CHAPTER 3

Mediation of sensation seeking and behavioral inhibition on the relationship between heart rate and antisocial behavior

Abstract
Objective: Why is low resting heart rate (HR) associated with antisocial behavior (ASB: aggression and rule breaking) in adolescence? Theory suggests that personality traits mediate this relationship but differently with age. In the present study this age-effect hypothesis is tested; we expected that the relationship between HR and aggression would be mediated in preadolescence by the personality trait behavioral inhibition, but not by sensation seeking. However, the relationship between HR and rule-breaking in adolescence was predicted to be mediated by sensation seeking, but not by behavioral inhibition. Hypotheses were tested separately for boys and girls. Method: HR in supine position was assessed in TRAILS respondents (N = 1752; 48.5% boys) at age 11. Rule breaking and aggression at age 16 were assessed with two subscales from the Youth Self Report (YSR) questionnaire. Personality (i.e., sensation seeking and behavioral inhibition) was measured at age 11, 13.5, and 16 with the Early Adolescent Temperament Questionnaire-Revised (EATQ-R), Behavioral Inhibition System/Behavioral Activation System (BIS/BAS) scales, or NEO Personality-Index Revised (NEO-PI-R). Results: In boys, lower HR was associated with aggression and rule-breaking in adolescence. The association between HR and rule-breaking was mediated by sensation seeking in adolescence, but not in preadolescence. Girls’ HR was not associated with ASB and no mediating effects were found. Conclusions: Our findings support the age-effect hypothesis in boys’ rule breaking behavior. This shows that the association between HR and ASB depends on age, gender, and subtype of ASB.

3.1 Introduction

Low heart rate (HR) is one of the strongest and most often replicated physiological correlates of antisocial behavior (ASB) in childhood and adolescence (Ortiz & Raine, 2004). However, longitudinal studies focusing on developmental pathways and studies on the relationship of HR to subtypes of ASB (i.e., aggression, rule-breaking) are still lacking (Dietrich et al., 2007; Moffitt et al., 2008). Often, two theoretical explanations for the relationship between HR and ASB are given (Raine, 2002). According to the stimulation-seeking theory some adolescents are constantly under-aroused, which is presumably marked by a low HR and a subjective unpleasant state (Farrington, 1997; Raine, 1993, Scarpa, Raine, Venables, & Mednick, 1997). Behaving antisocially is assumed to increase HR and accompanied by a more comfortable state. Alternatively, in the fearlessness theory a general lack of anxiety and inhibition is assumed to be required to conduct ASB (Raine, 2002; Scarpa et al., 1997). Despite their differences, both theories suggest that the relationship between HR and ASB may be mediated by personality traits.

Before we focus on these mediation factors we take a closer look at the established relationship between HR and ASB (Ortiz & Raine, 2004; Raine, 2002; Wadsworth, 1976). Previous studies typically focused on one type of ASB, or used ASB as an aggregate measure of rule breaking and aggressive behavior. There are a few notable exceptions showing that a distinction of subtypes of ASB may be useful (Bimmel, Van IJzendoorn, Bakermans-Kranenburg, Juffer, & De Geus, 2008; Lorber, 2004), and aggression and rule-breaking have been shown to be distinct though correlated subtypes of ASB (Burt, Mikolajewski, & Larson, 2009). To consider a mediation model we lean on previous findings on the relationships between ‘HR and personality’ and ‘personality and ASB’. Low resting HR has been associated with high levels of impulsivity or low levels of inhibition and high levels of sensation and novelty seeking in adolescents and adults (Mathias & Stanford, 2003; Puttonen et al., 2008; De Pascalis, Valerio, Santoro, Cacace, 2007). Previous studies on the relationship between personality and ASB show that both low inhibition and sensation seeking have been linked to aggression and rule-breaking (Newcomb & McGee, 1991). Likewise, low inhibition in childhood has been shown to lead to rule-breaking in adolescence and to aggression in general (Kerr, Tremblay, Pagani, & Vitaro, 1997; Moeller, Barratt, Dougherty, Schmitz, & Swann, 2001). Efforts to distinguish between these two personality traits have been hampered by conceptual and measurement overlap, making it thus impossible to tap into the different relationship of HR with sensation seeking and behavioral inhibition and the different contribution of personality traits on aggression and rule-breaking.

