Summary

A detailed investigation is presented into the effect of limited sampling time and small changes in the force field on molecular dynamics simulations of a protein. Thirteen independent simulations of the B1 IgG-binding domain of streptococcal protein G were performed with small changes in the simulation parameters in each simulation. Parameters studied included temperature, bond constraints, cut-off radius for electrostatic interactions and initial placement of hydrogen atoms. The essential dynamics technique was used to reveal dynamic differences between the simulations. Similar essential dynamics properties were found for all simulations, indicating that the large concerted motions found in the simulations are not particularly sensitive to small changes in the forcefield.

A thorough investigation into the stability of the essential dynamics properties as derived from a molecular dynamics simulation of a few hundred picoseconds is provided. Although the definition of the essential modes of motion has not fully converged in these short simulations, the subspace in which these modes are confined is found to be reproducible.
Introduction

Recent studies have provided methods for revealing large concerted motions in proteins from Molecular Dynamics (MD) computer simulations53,76,78,85,94. These methods divide the configurational subspace of proteins in a high dimensional subspace in which merely constraint-like motions of high frequency occur (which will from now on be referred to as the near-constraints subspace), and a low dimensional subspace in which all biologically relevant motions occur (the essential subspace). In this paper, we investigate how reproducible these two distinct spaces are in multiple simulations of one protein. The essential dynamics (ED) method, introduced by Amadei et al.78, is used to extract the definition of both subspaces from MD simulations. The sensitivity of the definition of these spaces towards different force field parameters used in MD simulations, as well as the speed of convergence of the description of these subspaces is examined. With this aim, four simulations of a test protein, the B1 IgG-binding domain of streptococcal protein G, were set up, each with one parameter different from seven reference simulations. Apart from these simulations that were performed using explicit solvent, two simulations were run in vacuo. This protein was chosen because it is a small and fairly globular protein, containing both α-helix and β-strand secondary structure elements. Both X-ray65 and NMR96 structures are available, as well as NMR relaxation data97.

Previous work53,78,84 has suggested that a few hundred picoseconds is usually enough to obtain a rough approximation of the essential subspace of a small protein, although there is still an appreciable amount of noise present in the description of both subspaces after such limited sampling time. Here we use a set of 300 ps simulations as well as a 1 ns simulation to investigate the accuracy of the definition of both subspaces. The influence of a number of simulation parameters is also investigated. All simulations are compared to a set of six solvent simulations of 300 ps. These reference simulations were also compared to each other and to a 1 ns simulation of the same protein to gain insight in the convergence of the ED properties in such short simulations. Apart from comparison of properties derived from ED, conventional structural and geometrical properties were evaluated from the trajectories, to examine the stability and overall structural and dynamic behaviour of the simulations.

Methods and theory

Simulation parameters

Simulations were performed with the GROMOS4 simulation package. The simulations were started from the crystal structure (Protein Data Bank entry 1PGB95). The protein was placed in a truncated octahedral box filled
Consistency of MD simulations

with SPC water98, except for two simulations that were run in vacuo. The protein consists of 335 (united) atoms. Together with 4 sodium ions which were used to compensate for the net charge of -4 (the ions were placed in the box by replacing water molecules at the lowest electrostatic potential) and approximately 1900 water molecules (the number of water molecules varied from simulation to simulation) the total number of atoms approximated 6500. After energy minimisation, a HEATUP procedure53 of 25 ps was performed to equilibrate the structure. In short, this involves a slow increase of the temperature, cut-off radius and time step, combined with positional restraining. The simulations were then continued for 275 ps, of which the last 250 ps were used for ED analyses (all other analyses were performed on the full 275 ps trajectories, to include differences in the equilibration period). One simulation was extended to 1 ns. In total, thirteen simulations have been performed, identified below.

