Ab initio band structure calculations of Mg3N2 and MgSiN2
Fang, C.M.; Groot, R.A. de; Bruls, R.J.; Hintzen, H.T.; With, G. de

Published in:
Journal of Physics: Condensed Matter

DOI:
10.1088/0953-8984/11/25/304

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1999

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Ab initio band structure calculations of Mg\textsubscript{3}N\textsubscript{2} and MgSiN\textsubscript{2}

C M Fang†, R A de Groot‡, R J Bruls†, H T Hintzen† and G de With†

†Laboratory of Solid State and Materials Chemistry, Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven, The Netherlands
‡Electronic Structure of Materials, Research Institute for Materials, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Received 21 January 1999

Abstract. Ab initio band structure calculations were performed for MgSiN\textsubscript{2} and Mg\textsubscript{3}N\textsubscript{2}. Calculations show that both nitrides are semiconductors with direct energy gaps at Γ. The valence bands are composed mainly of N 2p states hybridized with s and p characters of the metals. The bottom of the conduction band consists of the s characters of Mg and N for Mg\textsubscript{3}N\textsubscript{2}, as well as for MgSiN\textsubscript{2}, while the characters of Si are higher in energy. The optical diffuse spectra show an energy gap of about 2.8 eV for Mg\textsubscript{3}N\textsubscript{2} and 4.8 eV for MgSiN\textsubscript{2}, in agreement with the calculated values.

1. Introduction

In recent years nitrides have become an important subject of research [1, 2]. Some binary nitrides, such as AlN and Si\textsubscript{3}N\textsubscript{4}, are used as high-performance engineering materials and substrate materials in the semiconductor industry [1]. MgSiN\textsubscript{2} is noted as an alternative ternary compound for high temperature application, showing properties such as a reasonable thermal conductivity, a rather good fracture toughness and hardness, and a good oxidation resistance up to 920°C [3, 4]. MgSiN\textsubscript{2} is also promising as a substrate material with an electrical resistivity at room temperature comparable to and at high temperature higher than that of AlN [4]. Gaido et al showed that (Eu-doped) MgSiN\textsubscript{2} has not only similar luminescence properties to AlN, but also a quantum yield for the green band as high as 40%, as compared to 8% for AlN [5].

MgSiN\textsubscript{2} crystallizes in an orthorhombic structure, which is derived from the wurtzite structure. The hexagonal structure is distorted because of the presence of two metal atoms and displacement of the nitrogen atoms from the ideal positions in the wurtzite structure [6, 7]. The study for MgSiN\textsubscript{2} has been concentrated on preparation, characterization [3, 4, 6–8], mechanical and thermal properties [3, 4, 9], as well as the luminescence properties of the rare earth doped materials [5, 10]. There has been almost no work performed for the electronic properties, except the optical reflectance experiments, which showed MgSiN\textsubscript{2} has an energy gap of about 4.8 eV [5].

Mg\textsubscript{3}N\textsubscript{2} is widely used as a catalyst in the preparation of some nitrides, such as silicon nitride ceramics and cubic boron nitride [11]. It was found in 1933 that some alkaline earth metal nitrides M\textsubscript{3}N\textsubscript{2} (M = Be, Mg, Ca) have the anti-bixbyite structure [12–14]. Partin et al for the first time refined fully the structure for Mg\textsubscript{3}N\textsubscript{2} from neutron time-of-flight diffraction data [15]. In this structure the Mg atoms are at the tetrahedral sites of an approximately cubic close packed array of N atoms (MgN\textsubscript{4}).
In this paper we report in detail the results of ab initio calculations for the electronic structure of the ternary nitride MgSiN₂ using the local spherical wave (LSW) approach. For comparison calculations are also performed for the binary nitride Mg₃N₂. The bond valences in the ternary nitrides are discussed. The electronic structure of the ternary nitride is compared to those of the binary nitrides Mg₃N₂ and Si₃N₄.

