26.4</td>
</tr>
<tr>
<td>Longitude (°W)</td>
<td>18.6</td>
<td>18.3</td>
</tr>
<tr>
<td>DIC (µmol kg$^{-1}$)</td>
<td>2090</td>
<td>2095</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>23.31</td>
<td>20.93</td>
</tr>
<tr>
<td>Salinity, S</td>
<td>36.84</td>
<td>36.80</td>
</tr>
<tr>
<td>TA (µeq kg$^{-1}$)</td>
<td>2468</td>
<td>2440</td>
</tr>
<tr>
<td>xCO$_2$ (µmol mol$^{-1}$)</td>
<td>350.0</td>
<td>360.0</td>
</tr>
<tr>
<td>δ/CO$_2$ (w–a) (µatm)</td>
<td>7.1</td>
<td>0.3</td>
</tr>
<tr>
<td>PO$_4^{3–}$ (µmol kg$^{-1}$)</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Si(OH)$_4$ (µmol kg$^{-1}$)</td>
<td>0.4</td>
<td>0.7</td>
</tr>
</tbody>
</table>

The mixing ratio of CO$_2$ in dry air (xCO$_2$,air) is also given. Reference values are used to calculate DIC with scenarios A to E (Table 4).

DIC-values were similar for both cruises, except temperature, which decreased by 2.3°C between the cruises. Relatively similar values of DIC, fCO$_2$ and salinity at a lower temperature indicate a change of the surface water CO$_2$-characteristics at the reference point between cruises. Changes in the CO$_2$-system could have taken place by horizontal advection, up-welling, mixing and/or biological activity.

Surface water fCO$_2$ was close to equilibrium with the atmospheric value at the reference points. In scenarios A to C surface water fCO$_2$ is assumed to be in equilibrium with a constant mixing ratio of CO$_2$ in dry air (xCO$_2$,air) of 356 µmol mol$^{-1}$ (XI/1) and of 360 µmol mol$^{-1}$ (XI/5) (Tables 4 and 5). The accuracy of the scenarios is obtained as the average of the absolute differences between observed and estimated DIC along the cruise tracks (Table 6).

4.2. Scenarios for ANT XI/1

DIC-values with the scenarios A to E are compared below to the observed values for ANT XI/1 (Tables 4 and 6, Fig. 8). Obviously all scenarios yield a good fit at the reference point, where in situ values are used for temperature, salinity, TA and the nutrient contents, and where surface water fCO$_2$ is close to equilibrium with the applied atmospheric mixing ratio of CO$_2$.

4.2.1. Scenario A

Scenario A estimates DIC from in situ temperature, constant reference values of salinity, TA, PO$_4^{3–}$ and Si(OH)$_4$ and constant xCO$_2$,air (Table 4). DIC as a function of in situ temperature changes by air–sea exchange, as surface water fCO$_2$ is forced to be in equilibrium with a constant atmospheric CO$_2$-content. With this scenario DIC increases from high to low temperatures.

Scenario A reproduces the observed general trend of low DIC near the equator, higher values in temperate waters and highest DIC in the Southern Ocean (Fig. 8a). The DIC-content of East Atlantic surface waters is clearly influenced by temperature. However, large deviations exist between estimated and observed values with an average absolute difference of 83 µmol kg$^{-1}$ (Table 6).

4.2.2. Scenario B

Scenario B obtains DIC for in situ salinity, constant temperature and xCO$_2$,air. The reference values of TA and the nutrient contents are normalised to in situ salinity (Table 4). With this scenario the effects of precipitation, evaporation and river input on DIC are simulated, although the TA-content of freshwater sources is neglected.

Table 6
The accuracy, standard deviation (σ_{x_i}) and number of data points for the fits of dissolved inorganic carbon (DIC) in surface water with the scenarios A to E for cruises ANT XI/1 and XI/5 (Table 4)

<table>
<thead>
<tr>
<th>Cruise</th>
<th>Scenario</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI/1</td>
<td>Accuracy (µmol kg$^{-1}$)</td>
<td>83</td>
<td>61</td>
<td>22</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>σ_{x_i} (µmol kg$^{-1}$)</td>
<td>48</td>
<td>67</td>
<td>17</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Number</td>
<td>3673</td>
<td>3673</td>
<td>3673</td>
<td>2895</td>
<td>2895</td>
</tr>
<tr>
<td>XI/5</td>
<td>Accuracy (µmol kg$^{-1}$)</td>
<td>45</td>
<td>31</td>
<td>20</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>σ_{x_i} (µmol kg$^{-1}$)</td>
<td>34</td>
<td>29</td>
<td>14</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Number</td>
<td>3140</td>
<td>3140</td>
<td>3140</td>
<td>2182</td>
<td>2182</td>
</tr>
<tr>
<td>XI/5’</td>
<td>Accuracy (µmol kg$^{-1}$)</td>
<td>64</td>
<td>30</td>
<td>28</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>σ_{x_i} (µmol kg$^{-1}$)</td>
<td>36</td>
<td>29</td>
<td>17</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Number</td>
<td>3140</td>
<td>3140</td>
<td>3140</td>
<td>2182</td>
<td>2182</td>
</tr>
</tbody>
</table>

The accuracy has been derived as the average absolute difference between the observed and the estimated values. For ANT XI/5 the procedure has been repeated using reference values of ANT XI/1 (XI/5’).
Fig. 8. The latitudinal distribution of measured (M) and estimated dissolved inorganic carbon (DIC) in surface water with scenarios A, B (a), C (b) and D (c) for cruise ANT XI/1 in October–November 1993 in the East Atlantic Ocean. The graph for scenario E strongly resembles that for scenario D and is not shown. Abbreviations are ACC—Antarctic Circumpolar Current and LSR—Low Salinity Region. ‘Temperate’ denotes temperate waters.