1. 27.5K: This simulation was performed at a constant temperature of 27.5 K instead of 300 K. All simulations were kept at a constant temperature by coupling to an external temperature bath99, using a coupling constant of 0.1 ps.;

2. NO_SHAKE: This simulation was performed without SHAKE11, covalent bond interactions were described by harmonic potentials. In this simulation, a time step of 1 fs was applied. In other simulations SHAKE was used to constrain bond lengths, allowing a time step of 2 fs.;

3. CUT_OFF: This simulation was performed with a twin range cut-off method with radii of 10 and 14 Å instead of 8 and 10 Å for the other simulations. For the short range, the pairlist was updated every time step, for the long range, this list was updated every ten steps.;

4. HPLACE: This simulation was started from a structure in which the positions of the hydrogens were generated using an algorithm which optimises hydrogen bond networks throughout the structure100. Other simulations were started with standard GROMOS hydrogen placement, which uses standard hydrogen positioning.;

5. REF.1 till REF.6: 6 reference simulations were performed. These simulations differed in the initial velocities used;

6. REF.7: Identical to the other reference simulations, but this simulation was extended to 1 ns;

7. VAC.1 and VAC.2: Additionally, two simulations in vacuo were performed for comparison. VAC.1 was carried out with reduced charges to mimick the screening effect of the solvent, VAC.2 was performed with full charges.
Comparison techniques

Two types of techniques were used to identify differences between the simulations. First, a number of standard structural analyses were performed to check overall stability. Subsequently, ED analysis was used to compare the dynamic behaviour of the protein in the different simulations. ED analyses were performed on each individual trajectory and compared to the reference simulations. Programs used were those available in the molecular modeling program WHAT IF\(^{101}\). Accessible surface calculations and secondary structure evaluations were performed by DSSP\(^{102}\).

Overlap between eigenvector sets

Overlap between multiple sets of eigenvectors is calculated with two methods. First, the overlap between two essential subspaces is calculated as the sum of all the squared inner products between all pairs of eigenvectors from both essential subspaces, divided by the dimension of that space (see also the next subsection). This definition of the overlap has the disadvantage that it concentrates on similarities between two compared sets, and not on differences. Therefore, we have defined another measure of the overlap between two sets of eigenvectors. It is defined as the product of the square inner product and the difference in eigenvector index (i.e. a difference in relative contribution to the overall fluctuation, eigenvalues and corresponding eigenvectors are sorted to decreasing value), averaged over all pairs of eigenvectors from both sets. This will result in a positive number, being close to zero if the sets are similar. This quantity can be regarded as a penalty function: a high inner product between an eigenvector with a high eigenvector index from one set and an eigenvector with a low eigenvector index from the other set gives a high contribution to this penalty. Significant differences in the dynamic behaviour of two simulations (a motion that is accessible in one simulation but not in another) are therefore immediately evident.

Convergence of trajectories

ED analyses can be used to gain insight in the convergence of MD trajectories, since only a few coordinates are usually required to describe the relevant dynamics of a protein in MD simulations. Here, the overlap between essential subspaces (as defined by the ten eigenvectors with largest eigenvalues) obtained from pairs of simulations is taken as a measure for the similarity of two trajectories in terms of collective motions. This overlap is defined as the cumulative mean square inner product between ten eigenvectors obtained from one set of eigenvectors and ten from another. This results in a number between zero, when there is no overlap, and one, when the two sets are identical. In practice, the lower limit for this value is not zero, even if the actual overlap between the two essential subspaces is negligible, since there will always be some projection of the eigenvectors of one set into the essential subspace of the other.
The overlap of real interest is not the overlap between two sets of eigenvectors obtained from MD, each containing noise, but the overlap of one of such sets with the fully converged set of eigenvectors, as would be obtained after infinite simulation time. This overlap is underestimated by the method described above, since in the comparison of two MD eigenvector sets, both sets contain an appreciable amount of noise, making the overlap smaller than in the case where only one of the sets contains this noise.