2. Structure and bond valences

MgSiN₂ was first prepared by David and Lang using either (nitridation of) Mg₂Si and/or a mixture of the binary nitrides [16]. Wintenberger et al refined the structure of MgSiN₂ from neutron and x-ray diffraction data [17]. For the purpose of our band structure calculations the accurate structure of the compound was obtained from neutron diffraction data. MgSiN₂ was prepared directly from the binary nitrides Mg₃N₂ and Si₃N₄, as described in [3]. Neutron diffraction determinations and refinements were performed at Intense Pulsed Neutron Source, Argonne National Laboratory (US). The former structure [6, 16, 17] was confirmed. The details of the preparation, structure determination and thermal expansion properties will be published elsewhere [18]. MgSiN₂ is orthorhombic, with lattice parameters: \(a = 5.2708 \text{ Å} \), \(b = 6.4692 \text{ Å} \) and \(c = 4.9840 \text{ Å} \). All the atoms are at general positions 4a of the space group \(Pna2_1 \). Both Mg and Si atoms are tetrahedrally coordinated by N (see figure 1 and table 1).

The average Mg–N distance is 2.090 Å, which is shorter than that in Mg₃N₂ (2.141 Å). The Si–N distances range from 1.728 to 1.766 Å. The average Si–N distance is 1.752 Å, longer than that in Si₃N₄ (1.732 for \(\beta \)-Si₃N₄ [19], 1.738 Å for \(\alpha \)-Si₃N₄ [20]). The Mg–Mg distances are about 3.09 to 3.11 Å, which are also longer than those in Mg₃N₂, but shorter than those (about 3.20 Å) in the Mg metal. The shortest N–N distance is about 2.829 Å, larger than that in \(\beta \)-Si₃N₄ (2.77 Å) [19].

Figure 1. The projection of the structure of MgSiN₂ along [001].
Table 1. Interatomic distances (\(d_i, \text{Å}\)) and bond valences (\(V, \text{vu}\)) in the compounds Mg\(_3\)N\(_2\) and MgSiN\(_2\), and compared to that of \(\beta\)-Si\(_3\)N\(_4\).

<table>
<thead>
<tr>
<th>(d_i, \text{Å})</th>
<th>(V, \text{vu})</th>
<th>(d_i, \text{Å})</th>
<th>(V, \text{vu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Mg(_3)N(_2) [15]</td>
<td></td>
<td>b. MgSiN(_2) [18]</td>
<td></td>
</tr>
<tr>
<td>Mg–N(1) 2.145</td>
<td>2.03</td>
<td>N1–Mg 2.145 (6(\times))</td>
<td>3.00</td>
</tr>
<tr>
<td>–N(2) 2.084</td>
<td></td>
<td>N(2)–Mg 2.084 (2(\times))</td>
<td>3.05</td>
</tr>
<tr>
<td>–N(2) 2.160</td>
<td></td>
<td>–Mg 2.160 (2(\times))</td>
<td></td>
</tr>
<tr>
<td>–N(2) 2.179</td>
<td></td>
<td>–Mg 2.179 (2(\times))</td>
<td></td>
</tr>
<tr>
<td>b. MgSiN(_2) [18]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg–N(1) 2.0630</td>
<td>2.33</td>
<td>N1–Mg 2.0630</td>
<td>3.20</td>
</tr>
<tr>
<td>–N(1) 2.0707</td>
<td></td>
<td>–Mg 2.0707</td>
<td></td>
</tr>
<tr>
<td>–N(2) 2.1240</td>
<td></td>
<td>–Si 1.7458</td>
<td></td>
</tr>
<tr>
<td>–N(2) 2.1019</td>
<td></td>
<td>–Si 1.7284</td>
<td></td>
</tr>
<tr>
<td>Si–N(1) 1.7458</td>
<td>3.78</td>
<td>N2–Mg 2.1019</td>
<td>2.91</td>
</tr>
<tr>
<td>–N(1) 1.7284</td>
<td></td>
<td>–Mg 2.1240</td>
<td></td>
</tr>
<tr>
<td>–N(2) 1.7660</td>
<td></td>
<td>–Si 1.7657</td>
<td></td>
</tr>
<tr>
<td>–N(2) 1.7657</td>
<td></td>
<td>–Si 1.7660</td>
<td></td>
</tr>
<tr>
<td>c. (\beta)-Si(_3)N(_4) [19]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si–N(1) 1.730</td>
<td>3.98</td>
<td>N1–Si 1.730 (3(\times))</td>
<td>3.00</td>
</tr>
<tr>
<td>–N(1) 1.728</td>
<td></td>
<td>N(2)–Si 1.728</td>
<td>2.98</td>
</tr>
<tr>
<td>–N(2) 1.704</td>
<td></td>
<td>–Si 1.704</td>
<td></td>
</tr>
<tr>
<td>–N(2) 1.767</td>
<td></td>
<td>–Si 1.767</td>
<td></td>
</tr>
</tbody>
</table>