Estimated and observed DIC display the same trends in subtropical and tropical waters for scenario B (Fig. 8a). High DIC is estimated for (sub-)tropical waters with high salinity. Relatively low DIC is predicted for the LSR and the Congo outflow. From temperate to polar waters the similarity between the estimated and the observed pattern gradually breaks down. The above suggests that salinity strongly affects DIC in subtropical and tropical surface waters.
4.2.3. Scenario C

Scenario C estimates DIC for in situ temperature, in situ salinity and constant \(x_{CO_2,air} \). Reference values of TA and the nutrient contents are normalised to in situ salinity (Table 4).

The patterns of estimated and observed DIC have a general resemblance (Fig. 8b). Clearly this scenario yields a better fit of the observed DIC-values than the scenarios A and B, which estimated DIC from either in situ temperature or in situ salinity (Table 6, Fig. 8a–b). Estimated DIC according to scenario C has an accuracy of 22 \(\mu \text{mol kg}^{-1} \) with a standard deviation of 17 \(\mu \text{mol kg}^{-1} \) (Table 6). Large differences between observed and estimated DIC exist in three areas with surface water \(f_{CO_2} \) well below the atmospheric value, notably the northern temperate waters, the LSR and the southern temperate waters.

4.2.4. Scenario D

Scenario D calculates DIC for in situ temperature, salinity and \(f_{CO_2} \). Reference values of TA and the nutrient contents are normalised to in situ salinity (Table 4).

The use of in situ \(f_{CO_2} \) decreases the difference between observed and estimated DIC in the three areas with low surface water \(f_{CO_2} \), that exhibit a large difference for scenario C (Fig. 8b–c). It improves the accuracy to 17 \(\mu \text{mol kg}^{-1} \) (\(\sigma_n \) of 13 \(\mu \text{mol kg}^{-1} \)) (Table 6).

4.2.5. Scenario E

Scenario E uses in situ temperature, salinity, \(f_{CO_2} \) and nutrient contents. The use of in situ nutrient contents does not significantly improve the accuracy of the estimated DIC-values relative to scenario D (Table 6). This is not surprising, as nutrient contents were low in most of the research area (Fig. 3g) and as nutrients only have a slight effect on TA. The graph for scenario E strongly resembles that for scenario D and is not shown.

4.3. Scenarios for ANT XI/5

Repetition of the above procedure for ANT XI/5 produces similar results (Tables 4 and 6, Fig. 9). Use of either in situ temperature (scenario A) or in situ salinity (scenario B) describes part of the observed latitudinal distribution of DIC. The combination of in situ temperature and in situ salinity (scenario C) gives a better approximation of the observed values with an accuracy of 20 \(\mu \text{mol kg}^{-1} \) (\(\sigma_n \) of 14 \(\mu \text{mol kg}^{-1} \)). Introduction of in situ \(f_{CO_2} \) improves the accuracy to 15 \(\mu \text{mol kg}^{-1} \). The use of in situ nutrient values in the evaluation does not yield a significantly better fit. The accuracy of the fits is similar for both cruises (Table 6).

4.4. Scenarios for ANT XI/5 with reference values from ANT XI/1

Between cruises temperature decreased by 2.3°C at the reference point, while other parameters remained constant (Table 5). Consequently, a different TA is calculated at the reference point for both cruises. The effect of a different reference value for TA is studied by repeating the calculation of DIC with the scenarios A to E for ANT XI/5 with reference values of ANT XI/1 (Table 5). The fit XI/5 has a large offset relative to the observed DIC-values in northern subtropical surface waters. Elsewhere the fit is of a similar quality to the earlier fit. The large offset results in an overall fit (XI/5') with less accuracy than the original fit for ANT XI/5 (Table 6).

4.5. Evaluation of the scenarios

The distribution of DIC according to scenario C corresponds relatively well to the observed values in the tropical and subtropical regions (Fig. 8b, Fig. 9b). The quality of the fits does not change, when passing from the northern subtropical gyre to the southern one. The observed decrease of DIC from subtropical to temperate waters is described better by scenario D, which utilises in situ \(f_{CO_2} \) (Figs. 8 and 9). The estimated and the observed pattern of DIC resemble each other in Antarctic waters (Fig. 8b).