In the present study we assessed whether the personality traits sensation seeking and low behavioral inhibition could mediate the relationship between HR and ASB. In addition, we considered the possibility that both sensation seeking and fearlessness theory are true, but for different age groups and subtypes of ASB. This has not been tested before but is inspired by previous research showing distinct developmental pathways for rule-breaking and (physical)
aggression. Incidences of rule-breaking rise in adolescence, with a peak of offending in middle adolescence (Agnew, 2003), whereas physical forms of aggression are relatively frequent in childhood but steadily decline in adolescence. These findings on ASB seem in accordance with the developmental pathways of personality traits as children have lower behavioral inhibition compared to adolescents and adults (Steinberg, Albert, Cauffman, Banich, & Graham, 2008). Sensation seeking, however, shows a rise from the beginning of adolescence, with a peak at the age of 15-16. Behavioral inhibition may thus be more linked to aggression, and sensation seeking more to rule breaking.

How then is this age effect related to HR? In line with the fearlessness theory low HR may be associated with low inhibition in preadolescents, which in turn is linked to aggression. However, in adolescence, low HR may be associated with both sensation seeking and rule-breaking but, to our knowledge, not with aggression and behavioral inhibition. From recent brain research we also know that children who were low on behavioral inhibition become high on sensation seeking later in life (Schwartz, Wright, Shin, Kagan, & Rauch, 2003). This development in personality could imply that those who are characterized by low HR are less inhibited in preadolescence and are likely the ones who are characterized by high sensation seeking in adolescence, which in turn is then related differently to aggression and rule breaking. To address these differences in developmental pathways we tested an age-effect hypothesis in the present study. More precisely, we expected (a) that behavioral inhibition in preadolescence, but not in adolescence, mediates the relationship between HR and aggression. On the other hand, we expected (b) sensation seeking in adolescence, but not in preadolescence, to mediate the relationship between HR and rule-breaking.

If at all, previous studies only focused on cross-sectional associations between HR and ASB and HR and personality traits (with a few longitudinal exceptions: Bimmel et al., 2008; Oldehinkel, Verhulst, & Ormel, 2008; Raine, Venables, & Mednick, 1997; Scarpa et al., 1997). Moreover, samples in which HR was measured were typically small and comprised mostly clinical cases. To overcome these limitations, we will test the mediation models longitudinally, in a large population-based sample. In addition, we assessed personality at three different ages during preadolescence and adolescence (i.e., age 11, 13.5, and 16) and in three different ways, to increase the generalizability and robustness of the findings. We formulated no specific hypotheses regarding gender differences. However, previous studies showed that girls have higher HR in general (Dietrich et al., 2007; Oldehinkel et al., 2008), whereas boys score in general higher on aggression and rule-breaking (Loeber & Stouthamer-Loeber, 1998; Mears, Ploeger, & Warr, 1998). Hence, we will test the mediating role of sensation seeking and behavioral inhibition on the relation between resting HR and rule-breaking and aggressive behavior in adolescence separately for boys and girls.
3.2. Method

Participants

Data were collected in a general population of TRAILS (TRacking Adolescents’ Individual Lives Survey), a large prospective population study of Dutch adolescents with bi- or triennial measurements from age 11 to at least age 25 (see Huisman et al., 2008 for a full description of the sample). Parental informed consent was obtained after the procedures had been fully explained. Detailed information about sample selection and analysis of non-response bias has been reported elsewhere (De Winter et al., 2005). The three assessment waves ran from March 2001 to July 2002 (T1), September 2003 to December 2004 (T2), and September 2005 to December 2007 (T3). At T1, 2230 children (mean age = 11.09, SD = 0.56) enrolled in the study of whom 2149 (96.4%; mean age 13.56, SD = 0.53) participated at T2 and 1816 (81.4%; mean age 16.27, SD = 0.73) at T3.