The lattice parameter and coordinates of Mg\(_3\)N\(_2\) were obtained from the recent structure determination by Partin et al \[15\]. Mg\(_3\)N\(_2\) is cubic with lattice parameter \(a = 9.9528 \text{Å}\). The metal (Mg) atoms are in general positions 48e of space group \(Ia\overline{3}\) \((x, y, z)\). There are two crystallographically different kinds of N atom, as shown in tables 1 and 2. N1 is in positions 8b \((1/4, 1/4, 1/4)\), and N2 in positions 24d \((x, 0, 1/4)\). In the structure the N arrays are fairly close to ideal cubic close packing. The 12 shortest N–N distances are in the range from 3.31 to 3.72 \(\text{Å}\). Each nitrogen atom is coordinated by six Mg atoms. N1 has six Mg neighbours with a distance of 2.145 \(\text{Å}\), while N2 is coordinated by six Mg with different N–Mg distances ranging from 2.084 to 2.179 \(\text{Å}\). There are Mg–Mg distances of 2.72 \(\text{Å}\).

In MgSiN\(_2\) both Mg and Si are in tetrahedral coordination by N, the same as Si in Si\(_3\)N\(_4\). The coordination of N by Mg and/or Si is different: N in Mg\(_3\)N\(_2\) has six nearest Mg neighbours, and N in MgSiN\(_2\) is coordinated to four neighbours (two Mg and two Si), while in Si\(_3\)N\(_4\) every N is coordinated to three tetrahedral Si \[19, 20\].

Some insight into the bonding of Mg and Si in MgSiN\(_2\) can be obtained using the concept of bond valence \[21\]. The bond \(V_i\) is calculated from the relations: \(V_i = \exp[(d_0 - d_i)/b]\), where \(d_i\) is the distance between the atoms of bond \(i\), and \(b = 0.37\) is the universal constant. If the ionic model is used for Mg\(_3\)N\(_2\) and \(\beta\)-Si\(_3\)N\(_4\), then \(d_0\) is 1.889 \(\text{Å}\) for Mg–N and 1.730 \(\text{Å}\) for Si–N. The bond valence or oxidation state \(V\) of an atom is calculated by summing over all neighbouring atoms \(V = \sum V_i\). The calculated bond valences are given in table 1. In MgSiN\(_2\), the bond valence of Mg is 2.33 valence units (vu), larger than 2.03 vu in Mg\(_3\)N\(_2\), while Si have the valence of 3.78 vu, smaller than that in \(\beta\)-Si\(_3\)N\(_4\). That is due to the fact that Si is more electronegative than Mg.

3. Calculations and results

\(Ab\ initio\) band structure calculations were performed with the localized spherical wave (LSW) method \[22\] using a scalar-relativistic Hamiltonian. We used local-density
and Ching performed band structure calculations for Mg$_3$N$_2$ [15] and MgSiN$_2$ [18].

Recently it was found that in ionic compounds, such as alkali chlorides and alkaline earth metal oxides, it is important to include the empty s states in a complete basis set [24–26]. It is an interesting question to what extent the empty anion states influence the conduction bands in nitrides, where the anionic 3s level is positioned higher in energy as compared with the oxides and halides. In order to investigate this question two sets of calculations were performed: one with N 2s states as valence states and one with N 3s states. In the construction of the LSW basis [22, 27], the spherical waves were augmented by solutions of the scalar-relativistic radial equations indicated by the atomic symbols 2p, 3s with 2s as core level for N, and 3s, 3p for Mg and Si. The internal l summation used to augment a Hankel function at surrounding atoms was extended to $l = 2$, resulting in the use of 3d orbitals for all the atoms. We also performed calculations for the N without the N 3s states but N 2s in the basis set for the sake of comparison, as mentioned before. Because the crystals are not very densely packed, it is necessary to include empty spheres (Va) in the calculations. The functions 1s, 2p and 3d as an extension were used for the empty spheres. The input parameters for calculations are listed in table 2.

