Teaching sterile skills in anesthesia
Is providing context helpful for robust skill acquisition?

Fokie Cnossen1, Katja Paul1, Roelof Lettinga2 & Götz Wietasch2

1 Cognitive Modeling group, Institute of Artificial Intelligence and Cognitive Engineering, University of Groningen
2 Anesthesiology, University Medical Centre Groningen
f.cnossen@rug.nl

EPIDURAL ANESTHESIA
• Pan relief method during childbirth and during and after operations
• As it is an invasive technique, it carries the risk of contamination
• Residents basically learn the procedure in the clinic
• Even after 4 years of training, residents still make sterility errors (Friedman et al., 2008)
• sterility is a complex concept
• sterility is not visible

PRESENT TRAINING IS NOT OPTIMAL
• Medical skills should be flexible and robust (Cnossen, 2015)
 Flexible: applicable outside context in which it was learned
 Robust: resistant to stress and workload
• Present training of complex procedures often focuses on the order of the steps of the procedure
 • This makes learning vulnerable
 • steps may be forgotten and skipped
 • steps may be performed in the wrong order
• In practice there is no fixed order of steps
 • different procedures have different steps, equipment, medication
 • not all steps have to be performed in a strict order
 • in practice, every supervisor has their own preferred order and method
• Focus on the steps in the procedure during learning
 • does not lead to flexibility in the skill
 • what if a step cannot be performed
 • does not lead to robustness of the skill
 • in stress situation memory errors can happen

DIFFERENT APPROACH: FOCUS ON THE CONTEXT
• Taatgen, Huss, Dickison & Anderson (2005) showed that in teaching flexible cognitive skills teaching materials should draw attention to
 • the pre-conditions of actions (knowing when)
 • the post-conditions of actions (knowing the effects of actions in the environment)
• They found that Boeing pilots were more flexible and the skill was more robust after learning with a focus on these environmental cues
• learners can then rely on environmental cues rather than keeping track of all the executed steps in their mind
• We applied this approach to training preparing and executing epidural anesthesia

METHOD

37 medical students participated in simulation study
Skill preparation of epidural anesthesia
• 24 steps
• 10-15 minutes

Procedure
• Video instruction of procedure
 • Studying description of steps on paper
 • non-sterile actions were written in red
 • sterile actions were written in green
 • 15 minutes practice with materials and instruction sheets
 • Test: perform the procedure with an “non-obstructive nurse”

Instructions
• List condition
 • 24 steps in chronological, strict, order
• Context condition
 • steps arranged in sets
 • order within set was not important
 • photographs
 • pre-conditions of a set of actions (“before”)
 • post-condition (“after”)
 • description of the actions to be performed within the set

DISCUSSION
• Contrary to expectation the context condition did not result in robust skill
 • This stands in contrast to Taatgen et al’s study
 • Context condition even resulted in more sterility errors than the list condition
Why?
• Environmental cues
 • In epidural anesthesia procedure, there are also many environmental cues in list condition
 (e.g. syringe filled or empty)
 • Boeing pilots used complicated system with low usability, so possibly profit more from context
• Memory load
 • Context condition possibly imposed larger memory load on participants
 • The known advantages of the context method were at least partly offset by the disadvantages of this high memory load

Sterility
• Apparently, sterility errors are difficult to prevent, even though we explicitly noted which steps of the procedures were sterile or not
• The participants in the experiment were probably unfamiliar with the concept of sterility
• Sterility is a complex concept
 • it is not obvious for example that crossing a sterile workspace with (unsterile) bare underarms is not sterile

CONCLUSIONS & RECOMMENDATIONS
• Complex medical skills involve many steps and induce a high memory load to learn them
• Providing context when teaching a procedure may therefore not necessarily lead to better skill acquisition than learning the steps
• but the resulting skill may be more flexible and robust after context-learning
• Further research is needed to test whether it may be advantageous to first study the steps in a procedure until all steps are remembered before performing the skill
• separating studying the declarative knowledge from training the procedural skill
 • we can then also test the flexibility and robustness of the skill
• Further research is needed to test whether teaching sterility concepts separately from the procedure itself is needed

REFERENCES