Enzyme kinetics of hevamine, a chitinase from the rubber tree

Hevea brasiliensis

Evert Bokmaa,*, Thomas Barendsb, Anke C. Terwisscha van Scheltingab,
Bauke W. Dijksrab, Jaap J. Beintema

aDepartment of Biochemistry, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
bDepartment of Biophysical Chemistry, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Received 30 May 2000; revised 3 July 2000; accepted 4 July 2000

Edited by Pierre Jolles

Abstract The enzyme kinetics of hevamine, a chitinase from the rubber tree Hevea brasiliensis, were studied in detail with a new enzyme assay. In this assay, the enzyme reaction products were derivatized by reductive coupling to a chromophore. Products were separated by HPLC and the amount of product was calculated by peak integration. Penta-N-acetylglycosamine (penta-nag) and hexa-N-acetylglycosamine (hexa-nag) were used as substrates. Hexa-nag was more efficiently converted than penta-nag, which is an indication that hevamine has at least six sugar binding sites in the active site. Tetra-N-acetylglycosamine (tetra-nag) and allosamidin were tested as inhibitors. Allosamidin was found to be a competitive inhibitor with a K_i of 3.1 μM. Under the conditions tested, tetra-nag did not inhibit hevamine. © 2000 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.

Key words: Chitinase; Competitive inhibition; Chitin oligomer; Hevea brasiliensis

1. Introduction

Chitin, a β (1,4)-linked N-acetylglycosamine (GlcNAc)$_n$ polymer, is a major component of the exoskeleton of fungi and invertebrates. These organisms produce chitinases to remodel their exoskeleton during growth and cell division [1]. Other organisms make chitinases as well. For instance plants use chitinases as a defense against pathogenic fungi [2]. Hevamine, a chitinase from the rubber tree Hevea brasiliensis belongs to the family 18 glycosyl hydrolases. This class of chitinases has been found in a wide range of eukaryotes and invertebrates. These organisms produce chitinases to remodel their exoskeleton during growth and cell division [1].

The enzyme uses a retaining catalytic mechanism, which is also the mode of action of hen egg white lysozyme (HEWL), but there is no sequence homology between HEWL and hevamine. Structural data also indicate that the cleavage mechanisms of HEWL and hevamine are completely different [8,9]. In contrast to HEWL, which uses two carboxylate residues in its reaction mechanism, hevamine has only one carboxylate in its active site. Instead of an oxocarbenium ion, which is formed during the HEWL reaction, structural and theoretical data suggest that in hevamine the reaction proceeds with an anionic assistance of the neighboring N-acetyl group [10,11] and that an oxazolinium ion intermediate is formed. Support for this mechanism has been obtained from X-ray studies of the binding mode of allosamidin in the active site of hevamine. Allosamidin is thought to be a transition state analog (Fig. 1).

Although many chitinases have been isolated, detailed kinetic analyses of these proteins have been scarce. The assays for activity measurements mostly use colloidal chitin or chitin derivatives. Because of the heterogeneous nature of these substrates, it is not possible to determine k_{cat} and K_M values. An alternative assay uses short chitin oligomers coupled to a 4-methylumbelliferyl group and measures the fluorescence of the released umbelliferyl group, which is a very sensitive method. A disadvantage is that with this substrate only the cleavage of the umbelliferyl group is measured and not cleavage reactions that occur between two sugar residues. Sometimes cleavage does not occur between the umbelliferyl group and the oligomer, but between two sugar residues in the oligomer. In such a case, there is no fluorescence and no activity will be measured [12].

In this paper, we describe the production of short N-acetylglycosamine oligomers and the kinetics of hevamine with these substrates by a new assay, which does not suffer from the disadvantages of the existing assays. After incubation with enzyme, the products are coupled to an aromatic chromophore so that sensitive detection is possible in the near UV. Coupling to the chromophore also enhances the separation of the products by high performance liquid chromatography (HPLC). With this assay, the inhibition kinetics of hevamine with allosamidin and chitotetraose were studied in detail.

*Corresponding author.
E-mail: e.bokma@chem.rug.nl

Fig. 1. Structure of allosamidin.