For a better understanding of the electronic structure of MgSiN$_2$, it is useful to compare with the electronic structure of the binary nitrides Si$_3$N$_4$ and Mg$_3$N$_2$. Si$_3$N$_4$ has two modifications (α and β) with the β-form the stable one at room temperature [19, 20]. Xu and Ching performed band structure calculations for α- and β-Si$_3$N$_4$ using the self-consistent exchange–correlation potentials [23] inside space-filling, and therefore overlapping spheres around the atomic constituents. The self-consistent calculations were carried out including all core electrons. We performed iterations with about 245 k-points for Mg$_3$N$_2$ and 1290 k-points for MgSiN$_2$ distributed uniformly in an irreducible part of the Brillouin zone (BZ), corresponding to a volume of the BZ per k-point of less than 1×10^{-6} Å$^{-3}$. Self-consistency was assumed when the changes in the local partial charges in each atomic sphere decreased to the order of 1 × 10$^{-5}$.

| a. Mg$_3$N$_2$: space group Ia3 (No 206), $a = 9.952$ Å |
Coordinates	R_{WS} (Å)	EC(N 2s)	EC(N 3s)	
Mg	(0.3890, 0.1520, 0.3823)	1.101	[Ne]3s$^{0.20}$3p$^{0.24}$3d$^{0.06}$	[Ne]3s$^{0.19}$3p$^{0.23}$3d$^{0.05}$
N1	(1/4, 1/4, 1/4)	1.363	[He]2s$^{1.82}$2p$^{4.45}$3d$^{0.02}$	([He]2s2)3s$^{0.03}$2p$^{4.38}$3d$^{0.02}$
N2	(0.9695, 0.0, 1/4)	1.342	[He]2s$^{1.81}$2p$^{4.48}$3d$^{0.02}$	([He]2s2)3s$^{0.03}$2p$^{4.40}$3d$^{0.02}$
Va1	(0, 0, 0)	1.363	10$^{0.33}$2p$^{0.30}$3d$^{0.11}$	10$^{0.34}$2p$^{0.28}$3d$^{0.09}$
Va2	(1/8, 1/8, 1/8)	1.220	10$^{0.26}$2p$^{0.22}$3d$^{0.07}$	10$^{0.26}$2p$^{0.19}$3d$^{0.05}$
Va3	(0.7394, 0.0, 1/4)	1.148	10$^{0.26}$2p$^{0.15}$3d$^{0.04}$	10$^{0.27}$2p$^{0.15}$3d$^{0.03}$
Va4	(0.2531, 0.1543, 0.6109)	0.536	10$^{0.08}$2p$^{0.01}$3d$^{0.00}$	10$^{0.07}$2p$^{0.01}$3d$^{0.00}$

Table 2. Input for the calculations (space group, lattice parameter, position and Wigner–Seitz radius (R_{WS}) of atoms and empty spheres), and some calculated results (electronic configurations) of Mg$_3$N$_2$ [15] and MgSiN$_2$ [18].