Measures

Aggression and rule breaking behavior. The ASB subtypes aggression and rule breaking behavior were assessed as self-reported measures as part of the broadband Youth Self Report (YSR) at age 16 (Achenbach, 1991). The YSR covers behavioral and emotional problems in the past six months. Good reliability and validity of the American version were confirmed for the Dutch version (Verhulst, Van der Ende, & Koot, 1997). The rule breaking subscale consisted of fifteen items ($\alpha = .76$) assessing behaviors such as rule breaking, truancy, and stealing. The adapted aggression subscale consisted of eight items ($\alpha = .71$) assessing physical acts against persons or things (i.e., fighting, being cruel to others). Subjects responded on a three-point scale (0 = true, 1 = somewhat true, 2 = very often or true).

Heart rate (HR). At age 11, cardiac autonomic function was assessed by a three-lead electrocardiogram, while participants were in supine position and breathing spontaneously. Dedicated software ([pre-]CARSPAN, previously used in e.g., Dietrich, et al., 2006) was used to detect R-peaks, to check signal stationarity, to correct for artifacts, and to calculate the interbeat-interval (IBI; in milliseconds) between two heartbeats. IBI is inversely related to HR by the equation $HR = 60000/IBI$. HR was expressed in beats per minute (bpm). Blocks were considered invalid if they contained artifacts with a duration of more than 5 seconds, if the total artifact duration was more than 10% of the registration, or if the block length was less than 100 seconds. Heart rate recordings were missing (n = 76) due to recording failure (41%) or signal-analysis failure (59%).

Sensation seeking and behavioral inhibition. Personality traits sensation seeking and behavioral inhibition were assessed at age 11 with two subscales of the parent-reported Early Adolescent Temperament Questionnaire Report Revised (EATQ-R; Putnam, Ellis, & Rothbart, 2001). Scales were constructed based on a previous TRAILS study (Oldehinkel, Hartman, De Winter, Veenstra, & Ormel, 2004). Sensation seeking was assessed with the high intensity pleasure/surgency subscale, consisting of six items ($\alpha = .77$) such as, 'my child would find it
exciting to travel to e.g., India or Africa’ and ‘my child would fear the thought of skiing down a steep hill at high speed (reversely coded)’. Behavioral inhibition was assessed with the effortful control subscale, consisting of eleven items (e.g., ‘my child finds it easy to focus on a task’; ‘is usually able to stick with her/his plans and goals’) with good internal consistency (α = .86). Subjects responded on a five point scale (1 = almost never true, 5 = almost always true).

At age 13.5, the Behavioral Inhibition System/Behavioral Activation System (BIS/BAS) scales were used to measure behavioral inhibition and sensation seeking and behavioral (Carver & White, 1994). Behavioral inhibition (BIS) was assessed with seven items (α = .68), such as ‘I worry about making mistakes’ and ‘I have very few fears compared to my friends [reversely coded]’. Sensation seeking was assessed with the four-item fun seeking subscale (α = .44), comprising items such as ‘I crave excitement and new sensations’ and ‘I will often do things for no other reason than that they might be fun’. Subjects responded on a four point scale (1 = untrue, 2 = somewhat untrue, 3 = somewhat true, 4 = true).

At age 16, we assessed behavioral inhibition and sensation seeking as part of the self-reported Revised Neuroticism-Extroversion-Openness Personality-Inventory (NEO-PI R; Costa & McCrae, 1992). Behavioral inhibition was measured with six items of the impulsivity subscale (α = .57; e.g., ‘I find it difficult to resist temptations’ and ‘I can always control my feelings [reversely coded]’), after dropping two items due to low internal consistency. Sensation seeking was assessed with the adventurism subscale, comprising seven items (α = .59), such as ‘I hunger for excitement’ and ‘I like the thrill of the rollercoaster’. One item (‘I like to wear clothes that stand-out or are colorful’) was dropped from the original subscale due to low internal consistency. Item scores ranged from 1 (fully disagree) to 5 (fully agree).

Data Analysis

First, summary statistics were given by calculating means (SD) of the study variables. Second, to test our mediation hypotheses, we computed linear regression models using one-tailed tests. Rule-breaking and aggression scores were logarithmically transformed to correct for skewness (i.e., many participants scored zero on the scale). After transformation both variables were still skewed but considerably less.

