In control of molecular motion
Feringa, B.L.

Published in:
Physical Review A

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2000

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
The viruses to find new entry points into this fast-moving field.

James C. Carrington is at the Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA.

E-mail: Carrington@wsu.edu

Nanotechnology

In control of molecular motion

Ben L. Feringa

Nature leads the way when it comes to motors on a molecular scale. But chemists are in hot pursuit, designing controllable structures that can mimic muscles or rotary motors.

If you could build a motor one millionth of a millimetre across, you could fit a billion billion of them on a teaspoon. It seems incredible, but biological systems already use molecular motors on this scale. Linear motion is produced by skeletal muscle, and rotary motion by the enzyme ATP synthase. The underlying principle of these natural motors is the production of continuous motion while energy is being consumed. Can scientists engineer similar movements in a synthetic system?

Two recent findings suggest a way of using chemical synthesis to build molecular-scale components for artificial motors. In Angewandte Chemie International Edition, Sauvage and co-workers report a molecular assembly that can contract and stretch as desired under the influence of a chemical signal. It is the first synthetic molecule in which two filaments can glide along each other, as they do in real muscles. And in the Journal of the American Chemical Society, Aida and co-workers describe the acceleration or deceleration of motion in rotating disc-like structures in response to changes in their electronic state. By using a metal ion sandwiched between two porphyrin ligands, the rotary motion can be controlled by oxidation (removing electrons) or reduction (adding electrons) at the metal centre, producing a device reminiscent of transmission systems in much larger motors.

Most artificial systems that produce linear or rotary motion are more like molecular switches than motors. It is not enough to build a system that moves or rotates freely. To reproduce the actions of a motor it is essential to incorporate control into the system, so the motion can be started and stopped at will. There are many ways to do this. For example,
polyacrylamide gels5 and polypyrroles6 have been designed to mimic the behaviour of muscles by bending or contracting in response to electric current. Other approaches to linear motion rely on the use of rotaxanes - molecular rings threaded by strings - in which the position of the ring can be altered by electrochemical or photochemical means.7,8

In their system, Sauvage and colleagues use a doubly threaded structure to mimic the stretching and contracting of a real muscle (Fig. 1). Their design is based on two molecular units, each consisting of a ring attached to a string, which can slide along each other. Each ring has a metal ion at its core, and there is a bulky stopper at the other end of the string to prevent the strings from coming apart. Each ring contains a bidentate ligand (so called because it has two points of attachment for a metal ion), whereas each string contains both a bidentate and a tridentate ligand (which has three points of attachment). The geometry of the structure changes, depending on which ligands bind to the metal ions.

In the presence of two copper ions, the most favourable geometry has two bidentate ligands binding to each ion. This is the ‘stretched’ geometry. Replacing the copper ions with zinc ions causes the strings to slide along each other so the zinc ions can adopt their preferred configuration, with each ion bound to one bidentate ligand and one tridentate ligand. This is the ‘contracted’ geometry. Replacing zinc with copper reverses the process, stretching the molecule. The length of the structure changes by roughly 27% - coincidentally, about the same as that seen in natural muscles.

How similar this is to the motion of muscle filaments is arguable. But this is the first demonstration of stretching and contracting motions induced by a chemical reaction in an artificial molecular assembly. The stage is set for the design of other ‘molecular muscles’ triggered by electrochemical or photochemical processes. For these artificial molecular muscles to perform useful mechanical work, they will ultimately have to be connected to macroscopic systems. The organization and concerted action of a large number of these

Oceanography

Flow charts

Space-borne instruments have revolutionized research on the circulation patterns and strengths of the oceans. For instance, a satellite can observe all of the world’s oceans in less than ten days. With radar technology, it can measure the shape of the sea surface and provide observations on the surface flows, including major currents or eddies - phenomena that are much like weather systems in the atmosphere.

The TOPEX/POSEIDON mission, a US-French undertaking, has been prominent in providing precision observations of this sort. But a single satellite has its limitations in detecting variations both in space and time. Although there has been more than one radar instrument in space for several years now, the task of merging satellite data is formidable and requires considerable statistical skill. Yet that is what N. Ducet and colleagues have done, as they describe in the *Journal of Geophysical Research* (105, 19477-19498; 2000). The result is the best picture yet of the ocean and its vigorous eddy component.

The authors have combined data from TOPEX/POSEIDON and the European ERS missions over the period 1992-98. The picture here shows in stunning detail the regions where currents fluctuate vigorously (units are in cm2 s$^{-1}$). The regions of high (red) amplitudes indicate particularly turbulent currents that are involved in transporting and redistributing heat and other properties, and so affect global climate.

What of the future? The next aim is to fly satellites routinely in a configuration and with technology that will allow current and eddy flows to be measured directly without the need for statistical estimation. The ultimate objective is to incorporate the data into models of ocean circulation, much as is done in weather forecasting. Physical oceanographers will not be the only beneficiaries. Other prospects include identifying local variations in flows that affect fisheries, the distribution of pollutants, and fuel-saving routes for ships. On a larger scale, such studies should also tell us more about the transport of heat from low latitudes towards the poles, where it is released to the atmosphere and has a large influence on mid-latitude climate.

Detlef Stammer

Detlef Stammer is in the Physical Oceanography Research Division, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, California 92037-0230, USA.

e-mail: detlef@scripps.ucsd.edu
molecular motors is one of the key issues to address next.

So much for linear motion, but how about rotary motion? Particularly promising are studies with interlocked rings (catenanes) in which circular motion can be induced.8-10 Last year, two studies demonstrated the controlled conversion of energy into unidirectional rotation, a fundamental property of a rotary motor.11-12 The next challenge is to control the rate of rotation to produce a motor capable of more than one speed.

Aida and co-workers5 have found an elegant solution to this problem with a molecular system called a bisporphyrinate double-decker complex (Fig. 2). In these complexes a cerium or zirconium ion is sandwiched between two porphyrin ligands that rotate with respect to one another. The metal ion functions as a kind of ball-bearing between two rotating discs. The configuration of bulky side chains attached to the porphyrin ligands means that the metal complexes are chiral - that is, they can be mirror images of each other. This feature allows the authors to study the dynamics of the rotary motion by measuring their optical activity. (Mirror-image chiral molecules rotate polarized light in opposite directions.)

Aida and colleagues4 found that reducing the cerium complex led to the rotation of the porphyrin ligand being accelerated more than 300-fold. Oxidation of the zirconium complex, on the other hand, decelerated it by a factor of 21 or 99, depending on the oxidation state of the complex. The change in rotary motion is attributed to a change in distance between the two porphyrin ligands.

In the cerium complex, reduction of the metal centre increases the ionic radius, so the interaction between the porphyrin ligands weakens, which leads to faster rotation. In the zirconium complex, oxidation reduces the distance between the porphyrin ligands, strengthening the interaction between the ligands and slowing down the rotary motion.

The chemical control of rotation is a powerful tool to be used in more advanced molecular motors. But there are many hurdles to overcome before the structures designed by these and other groups lead to molecular machinery becoming a reality. To make their construction easier, self-assembly processes are needed. It is also not clear whether the motors described here will retain their properties when they are used as part of a more complex system. Nonetheless, we are adding important components to our toolkit for making nanomachines.

Ben L. Feringa is in the Department of Organic Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands. e-mail: feringa@chem.rug.nl