REFERENCES

10. **Beeman RE** (1995) Studies of *in situ* reductive dehalogenation and hydrocarbon biodegradation using aerobic, sulfate-reducing, methanogenic and sequential anaerobic to aerobic conditions at the dupont-victoria plant pilot site. Presented at the IBC’s international symposium on biological dehalogenation, Annapolis, MD

25. **Chapelle FH** (1996) Identifying redox conditions that favor the natural attenuation of chlorinated ethenes in contaminated ground-water systems. Symposium on natural attenuation of chlorinated organics in groundwater p 17-20. Dallas, Texas, USA.

45. **Egli C, Scholtz R, Cook AM and T Leisinger** (1987) Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of *Desulfobacterium* sp. and *Methanobacterium* sp.. FEMS Microbiol Lett 43: 257-261

47. **Egli C, Stromeyer SA, Cook AM and T Leisinger** (1990) Transformation of tetrachloromethane and chloroform to CO₂ by anaerobic bacteria is a non-enzymatic process. FEMS Microbiol Lett 68: 207-212

64. **Gossett JM, Smatlak CR, Fennell DE and SH Zinder** (1996) Reductive dehalogenation of chlorinated ethenes: competition and interdependence among microorganisms in mixed-culture systems. Presented at the IBC international symposium on biological dehalogenation, Mallorca, Spain

88. Krone UE, Laufer K, Thauer RK and HPC Hogenkamp (1989b) Coenzyme F\textsubscript{430} as a possible catalyst for the reductive dehalogenation of chlorinated C\textsubscript{1}-hydrocarbons in methanogenic bacteria. Biochemistry 28: 10061-10065

94. Lehmicke LG, Cox EE and DW Major (1997) Involvement of dichloromethane in the intrinsic bioremediation of chlorinated ethenes and ethanes. *Abstract*: Fourth international in situ and on-site bioremediation symposium, New Orleans, USA. vol 3 pp 205

References

161. **Vogel TM and PL McCarty** (1987b) Rate of abiotic formation of 1,1-dichloroethylene from 1,1,1-trichloroethane in groundwater. J Contam Hydrol 1: 299-308