To test mediation properly (Baron & Kenny, 1986), we tested first whether there was a direct association of HR with ASB (i.e., rule-breaking or aggression). Furthermore, we tested the association of HR with personality. Finally, we tested whether the association between HR on ASB was mediated. Evidence for complete mediation is given when the direct association between HR and ASB becomes zero, while allowing personality to mediate this relationship. Partial mediation is applicable when this direct association becomes significantly lower. To test whether mediation was significant, we applied the conservative Sobel’s test as well as a bootstrap approach (Preacher & Hayes, 2004), which enabled us to calculate the 95% confidence intervals of the mediation effect. Bootstrapping generates k random samples (k is here 1,000) from the original distribution. This process yields k estimates of the indirect effect, which serve as empirical, non-parametric approximations of the sampling distributions and
thereby allow for non-normal multivariate distributions in the data. Macros for this procedure were downloaded from http://www.comm.ohio-state.edu/ahayes. Regression analyses were conducted separately per mediator and gender.

Table 1 Means, standard deviations, and Gender Differences of Heart Rate, Antisocial Behavior, and Personality Traits

<table>
<thead>
<tr>
<th></th>
<th>Girls</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>S.D.</td>
<td>N</td>
<td>Mean</td>
<td>S.D.</td>
<td>t</td>
<td>df</td>
<td>p</td>
<td>N</td>
<td>Mean</td>
<td>S.D.</td>
<td>N</td>
<td>Mean</td>
<td>S.D.</td>
<td>t</td>
<td>df</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Age 11</td>
<td></td>
</tr>
<tr>
<td>Heart Rate (bpm)</td>
<td>902</td>
<td>78.72</td>
<td>11.05</td>
<td>851</td>
<td>75.36</td>
<td>10.60</td>
<td>6.49</td>
<td>1751</td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Effortful Control (EATQ-R)</td>
<td>829</td>
<td>3.35</td>
<td>0.65</td>
<td>780</td>
<td>3.11</td>
<td>0.70</td>
<td>7.28</td>
<td>1607</td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Surgency (EATQ-R)</td>
<td>824</td>
<td>3.18</td>
<td>0.94</td>
<td>781</td>
<td>3.41</td>
<td>0.91</td>
<td>-4.84</td>
<td>1603</td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Age 13.5</td>
<td></td>
</tr>
<tr>
<td>Behavioral Inhibition (BIS)</td>
<td>858</td>
<td>2.66</td>
<td>0.51</td>
<td>800</td>
<td>2.37</td>
<td>0.50</td>
<td>11.93</td>
<td>1656</td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Fun Seeking (BAS)</td>
<td>858</td>
<td>2.67</td>
<td>0.48</td>
<td>800</td>
<td>2.70</td>
<td>0.50</td>
<td>-1.40</td>
<td>1656</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Age 16</td>
<td></td>
</tr>
<tr>
<td>Aggression (YSR)</td>
<td>714</td>
<td>0.10</td>
<td>0.13</td>
<td>619</td>
<td>0.15</td>
<td>0.18</td>
<td>-6.06</td>
<td>1331</td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Rule-breaking (YSR)</td>
<td>715</td>
<td>0.24</td>
<td>0.17</td>
<td>619</td>
<td>0.29</td>
<td>0.17</td>
<td>-5.78</td>
<td>1332</td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Impulsivity (NEO-PI-R)</td>
<td>713</td>
<td>2.87</td>
<td>0.55</td>
<td>619</td>
<td>2.77</td>
<td>0.52</td>
<td>3.42</td>
<td>1330</td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Adventurism (NEO-PI-R)</td>
<td>713</td>
<td>3.50</td>
<td>0.55</td>
<td>619</td>
<td>3.73</td>
<td>0.55</td>
<td>-7.50</td>
<td>1330</td>
<td><.001</td>
<td></td>
</tr>
</tbody>
</table>

Note. Independent samples t-tests were used to calculate mean differences between boys and girls; bpm = beats per minute, EATQ-R = Early Adolescent Temperament Questionnaire Report – Revised, BIS = Behavioral Inhibition Scale, BAS = Behavioral Activation Scale, YSR = Youth Self Report; NEO-PI-R = Neuroticism-Extroversion-Openness Personality Inventory – Revised.

