References


Berman AL (1968) The brainstem of the cat. A cytoarchitectonic atlas with stereotactic...
coordinates. The University of Wisconsin Press, Madison.
projections from the spinal cervical enlargement to the parabrachial area and periaqueductal
Besson JM, Chaouch A (1987) Peripheral and spinal mechanisms of nociception. Physiological
Reviews 67:67-186.
Besson JM, Fardin V, Oliveras JL (1991) Analgesia produced by stimulation of the periaque-
ductal gray matter: true antinociceptive effects versus stress effects. In Depaulis A, Bandler
R (eds) The midbrain periaqueductal gray matter: functional, anatomical, and neurochemi-
Björkland M, Boivie J (1984) The termination of spinomesencephalic fibers in cat, an
Blok BFM, De Weerd H, Holstege G (1995) Ultrastructural evidence for a paucity of projec-
tions from the lumbosacral cord to the pontine micturition center or M-region in the cat: a
new concept for the organization of the micturition reflex with the periaqueductal gray
Blok BFM, Holstege G (1994) Direct projections from the periaqueductal gray to the pontine
micturition center (M-region). An anterograde and retrograde tracing study in the cat.
Blok BFM, Holstege G (1996) The neuronal control of micturition and its relation to the
Blok BFM, Sturms L, Holstege G (1997a) A PET study on cortical and subcortical control of
Blok BFM, Willemse TM, Holstege G (1997b) A PET study on brain control of micturition in
humans. Brain 120:111-121.
121:2033-2042.
Blomqvist A, Craig AD (1991) Organization of spinal and trigeminal input to the PAG. In
Depaulis A and Bandler R (eds) The midbrain periaqueductal gray matter. Plenum Press,
New York, pp 345-363.
Neuroanatomy of the oculomotor systems. Elsevier Science Publishers BV, Amsterdam,
p 119-176.
In Depaulis A, Bandler R (eds) The midbrain periaqueductal gray matter: functional,
and neuronal organization. Behav Brain Res 58:27-47.
Carrive P, Bandler R (1991a) Control of extracranial and hindlimb blood flow by the midbrain
Carrive P, Bandler R (1991b) Viscerotopic organization of neurons subserving hypothensive
reactions within the midbrain periaqueductal grey: a correlative functional and anatomical
with the defence reaction in the cat is mediated by a direct projection from a restricted
portion of the midbrain periaqueductal grey to the subretrofacial nucleus of the medulla.
Brain Res 460:339-345.

References


References

Holstege G (1988a) Direct and indirect pathways to lamina I in the medulla oblongata and spinal cord of the cat. Prog Brain Res 77:47-94.
References


References

144.
References


References


Wiberg M, Blomqvist A (1984) The spinomesencephalic tract in the cat: its cells of origin and