0014-5793/00/$20.00 © 2000 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
PHI: S0014-5793(00)01833-0
2. Materials and methods

2.1. Preparation of chitin oligomers

Chitin oligomers were prepared according to the method of Aiba et al. [13] by partial acetylation of chitosan, followed by cleavage with a chitinase and complete acetylation of the product. 1 g of chitosan was dissolved in 20 ml of 3% acetic acid. After one night of solubilization, 80 ml of methanol was slowly added under stirring until a homogeneous solution was obtained. Subsequently 100 µl of acetic acid anhydride was added to 100 ml reaction mixture in a 5 min period under vigorous mixing conditions. Mixing continued for at least 1 h. Methanol and acetic acid were removed by evaporation in a film evaporator. The partially acetylated chitosan was dissolved in 20 ml of 0.2 M ammonium acetate, pH 5.4. 1.5 U chitinase from Streptomyces griseus (Sigma) was added and the solution was incubated for 1 week at 37°C. After 1 week, another 1.5 U of chitinase was added and incubation continued for another week. After drying, the samples were derivatized by reductive coupling of p-aminoethylbenzhydride was added to 100 ml reaction mixture in a 5 min period under stirring until a homogeneous solution was obtained. Subsequently 100 µl of acetic acid anhydride. Again the sample was dried and dissolved in 20 ml of water. 100-150 µg of oligomers were loaded on a Biogel P4 column with a flow rate of 1.0 ml/min. The column temperature was 40°C. The fluorooacetic acid ranging from 16 to 20% acetonitrile (v/v) in 25 min.

2.2. Enzyme assay

The enzyme reactions were carried out in 1.5-3.0 ml 0.2 M citrate buffer, pH 4.2, at 30°C. Substrate concentrations were in the range of approximately 0.3-5 times the K_M. Reaction velocities were measured in duplicate or triplicate per substrate concentration. Approximately 1 pmol of hevamine was added to 1.5-3 ml reaction mixture in Greiner tubes. After 30 min, the reaction was stopped, by cooling the samples in liquid nitrogen. After freeze drying, the samples were derivatized by reductive coupling of p-aminomethylbenzhydride was added to 100 ml reaction mixture in a 5 min period under stirring until a homogeneous solution was obtained. Subsequently 100 µl of acetic acid anhydride. Again the sample was dried and dissolved in 20 ml of water. 100-150 µg of oligomers were loaded on a Biogel P4 column with a flow rate of 1.0 ml/min. The column temperature was 40°C. The fluorooacetic acid ranging from 16 to 20% acetonitrile (v/v) in 25 min.

Hevamine cleaves oligomers that are larger than four residues. Penta-nag is cleaved into a tetramer and a monomer, hexa-nag is cleaved in a tetramer and a dimer [10]. In Fig. 3, a chromatogram is shown of the digestion of pentamer by hevamine. Dimer is added as an internal standard. The substrate, product and internal standard are baseline separated, meaning that the product peak can be measured accurately by peak integration. The retention time of derivatized oligosaccharides decreases with increasing degree of polymerization. Tetra-N-acetylglucosamine (tetra-nag)-ABEE and penta-nag-ABEE hardly differ in retention time. Therefore the small tetra-nag-ABEE peak is completely overlapped by penta-nag-ABEE and cannot be measured.

Hevamine shows Michaelis–Menten behavior with penta-nag and hexa-nag as substrates (Fig. 4). The k_cat and K_M of hevamine with penta-nag and hexa-nag are given in Table 1. Hexa-nag was converted more efficiently than penta-nag, as hevamine has a higher k_cat and a lower K_M value. From modelling studies, it was already proposed that hevamine can bind six sugar residues in the active site. The kinetic data show that this indeed is the case. Adding 3.13 µM of alloasamidin to the incubation mix gave a K_M of (27.6 ± 2.7) µM and a k_cat of (0.385 ± 0.016) s⁻¹ (Fig. 4).

There was no significant change in k_cat, but a significant change in K_M. The K_i value was 3.1 µM. Adding 15 µM of

3. Results

In Fig. 2, the result of the separation of N-acetylglycosamine oligomers, prepared as described, is shown. The amount of hexamer is less than 10% of the total amount of oligomers. The amount of shorter oligomers increases with decreasing molecular weight. These results are consistent with the results of Aiba [13]. This procedure yielded oligomers with a purity of more than 80%. Further purification of the oligomers by reversed phase HPLC yielded sufficient pure products (> 95%) for enzyme kinetic measurements.