3.3. Results

Summary Statistics

Table 3.1 shows means, standard deviations, and gender differences of the study variables. Boys and girls differed significantly on almost all variables. Supine HR at age 11 was 3 to 4 beats per minute higher in girls. Boys scored higher on rule-breaking and aggression at age 16. Regarding personality traits, girls were higher than boys on effortful control at age 11, behavioral inhibition at age 13.5, and scored higher on impulsivity at age 16. Boys scored higher on surgency and adventurism, at age 11 and 16 respectively.
Figure 3A Graphical presentation of the associations between Heart Rate and Personality assessed at age 11 via the Early Adolescent Temperament Questionnaire Report – Revised, Personality and Antisocial Behavior, Heart Rate and Antisocial Behavior, and the mediating effect of Personality. Values are regression beta’s belonging to the particular pathways (one-tailed tests; significant regression beta’s [p < .05] are given in bold; Boys above the line; Girls below. Dashed lines indicate indirect or mediation effects of Personality on the relationship between Heart Rate and Antisocial Behavior). *Mediation significant

Figure 3B Graphical presentation of the associations between Heart Rate and Behavioral Inhibition Scale/Behavioral Activation Scale Personality at age 13.5, and Antisocial Behavior, Heart Rate and Antisocial Behavior, and the mediating effect of Personality. Values are regression beta’s belonging to the particular pathways (one-tailed tests; significant regression beta’s [p < .05] are given in bold; Boys above the line; Girls below. Dashed lines indicate indirect or mediation effects of Personality on the relationship between Heart Rate and Antisocial Behavior). *Mediation significant
HR and ASB: EATQ-R

Regression analyses were conducted to study the prospective relations between HR at age 11 and rule-breaking at age 16. Beta’s of all the separate paths are reported in Figure 3A. Boys’ HR at age 11 negatively predicted rule-breaking at age 16 ($\beta = -.07, t = -1.74, p = .04$) and was negatively associated with the EATQ-R surgency measure ($\beta = -.06, t = -1.74, p = .04$). Regression analyses showed that the association between boys’ HR and rule-breaking dropped in strength, while allowing surgency at age 11 to mediate this relationship (mediation effect: $\beta = -.05, t = -1.16, p = .13$). This mediation effect did not reach significance in the Sobel’s and bootstrapping test. In girls, HR was only associated with surgency ($\beta = -.12, t = -3.42, p < .01$).

In boys, lower HR was significantly associated with more aggression at age 16 ($\beta = -.09, t = -2.32, p = .01$) but again personality (effortful control) did not mediate this relationship. In girls, HR was not associated with effortful control or aggression, and thus no mediation effects were found. Boys and girls low on effortful control at age 11 were more aggressive at age 16 (both βs < -.15, ts < -3.54, ps < .001).

HR and ASB: BIS/BAS

Results of the mediation analysis with the BIS/BAS measures are presented in Figure 3B. HR was negatively associated with fun seeking at age 13.5 ($\beta = -.07, t = -1.90, p = .03$ for boys, and $\beta = -.06, t = -1.77, p = .04$ for girls). Moreover, fun seeking at age 13.5 was significantly associated with rule-breaking at age 16 (βs > .13, ts > 3.11, ps < .01). As hypothesized, there was evidence that boys’ fun seeking at age 13.5 mediated the relationship between HR and rule-breaking (see Figure 3B). Sobel’s test ($Z = -1.66, p = .05$) and the bootstrapping method (-.0002; 95% CI between -.0003 and .0000) showed that the mediation effect was marginally significant. Behavioral inhibition was unrelated to HR and aggression and thus no mediation effects were found.

HR and ASB: NEO-PI-R

HR at age 11 was negatively associated with adventurism at age 16 ($\beta = -.16, t = -4.13, p < .01$ for boys, and $\beta = -.09, t = -4.13, p < .01$ for girls). Boys’ adventurism at age 16 mediated the relationship between HR and rule-breaking, because the association between HR and rule-breaking came close to zero ($\beta = -.02, t = -0.55, p = .29$; see Figure 3C), while allowing for mediation of adventurism. Sobel’s test ($Z = -3.61, p < .001$) and the bootstrapping method (-.0008; 95% CI between -.0012 and -.0004) showed that this reduction of the direct association between HR and rule-breaking was significant. In girls and boys, impulsivity was associated with aggression (βs > .31, ts > 8.82, ps < .001). However, no mediation effects were found, because HR was not associated with impulsivity or aggression (in girls).
3.4 Discussion