| b. MgSiN$_2$: space group Pna2$_1$ (No 33), $a = 5.2708$, $b = 6.4692$ and $c = 4.9840$ Å [18] |
Coordinates	R_{WS} (Å)	EC(N 2s)	EC(N 3s)	
Mg	(0.0844, 0.6228, 0.9869)	1.168	[Ne]3s$^{0.20}$3p$^{0.27}$3d$^{0.13}$	[Ne]3s$^{0.18}$3p$^{0.23}$3d$^{0.10}$
Si	(0.0694, 0.1242, 0.0000)	0.743	[Ne]3s$^{0.19}$3p$^{0.21}$3d$^{0.02}$	[Ne]3s$^{0.17}$3p$^{0.17}$3d$^{0.02}$
N1	(0.0486, 0.0957, 0.3476)	1.260	[He]2s$^{1.77}$2p$^{1.69}$3d$^{0.04}$	([He]2s2)3s$^{0.03}$2p$^{4.66}$3d$^{0.03}$
N2	(0.1087, 0.6552, 0.4102)	1.310	[He]2s$^{1.79}$2p$^{1.76}$3d$^{0.04}$	([He]2s2)3s$^{0.04}$2p$^{4.73}$3d$^{0.04}$
Va1	(0.8156, 0.6272, 0.7011)	1.274	10$^{0.36}$2p$^{0.44}$3d$^{0.24}$	10$^{0.32}$2p$^{0.37}$3d$^{0.19}$
Va2	(0.2618, 0.3767, 0.6389)	1.222	10$^{0.32}$2p$^{0.36}$3d$^{0.18}$	10$^{0.29}$2p$^{0.30}$3d$^{0.14}$
orthogonalized linear combination of the atomic orbitals (OLCAO) method [28]. They found
that the electronic structures of \(\alpha \)-Si\(_3\)N\(_4\) and \(\beta \)-Si\(_3\)N\(_4\) are similar, and their results for \(\beta \)-Si\(_3\)N\(_4\)
are also in agreement with the calculations by Liu and Cohen using the first-principles pseudo-
potential total energy approach within a localized orbital formalism [29]. The main features
of the electronic structure of the nitrides are listed in table 3.

First calculated results for Mg\(_3\)N\(_2\) are presented. Figure 2(a) shows the Brillouin zone
(BZ) of Mg\(_3\)N\(_2\). Some calculated results are given in tables 2 and 3. There are about 0.5
electrons in the sphere of Mg and about 6.3 electrons in the sphere of a nitrogen atom (table 2).
There are few electrons in the N 3s orbitals. We remark that not too much significance should
be attributed to differences in charge and orbital configurations, as these numbers are dependent
on the Wigner–Seitz radii, and the presence of empty spheres.

The partial and total densities of states (DOSs) and the energy bands along the high-
symmetry directions in the BZ are shown in figures 3 and 4, respectively. The valence band
has a width of about 4.4 eV, and is composed mainly of N 2p. Other states have a density at
least one magnitude lower. However, there are characteristics of Mg 3s, 3p states in the valence
band, which indicates strong interactions between N 2p and Mg 3s, 3p states. The Mg 3s states
are mainly at the bottom of the valence band. The Mg 3p states are all over the valence band.
The calculations show that Mg\(_3\)N\(_2\) has a direct energy gap of 1.10 eV, as both the bottom of
the conduction band and the top of the valence band are at \(\Gamma \) point. The conduction band is
mainly composed of Mg 3s and N 3s states. The major part of the Mg 3p states lies about 3 eV
above the Fermi level.
Figure 3. Partial and total density of states for Mg$_3$N$_2$. The Fermi level is at zero eV, the same as in figures 5 and 6.

Figure 4. Dispersion of the energy bands for Mg$_3$N$_2$.

For the reason of comparison figure 5 shows the calculated partial and total DOS for Mg$_3$N$_2$ with N 2s as valence orbitals in the basis set. The N 2s band has a width of about 1.8 eV (from −13.1 to −11.3 eV). The 2s band of N1 has two features, with a single peak at the upper part of the band, while the N2 2s band has three peaks in the upper part of the band.
That is mainly due to the N–Mg₆ cluster with a single N–Mg distance for N1, but three different N–Mg distances for N2, as shown in table 1. The influence from the N–N interactions may not be important due to large N–N distances (3.31 to 3.72 Å). Figure 5 also shows a larger energy gap, 2.35 eV. The bottom of the conduction band is mainly composed of Mg 3s characters.

The BZ for MgSiN₂ is included in figure 2(b). Calculated electronic configurations are given in table 2. The electronic configurations of Mg atoms are comparable to those in Mg₃N₂. The N atoms in MgSiN₂ have larger occupations in the 2p states, although they have smaller spheres than those in the binary nitride Mg₃N₂ (see table 2). Again, we remark that not too much significance should be attributed to differences in charge and orbital configurations. Figures 6 and 7 show the partial and total density of states, and the dispersion curve along the high symmetry lines in the BZ of MgSiN₂, respectively.