Results

Results from structural analyses are summarised in Table 2.1. Apart from the two simulations in vacuo, the observed average properties in the simulations that were performed with different parameters do not differ significantly from those observed in the 300 ps reference simulations. When these properties are plotted as a function of time (data not shown), no significant drift is observed in any of the simulations (apart from those performed in vacuum). Hence, all solvent simulations are stable in terms of these properties in a time window of 300 ps. The simulation performed at lower temperature (275 K) does show a lower total mean square fluctuation than most other simulations, as expected, but one of the reference simulations (REF.1) shows an even lower total fluctuation. This suggests that the spread in the observed fluctuation for the reference simulations of 300 ps covers the difference that might have been caused by the lower temperature.

Compared to other proteins53,78,85,103, the total sum of fluctuations and the largest eigenvalues are relatively small, indicating a rather rigid molecule. This is in agreement with recent observations96,104, where this domain was reported as highly stable.

ED analyses were performed on each individual trajectory. Only α carbon coordinates were used in the covariance analysis. It has been shown that this approach identifies all large scale concerted motions in proteins78. It has the advantage over an all-atom analysis (besides saving CPU time in all analyses) that backbone dynamics equilibrates faster than the dynamics in the full coordinate space (apparent correlations between backbone and sidechain motions introduce noise in an ED analysis on all atoms of a simulation of a few hundred picoseconds).

As an illustration of the typical overlap between two eigenvector sets obtained from 300 ps simulations in solvent, an inner products matrix is shown in Fig. 2.1A for two eigenvector sets obtained from REF.1 and REF.2. All high inner products are found close to the diagonal, meaning that directions in configurational space have a similar amount of freedom in both simulations. The same qualitative picture is found for all combinations of the solvent simulations. Fig. 2.1A shows that the eigenvectors spanning the essential subspace (e.g. defined as the first ten eigenvectors) of one set of eigenvectors show the
<table>
<thead>
<tr>
<th>type</th>
<th>σ^2</th>
<th>RMSD</th>
<th>NRC</th>
<th>HBO</th>
<th>ACC</th>
<th>GYR</th>
</tr>
</thead>
<tbody>
<tr>
<td>275K</td>
<td>0.244</td>
<td>1.19</td>
<td>8.04</td>
<td>44.6</td>
<td>3773</td>
<td>1.018</td>
</tr>
<tr>
<td>NO_SHAKE</td>
<td>0.337</td>
<td>1.02</td>
<td>8.95</td>
<td>42.9</td>
<td>3879</td>
<td>1.025</td>
</tr>
<tr>
<td>CUT_OFF</td>
<td>0.406</td>
<td>1.15</td>
<td>9.63</td>
<td>44.9</td>
<td>3856</td>
<td>1.015</td>
</tr>
<tr>
<td>HPLACE</td>
<td>0.366</td>
<td>1.23</td>
<td>10.61</td>
<td>43.3</td>
<td>3884</td>
<td>1.025</td>
</tr>
<tr>
<td>REF_1</td>
<td>0.242</td>
<td>0.93</td>
<td>10.80</td>
<td>41.1</td>
<td>3761</td>
<td>1.016</td>
</tr>
<tr>
<td>REF_2</td>
<td>0.351</td>
<td>1.12</td>
<td>8.42</td>
<td>45.8</td>
<td>3840</td>
<td>1.016</td>
</tr>
<tr>
<td>REF_3</td>
<td>0.366</td>
<td>1.27</td>
<td>8.40</td>
<td>45.6</td>
<td>3883</td>
<td>1.021</td>
</tr>
<tr>
<td>REF_4</td>
<td>0.394</td>
<td>1.11</td>
<td>9.10</td>
<td>43.9</td>
<td>3777</td>
<td>1.018</td>
</tr>
<tr>
<td>REF_5</td>
<td>0.365</td>
<td>1.28</td>
<td>8.29</td>
<td>46.0</td>
<td>3849</td>
<td>1.023</td>
</tr>
<tr>
<td>REF_6</td>
<td>0.331</td>
<td>1.24</td>
<td>10.70</td>
<td>42.4</td>
<td>3904</td>
<td>1.025</td>
</tr>
<tr>
<td>REF_7</td>
<td>0.532</td>
<td>1.45</td>
<td>10.03</td>
<td>44.0</td>
<td>3850</td>
<td>1.024</td>
</tr>
<tr>
<td>VAC_1</td>
<td>0.399</td>
<td>1.79</td>
<td>10.47</td>
<td>50.5</td>
<td>3607</td>
<td>0.997</td>
</tr>
<tr>
<td>VAC_2</td>
<td>1.261</td>
<td>3.83</td>
<td>18.22</td>
<td>35.3</td>
<td>3600</td>
<td>1.031</td>
</tr>
</tbody>
</table>