We showed that it is useful to distinguish between boys and girls and subtypes of ASB when studying the relationship between HR and ASB. Moreover, in boys, we were able to show part of the underlying mechanism of the relationship between low resting HR at age 11 and rule-breaking at age 16, namely the mediating role of sensation seeking at age 13.5 and 16. More importantly, in line with our age-effect hypothesis, this relation was not mediated by behavioral inhibition and thus provides evidence for different associations between HR in preadolescence and ASB in adolescence. In girls no mediation effects were found.

The current study has some limitations. First, we could not make statements about the predictive value of HR on ASB. Our findings only show that HR at age 11 is related to ASB at age 16, but not to change in ASB from age 11 to 16. Our second limitation was the assessment of behavioral inhibition. Ideally we wanted to assess a measure of impulsivity or a lack of being able to control one’s own behavior. Although our effortful control measure (EATQ-R) came close, there were some items that were more related to cognitive than behavioral inhibition constructs. The assessment of the BIS/BAS scales was ideally timed, on average two years after HR and three years before ASB assessment. However, the BAS fun-seeking scale had low internal consistency. The NEO-PI-R measure of impulsivity was the most ideal tool to assess behavioral inhibition. To overcome limitations and to increase comparability with other studies, we included all three measures of behavioral inhibition and sensation seeking. In this
way we showed robust findings regarding the mediating roles of personality characteristics in adolescence. Third, we only found partial mediation of personality; this means that there are other factors that may also mediate the relationship between HR and ASB.

Apart from these limitations, our study has several strong points. We were able to study a physiological measure in relation to psychopathology in a large, non-clinical, general population. Moreover, we assessed both parent- and self-reported personality characteristics at different time points and showed robust findings with regard to the relation with HR and ASB. Using different raters at different ages had advantages. In preadolescence, children were on average 11 years old and parents may thus have had a better perspective on the child’s personality at that time. However, in early and middle adolescence, when participants were on average 13.5 and 16 years old, youth are more likely to have a clearer perspective on their own personality than their parents.

As suggested on a theoretical basis (Ortiz & Raine, 2004, we showed that lower HR was associated with more sensation seeking in adolescent boys, which was in turn associated with higher levels of rule-breaking. Our findings were also partly in accordance with previous studies in which the age specific effects of HR on ASB and of HR on personality were found. We showed that boys’ HR was only related to sensation seeking at age 13.5 and 16, and not at age 11. Although we did not find support for the relationship between HR and behavioral inhibition in preadolescence, this relationship was also absent at age 13.5 and 16, as we predicted. These findings are partly in line with research which suggests that after childhood, behaviorally disinhibited children become more open to novelty (or sensation) seeking later in life (Schwartz et al., 2003). Although we did not find a mediation effect of behavioral inhibition in preadolescence, there was an indication that the mediation effect of sensation seeking became stronger during adolescence. This effect could at least offer an explanation for the increase of sensation seeking and rule-breaking in adolescence found previously (Steinberg et al., 2008).