Table 3 lists the major features of the electronic structures of the ternary nitride MgSiN₂ and the binary nitrides Mg₃N₂ and Si₃N₄. For MgSiN₂ the bandwidth of the valence band, which is composed mainly of the N 2p state hybridized with some Mg 3s, 3p and Si 3s, 3p (figure 6), is about 6.50 eV, in between those of Mg₃N₂ and Si₃N₄. The Mg 3s bands are all over the valence band and are more delocalized as compared to that in Mg₃N₂. There is a feature at about −4.0 eV, corresponding to the Mg 3s peak in the partial density of states in Mg₃N₂ (figures 3 and 5). There are Mg 3p states all over the valence band. The Si 3s and 3p states in the valence band are similar to that of Si₃N₄ [28, 29]: a higher partial density of the Si 3s states at the lower part of the band, while the partial density of the Si 3p states is over all the band. The bandwidth of MgSiN₂ is narrower than that of Si₃N₄. The energy gap between the conduction band and the valence band is 4.35 eV. It is noted that the lower part
of the conduction band is mainly composed of N 3s and Mg 3s states. The main parts of the Mg 3p and the Si 3s, 3p states are higher in energy. The dispersion curves of the energy bands
are very flat in the top of the valence band and sharp in the bottom of the conduction band. These features indicate heavy holes and light conducting electrons. The dispersion curves also show little anisotropy (figures 4 and 7).

Calculations with N 2s as valence orbitals in the basis set showed little changes for the valence band. The N 2s band has a width of about 3.2 eV, in between that of Mg3N2 (1.8 eV) and Si3N4 (about 4.1 eV). The N 2s band has a broader peak positioned at lower energy (about −12.80 eV) than that of N 2 s (at about −12.30 eV), which corresponds to the larger bond valence (table 1). The calculations showed a larger energy gap (6.45 eV). Again, the bottom of the conduction band consists mainly of Mg 3s states.

For both MgSiN2 and Mg3N2, there is little experimental data available. Optical diffuse-reflectance spectra were measured for Mg3N2 and MgSiN2 by a Perkin–Elmer LS-50B spectrometer in the range of 250–630 nm (2.0–5.0 eV). The scanning speed is 100 nm min⁻¹. The splitting is 5 nm for excitation and 5 to 10 nm for emission, respectively. An energy gap of about 2.8 eV is obtained for Mg3N2. The measured energy gap for MgSiN2 is 4.8 eV, in agreement with the former measurements [5, 10]. This value is also in line with that of CaSiN2 (about 4.5 eV [30]). The calculated bandgaps (1.10 eV for Mg3N2, and 4.35 eV for MgSiN2) are smaller than the experimental values (2.8 eV and 4.8 eV, respectively). It is known that the local density approximation employed in our calculations generally underestimates the energy gaps for semiconductors [31]. The inclusion of the N 3s states as valence states is important. Although the bandgap without them leads to a bandgap in closer agreement with experiment in the case of Mg3N2, this agreement is fortuitous: a calculation better than LDA would produce a much too large bandgap. This is best exemplified in the case of MgSiN2, where the LDA calculation without the N 3s states leads already to a gap 1.65 eV in excess in the experimental value.

4. Conclusions

In conclusion, ab initio band structure calculations were performed for the binary nitride Mg3N2 and ternary nitride MgSiN2. The calculations showed that both compounds are semiconductors with a direct energy gap of 1.1 eV for Mg3N2 and 4.35 eV for MgSiN2, in line with the experimental data (2.8 eV and 4.8 eV, respectively). In both compounds the bottom of the conduction bands is mainly composed of Mg 3s and N 3s states, which is important to understand the optical transition.

Acknowledgments

Mr P K de Boer (ESM KUN) is thanked for fruitful discussion about the electronic structure for ionic materials, as well as results prior to publication. Mr J W H van Krevel and Ms A C A Delsing (SVM, TUE) are acknowledged for help in the measurements of optical diffuse reflectance spectra.

References

Davies I J, Uchida H, Aizawa M and Itatari K 1999 Inorg. Mater. 6 40
Abe O 1990 Ceram. Int. 16 53
[16] Bruls R J, Hintzen H T, Metselaar R and Loong C-K submitted