Table 2.1 Structural properties. σ^2: total mean square fluctuations (nm2); RMSD: root mean square deviation from crystal structure (Å); NRC: number of residues adopting random coil conformation; HBO : number of main chain hydrogen bonds; ACC: total solvent accessible surface (Å2); GYR: radius of gyration (nm). NRC, HBO and ACC were calculated with DSSP102.

The largest inner products with the essential eigenvectors extracted from another simulation, and that the projections outside the essential subspace are mainly concentrated in those eigenvectors which still have a significantly high eigenvalue. The simulations in vacuo show also high inner products further from the diagonal (Fig. 2.1B), indicating that the simulations in vacuo are more different from the solvent simulations than the solvent simulations are from each other.

For all reference simulations, the noise as discussed in the theory section, which causes overlap between eigenvectors from the essential subspace obtained from one simulation and near-constraint eigenvectors from another set, is not homogeneously spread over all near-constraints eigenvectors (Fig. 2.2A). Instead, it is concentrated in the near-constraints which still have an appreciable eigenvalue (eigenvectors 11-50), leaving a negligible overlap with all other eigenvectors. This indicates that the definitions of the essential subspaces from all reference simulations are similar. The overlap of all 300 ps reference simulations (REF_1 through REF_6) with the reference simulation of 1 ns (REF_7) is not significantly higher than the overlap between the 300 ps simulations mutually, although a more converged (i.e. containing less statistical noise) description of the essential subspace was to be expected from this longer simulation. This indicates that the convergence of the definition of the essential subspace is initially fast and does not increase significantly in the time window from 300 ps to 1 ns. This validates the use of relatively short simulations to gain insight in the dynamic properties of such systems.
Fig. 2.1 Squared inner products matrices. Panel A: Inner products between eigenvectors extracted from REF_1 (y-axis) and REF_2 (x-axis). Panel B: Inner products between REF_1 (y-axis) and VAC_2 (x-axis).

Fig. 2.2B shows the average cumulative square inner products of all eigenvectors of all sets with the first ten eigenvectors from the reference simulations. All curves add up to one because all eigenvectors of one set are always able to rebuild a (subset of) eigenvector(s) of another set (both sets of vectors span the same space). The curves are steep, indicating a high degree of overlap of the first ten eigenvectors of each of the reference simulations in the essential subspaces obtained from the other simulations. The simulations that were run with parameters different from the reference simulations all show an equal amount of overlap with the reference simulations as do the reference simulations among each other. For the simulations that were run in vacuo, the measured overlap is significantly smaller, especially VAC_2. The summed average square inner products (here taken as the overlap of the ten eigenvectors with highest eigenvalues from one set compared to the reference sets) and values for the penalty function as described in the Methods section are summarised in Table 2.2. All values are averages over the comparison with the reference simulations. For the reference simulations, values were obtained by comparison of one reference simulation compared to all others, and subsequent averaging over all. The values in the second column of this table are obtained by summation of the square inner products between the first ten eigenvectors of one set with all first ten eigenvectors of another set, and subsequent division by ten. A value of one is obtained when two sets are identical. It should be noted that the first ten eigenvectors span only 10/(56 * 3) = 5.95% of the total space. The fact that the essential subspaces from the different simulations overlap for approximately 50% means that similarities between the essential subspaces of the individual trajectories are significant. The amounts of overlap of the essential subspaces of any combination of (except for the second simulation in vacuo) simulations are similar. The penalty function (Table 2.2), which is more sensitive towards differences between eigenvector
sets than the measure of overlap in terms of a cumulative inner product (see theory section), also gives similar values for all solvent simulations. The two simulations in vacuo, however, give significantly higher values for this penalty function, demonstrating dynamic differences caused by the presence of solvent. Based on these data, there are no detectable systematic differences