4.5.1. Low Salinity Region

DIC estimated using in situ salinity in scenario B exhibits a minimum similar in appearance to the one observed in the LSR (Fig. 8a, Fig. 9a). The use of both in situ temperature and in situ salinity (scenario
Fig. 9. The latitudinal distribution of measured (M) and estimated dissolved inorganic carbon (DIC) in surface water with scenarios A, B (a), C (b) and D (c) for cruise ANT XI/5 in the East Atlantic Ocean in May–June 1994. The graph for scenario E strongly resembles that for scenario D and is not shown. Abbreviations are LSR—Low Salinity Region and ED—Equatorial Divergence. "Temperate" denotes temperate waters.

C) improves the fit for the abrupt DIC-changes at the edges of the LSR (Fig. 8b, Fig. 9b). This suggests that both high rainfall and high temperature promote the DIC-minimum in the LSR. Use of in situ 3CO$_2$ (scenario D) further improves the fit of DIC in the LSR.

Only a small part of the observed maximum in DIC between 1.8° and 3.0°N within the LSR is estimated with scenarios B to E for ANT XI/5 (Fig. 9b). Apparently dilution of seawater by a variable amount of rainwater does not explain this maximum in DIC. Local upwelling of water with a TA nor-
malised to salinity different from the reference value may have promoted these elevated DIC-values.

4.5.2. Congo outflow

DIC in the Congo outflow is relatively well described with scenarios B and C (XI/1) (Fig. 8a–b). Either river water had TA close to zero, which is an implicit assumption of these scenarios, or biological changes of DIC counteracted the effect of river water TA higher than zero on estimated DIC.

4.5.3. Coastal upwelling

Scenario C does not reproduce the observed high DIC-contents south of 28°S and between 16° and 18°S (XI/5) (Fig. 9b). As coastal upwelling occurred in these regions, the offset of the scenario relative to the observations may indicate that the upwelled water had a TA normalised to salinity different from the reference value.

5. Conclusions

Two case studies in low salinity regions have demonstrated the use of the inorganic carbon chemistry as a means of unravelling the origin of hydrographic features. A region with surface water f_{CO_2} below the atmospheric value and low salinity and DIC was observed north of the equator. As the position of the region corresponded to that of the Intertropical Convergence Zone, dilution of (sub-)tropical surface water by rainwater was considered as a potential mechanism for the low surface water values in the LSR. Regression lines between surface water DIC and salinity for the northern and southern edges of the LSR had a large negative offset. Estimated DIC and f_{CO_2} for conservative mixing of adjacent (sub-)tropical surface water with rainwater were much higher than the observed values of DIC and f_{CO_2} in the LSR. Both the negative offset of the regression lines and the calculation for conservative dilution by rainwater demonstrated that dilution by rainwater did to some extent, but not completely explain the low observed values of DIC and f_{CO_2}. Biological uptake of CO$_2$ may have further lowered DIC and f_{CO_2} in the LSR.

Low surface water salinity and DIC delineated the Congo outflow. A regression line between DIC and salinity suggested a DIC-content of 109 μmol kg$^{-1}$ for the river water, neglecting DIC-changes after the water entered the ocean. This value corresponds relatively well to a HCO$_3^-$content of 220 μmol kg$^{-1}$ for the river Congo (Probst et al., 1992).

The TA is primarily influenced by salinity in East Atlantic surface waters. The dependence of DIC on temperature and salinity was tested by comparing observed DIC to values calculated for different scenarios of temperature and salinity. Changes of DIC were found to be related to both temperature and salinity. Surface water DIC was estimated along the cruise tracks with an accuracy of 22 μmol kg$^{-1}$ and a standard deviation (σ_{n-1}) of 17 μmol kg$^{-1}$ from in situ temperature, in situ salinity, constant x_{CO_2} and reference values of TA and nutrient contents normalised to salinity (scenario C) (Table 6). The accuracy was improved to 17 μmol kg$^{-1}$ (σ_{n-1} of 13 μmol kg$^{-1}$) by use of in situ surface water f_{CO_2} with the main improvements in areas with f_{CO_2} well below the atmospheric value. The above procedure of scenario validation is a powerful diagnostic tool to assess causes of the spatial variability of DIC in surface water. The relatively good agreement between observed and estimated DIC is probably restricted to regions with low biological activity and little mixing in of water with a different TA normalised to salinity relative to the water under consideration.

Acknowledgements

We are grateful to the Alfred Wegener Institute for Polar and Marine Research (AWI) for making R.V. Polarstern available to us. Captain, crew and scientists created a good working atmosphere. Rainer Wilkomm (Fachbereich Physik, University of Oldenburg), Klaus Ohm and Günther Krause (AWI) kindly provided the COMED data. Erica Koning calibrated the CO$_2$-standards. Karel Bakker and Jan van Ooijen (Marine Chemistry and Geology, Netherlands Institute for Sea Research, NIOZ) performed the nutrient analyses. Useful comments by David Turner (University of Göteborg) and two anonymous reviewers helped to improve the manuscript. The Dutch National Research Programme on Global Air Pollution and Climate Change and The Netherlands Geosciences Foundation supported the research. This is NIOZ publication 3192.

D.C.E. Bakker et al. / Marine Chemistry 65 (1999) 263–280 279
References