In the current study, interesting gender differences were found. HR only predicted rule-breaking and aggression in boys, and not in girls. Taking a closer look at Ortiz and Raine’s (2004) meta-analysis, it turns out there were only two studies among adolescent girls in which associations between HR and ASB were found. These studies had relatively small sample sizes (N=36 and N=44) and the assessment of ASB in one study is questionable (i.e., disruptive behavior as rated by teachers). However, there is stronger evidence that fails to replicate that low resting HR is associated with ASB in adolescent girls (Beauchaine, Hong, & Marsh, 2008; Crozier et al., 2008; Rogeness, Cepeda, Macedo, Fischer, & Harris, 1990). In a sample of late adolescents (16-18 years; N = 585), only antisocial boys had lower resting HR (Crozier et al., 2008). Furthermore, in a clinical sample of girls (12.5 years; N = 206) no significant association between HR and conduct disorder was found (Rogeness et al., 1990). Along with the findings in the present study this may have implications for future studies assessing the association between HR and adolescent girls’ ASB.
In line with a previous meta-analysis (Lorber, 2004), HR was associated with aggression in adolescent boys. Findings are mixed however, because in a recent study among adopted adolescents it was shown that low resting HR was only associated with rule-breaking and not aggression (Bimmel et al., 2008). A possible reason for these different results may be that aggression is a more heterogeneous construct compared to rule-breaking. Whereas the latter is generally related to delinquency, aggression taps into a wide range of behaviors entailing many different forms (and functions) related to different outcomes (Little, Brauner, Jones, Nock, & Hawley, 2003; Vitaro, Brendgen, & Tremblay, 2002). Instrumental (or proactive) aggression for instance, is intended behavior and may therefore be unrelated to behavioral inhibition. This difference in aggression also shows up in the findings that instrumental aggression has been associated with low resting HR, whereas reactive aggression, as a direct response to stimuli, was unrelated to resting HR (Van Voorhees & Scarpa, 2002). Therefore, future studies may profit from distinguishing between different types of aggressive behavior and assessing HR both during rest and mental stress conditions to obtain HR reactivity measures.

Based on the fearlessness theory, we expected, in preadolescence, that low behavioral inhibition would mediate the negative relationship between HR and aggression. However, we did not find this mediation effect and thus no evidence for the fearlessness theory. This finding may be interpreted in light of findings indicating that externalizing problems up till early adolescence are also partly related to anxiety problems (Marmorstein, 2007; Maughan, Rowe, Messer, Goodman, & Meltzer, 2004). There may thus be important differences in the underlying mechanisms leading to adolescent ASB. On the one hand, we have a group of (especially male) youth who are characterized by high levels of fear and anxiety. On the other hand, however, we deal with a group that is characterized by low levels of fear and anxiety, as suggested by fearlessness theory (Frick & Morris, 2004). Future studies are needed to unravel these possible group differences.

Ortiz and Raine’s (2004) meta-analysis resulted in an overall average effect size of $d = -0.44$, indicating lower resting heart rate in antisocial children compared to both normal controls and psychiatric controls. In the current study, for boys, calculations of effect sizes from correlations (Dennis, Lennox, & Foss, 1997), showed small effect sizes: $d = -0.19$ for the negative relationship between HR and aggression, and $d = -0.14$ for the negative relationship between HR and rule-breaking. These differences in effect sizes in our study compared to the meta-analysis may be due to publication bias which is known to inflate effect estimates that tend to be in the hypothesized direction in meta-analyses.

In sum, boys with lower HR in preadolescence appeared to be most at risk for rule-breaking and aggression at age 16. In line with our age-effect hypothesis, sensation seeking mediated the relationship between HR and rule-breaking only in adolescence, but not in preadolescence. For intervention practices this has several implications. As suggested by Ortiz and Raine (2004), interventions that teach youth to engage more in prosocial, law-abiding activities could provide other ways to satisfy sensation seeking in adolescence and thus to more optimal levels of autonomic arousal. However, one such cognitive behavioral intervention,
aimed at reducing oppositional and aggressive behavior, only positively affected children with relatively high HR (Stadler et al., 2008). Those with significantly lower HR did not profit from the intervention. This shows that it is difficult to provide activities for youth with the lowest HR that can fulfill the same need of sensation as for instance rule breaking can. From another perspective, given the mediation effect of sensation seeking, low HR may not only be associated with rule breaking or other ASB but may also be associated with risky behavior in general. Taking more risk may have negative consequences (e.g., stealing may lead to incarceration), but can also have beneficial effects (e.g., stepping up for someone in a fight may be socially rewarding), making the behavioral effects associated to low HR dependent upon contextual factors as well.

Finally, we want to address the discussion on whether or not resting HR could and should be used as a marker of the development of ASB over time (Moffitt et al., 2008). Our findings showed that HR measures obtained with a strict acquisition and analysis protocol were associated with ASB in boys but not in girls. Despite the small effect sizes, the relative ease of assessing HR at rest, even when using a protocol, the robust findings (see the meta-analysis by Ortiz and Raine, 2004), and the associations with ASB over time (current study), could make HR a valuable addition to the early identification of behavioral problems in boys.
PART II

Dispositions and context