![Figure 2.2](image)

Figure 2.2 Average cumulative square inner products. Panel A: The solid line represents the average summed square inner product of the first ten eigenvectors of one 300 ps reference simulation with all eigenvectors from another 300 ps reference simulation, averaged over all pairs. The dashed line represents the results obtained from the 1 ns reference simulation, compared with the 300 ps simulations. Panel B: For all except the reference simulations, curves were obtained by calculation of the summed squared inner product between all eigenvectors from a single simulation with the first ten eigenvectors of each reference simulation, divided by ten, averaged over all reference simulations. For the reference simulations, the average cumulative squared inner products of the first ten eigenvectors of each set with all eigenvectors from all other reference sets were calculated. The average over all pairs is plotted.
Consistency of MD simulations

<table>
<thead>
<tr>
<th>type</th>
<th>MSI</th>
<th>PENAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>σ</td>
</tr>
<tr>
<td>275K</td>
<td>0.483</td>
<td>0.040</td>
</tr>
<tr>
<td>NO_SHAKE</td>
<td>0.524</td>
<td>0.037</td>
</tr>
<tr>
<td>CUT_OFF</td>
<td>0.498</td>
<td>0.017</td>
</tr>
<tr>
<td>HPLACE</td>
<td>0.472</td>
<td>0.024</td>
</tr>
<tr>
<td>REF_1_6</td>
<td>0.494</td>
<td>0.040</td>
</tr>
<tr>
<td>REF_7</td>
<td>0.530</td>
<td>0.065</td>
</tr>
<tr>
<td>VAC_1</td>
<td>0.478</td>
<td>0.033</td>
</tr>
<tr>
<td>VAC_2</td>
<td>0.372</td>
<td>0.038</td>
</tr>
</tbody>
</table>

Table 2.2 MSI: Average and root mean square fluctuation of summed square inner product between the first ten C-α eigenvectors from ED analyses of each individual trajectory with each of the first ten eigenvectors from all reference simulations. PENAL: Average and root mean square fluctuation of penalty function (see methods section) between eigenvectors from all simulations and reference simulations.

between the various methods of simulation, apart from the second simulation in vacuo.

Fig. 2.3 shows the kinds of motion that correspond to the most prominent eigenvectors extracted from the reference simulations. For each of the first six eigenvectors, the motion is concentrated in a few specific places that move concertedy.

Conclusions and discussion

The results presented in this paper show, both considering overall structural and dynamic properties, that all solvent simulations that were studied behave essentially similar. Only the simulations that were performed in vacuo showed significantly different behaviour from the reference simulations, although even there the overlap of the essential subspace is still substantial. This is in agreement with previous findings\(^{53,84}\). Of course, all analyses were concentrated on one protein; other proteins may behave differently.

Of the overall quantities, largest differences were found in the total mean square fluctuation and the RMSD from the crystal structure (Table 2.1). As has been noted before\(^{105}\), the RMSD from a single structure (e.g. the crystal structure) is not necessarily a useful quantity to judge the stability of a simulation when large structural rearrangements are occurring, provided that these rearrangements are reversible. Moreover, backbone RMSD values of the structures in the NMR cluster with respect to the crystal structure are in the same range as the observed values for MD.

From the 300 ps solvent simulations, 275K and CUT_OFF deviate most
Figure 2.3 Snapshots of single-eigenvector motions. Structures corresponding to the minimum and maximum sampled position along the first six eigenvectors of an ED analysis of solvent trajectories combined are shown, together with three intermediate positions, equally spaced between the minimum and maximum.

from all other simulations. The lower total mean square fluctuation of all protein atoms in the simulation at lower temperature compared to most other simulations can partially be explained by the fact that less thermal motion is present in this simulation. Fast thermal fluctuations can be expected to have a connection to slower, larger fluctuations, which might be reflected in the fact that in the ED analysis, the mean square fluctuations along all essential eigenvectors for this simulation are among the lowest. The CUT_OFF simulation shows highest overall fluctuation (Table 2.1). No obvious explanation can be provided for this observation. Since also REF_1 is quite different with respect to the other reference simulations (it exhibits the lowest total mean square fluctuation of all simulations, Table 2.1) these differences are believed to be based on statistical rather than systematic reasons. In a recent paper, where the effects of different protein models on normal modes results were studied, the only significant sensitivity was reported on the description of electrostatic interactions.