Hevamine cleaves oligomers that are larger than four residues. Penta-nag is cleaved into a tetramer and a monomer, hexa-nag is cleaved in a tetramer and a dimer [10]. In Fig. 3, a chromatogram is shown of the digestion of pentamer by hevamine. Dimer is added as an internal standard. The substrate, product and internal standard are baseline separated, meaning that the product peak can be measured accurately by peak integration. The retention time of derivatized oligosaccharides decreases with increasing degree of polymerization. Tetra-N-acetylglucosamine (tetra-nag)-ABEE and penta-nag-ABEE hardly differ in retention time. Therefore the small tetra-nag-ABEE peak is completely overlapped by penta-nag-ABEE and cannot be measured.

Hevamine shows Michaelis–Menten behavior with penta-nag and hexa-nag as substrates (Fig. 4). The k_cat and K_M of hevamine with penta-nag and hexa-nag are given in Table 1. Hexa-nag was converted more efficiently than penta-nag, as hevamine has a higher k_cat and a lower K_M value. From modelling studies, it was already proposed that hevamine can bind six sugar residues in the active site. The kinetic data show that this indeed is the case. Adding 3.13 µM of alloasamidin to the incubation mix gave a K_M of (27.6 ± 2.7) µM and a k_cat of (0.385 ± 0.016) s⁻¹ (Fig. 4).

There was no significant change in k_cat, but a significant change in K_M. The K_i value was 3.1 µM. Adding 15 µM of

![Fig. 2. Separation of N-acetylglycosamine oligomers by gel filtration on a Biogel P4 column (extra fine grade (98×3.2 cm) with water as an eluent. 1: Hexa-nag, 2: penta-nag, 3: tetra-nag, 4: tri-N-acetylglucosamine (tri-nag), 5: di-N-acetylglucosamine (di-nag).](image1)

![Fig. 3. Chromatogram of penta-nag cleaved by hevamine. 1 = Penta-nag-ABEE (substrate), 2 = di-nag-ABEE (internal standard), 3 = N-acetylglucosamine-ABEE (product), tetro-nag-ABEE is completely overlapped by penta-nag-ABEE.](image2)
tetra-nag to the incubation mixture did not inhibit the enzyme reaction, showing that tetra-nag, although it is binding in the active site, is not a high affinity inhibitor.

4. Discussion

The kinetic data indicate that the active site of hevamine contains at least six sugar binding sites. This was shown with enzyme kinetic experiments with short chitin oligomers. The results showed that hevamine has a higher k_{cat} and a lower K_M with hexa-nag compared to penta-nag as substrate, meaning that binding of a sixth residue enhances catalysis. This was already proposed for hevamine from modelling studies. Soaking the hevamine crystals (unpublished results). It was not possible to accurately determine the K_i values for penta-nag or hexa-nag in the active site of hevamine, because soaking studies showed that tetra-nag binds in positions -4 to -1 in the active site [6]. Allosamidin binds in the active site in positions -3 to -1 [10]. This mode of binding combined with the low K_i value of allosamidin is an indication that the oxazoline ring is essential for the binding in the active site of hevamine.

This new enzyme assay is very useful for accurate determination of K_M and k_{cat} values and will be used in the future to characterize the kinetic constants of hevamine mutants.

Table 1

<table>
<thead>
<tr>
<th>Substrate</th>
<th>K_M</th>
<th>k_{cat}</th>
<th>K_{cat}/K_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penta-nag</td>
<td>(13.8 ± 0.7) μM</td>
<td>(0.355 ± 0.010) s$^{-1}$</td>
<td>(2.57 ± 0.21) × 104 M$^{-1}$ s$^{-1}$</td>
</tr>
<tr>
<td>Hexa-nag</td>
<td>(3.2 ± 0.8) μM</td>
<td>(1.0 ± 0.06) s$^{-1}$</td>
<td>(3.1 ± 1.0) × 105 M$^{-1}$ s$^{-1}$</td>
</tr>
</tbody>
</table>

References