For all geometrical properties, the differences between different reference simulations are as high as the differences between the reference simulations and the solvent simulations that were run with adapted parameters. On the
basis of these data, therefore, the simulations with different parameters do not differ in a significant way from the reference simulations.

The differences in dynamic behaviour of the ten solvent simulations as revealed by ED do also not appear to be significant. Since there is no systematic connection between the observed dynamic differences and the different simulation parameters (the reference simulations differ as much from each other as from the other solvent simulations), we have the impression that limited sampling time is the most important reason for the presence of these differences. This leads us to the conclusion that the dynamic properties of the simulated protein are not detectably sensitive towards small differences in the force field or in the choice of starting structure in the time span considered here. Only the simulations that were performed in vacuo are significantly different from the reference simulations in solvent. To support these findings, further simulations of other proteins are necessary to be able to draw general conclusions.

As already observed recently\(^7,8^1,8^5\), single simulations of a few hundred picoseconds of a protein in water seem to yield an acceptable approximation of the essential subspace, although for a fully converged description of this subspace, longer simulations are required. This is supported by the observation that similarities between ED analyses on individual trajectories that were studied here are relatively high (Fig 2.1, table 2.2), considering the fact that in the comparison as presented in table 2.2, always two sets are compared that each contain noise. As explained in the theory section, the overlap (defined as the summed square inner products between vectors from two essential subspaces) between eigenvectors obtained from each of the reference simulations with the fully converged set of eigenvectors can be expected to be larger than the overlap between eigenvectors obtained from two short simulations. The measured overlap of approximately 0.5 between eigenvector sets obtained from multiple simulations (table 2.2) therefore means that for each set, the overlap with the fully converged set of eigenvectors is even higher. This means that in a relatively short simulation, a good approximation of the true essential subspace is reached, within the limitations of the forcefield. The fact that within the essential subspace the individual eigenvectors are not identical in all simulations (although the subspace itself has approximately converged), indicates that in this subspace, the region that has been visited during a single short simulation is only a small fraction of the complete available subspace. This is in agreement with previous findings\(^8^1,1^0^7,1^0^8\).

Further studies have shown that convergence increases only slowly with simulation time (Fig. 2.2A, table 2.2), making predictions about the minimum time required to obtain a fully converged description of the dynamics impossible.

In a recent study\(^1^0^9\), two halves of a short MD simulation of myoglobin were compared. It was concluded that a few hundred picoseconds is not sufficient to obtain equilibrated dynamics. In another study\(^1^1^0\), two halves of a simulation of 470 ps of G-actin (375 residues) showed significant differences
in terms of principal components analysis, analogous to essential dynamics analysis. We have shown here, and before78,81,85 that within a few hundred picoseconds, the definition of both the essential and the near-constraints subspaces are approximately stable, while motions within the essential subspace are still equilibrating. In the present study (as also noted before by us85 and others111, the overlap found between the essential subspaces as derived from short simulations is substantial.

The initial description of the essential subspace as derived from a relatively short MD simulation can be used to obtain a more refined definition of this space in an extrapolation method81. In such a method, an adapted form of MD is performed, with constraints in the approximated essential subspace. These constraints are chosen such that the system itself determines the regions of the space that it samples. Dynamic coupling between the accessible modes of motion will automatically result in motion in the true essential subspace of that system. Analysis of the cloud of structures thus produced will then yield a more accurate description of that space. The procedure may be repeated until no changes are detectable to obtain a completely converged definition of the modes spanning the essential subspace. We are currently investigating such methods107,108.