Teaching sterile skills in anesthesia
Is providing context helpful for robust skill acquisition?

Fokie Cnossen¹, Katja Paul¹, Roelof Lettinga² & Götz Wietasch²
¹ Cognitive Modeling group, Institute of Artificial Intelligence and Cognitive Engineering, University of Groningen
² Anesthesiology, University Medical Centre Groningen.
¹ cnossen@rug.nl

Epidural anesthesia
- Relaxed relief method during childbirth and during and after operations
- As it is an invasive technique, it carries the risk of contamination
- Residents basically learn the procedure in the clinic
- Even after 4 years of training, residents still make sterility errors (Friedman et al., 2008)
- Sterility is a complex concept
- Sterility is not visible

Present training is not optimal
- Medical skills should be flexible and robust (Cnossen, 2015)
 - Flexible: applicable outside context in which it was learned
 - Robust: resistant to stress and workload
- Present training of complex procedures often focuses on the order of the steps of the procedure
- This makes learning vulnerable
 - Steps may be forgotten and skipped
 - Steps may be performed in the wrong order
- In practice there is no fixed order of steps
 - Different procedures have different steps, equipment, medication
 - Not all steps have to be performed in a strict order
 - In practice, every supervisor has their own preferred order and method
- Focus on the steps in the procedure during learning
 - Does not lead to flexibility in the skill
 - What if a step cannot be performed
 - Does not lead to robustness of the skill
 - In stress situation memory errors can happen

Different approach: focus on the context
- Taatgen, Huss, Dickison & Anderson (2005) showed that in teaching flexible cognitive skills teaching materials should draw attention to
 - The pre-conditions of actions (knowing when)
 - The post-conditions of actions (knowing the effects of actions in the environment)
- They found that Boeing pilots were more flexible and the skill was more robust after learning with a focus on these environmental cues
 - Learners can then rely on environmental cues rather than keeping track of all the executed steps in their mind
- We applied this approach to training preparing and executing epidural anesthesia

Method
- 37 medical students participated in simulation study
- Skill preparation of epidural anesthesia
 - 14 steps
 - 10-15 minutes
- Procedure
 - Video instruction of procedure
 - Studying description of steps on paper
 - Non-sterile actions were written in red
 - Sterile actions were written in green
 - 15 minutes practice with materials and instruction sheets
 - Test: perform the procedure with an "non-sterilising nurse"

Instructions
- List condition
 - 34 steps in chronological, strict, order
- Context condition
 - 34 steps arranged in sets
 - Order within set was not important
 - Photographs
 - Pre-conditions of a set of actions ("before")
 - Post-condition ("after")
 - Description of the actions to be performed within the set

List Condition
- R. Kremersten
 - Je eet Steriel Maken:
 - 7. Desinfecteer je handen
 - 8. Trek de steriele jas aan
 - 9. Trek de handschoenen aan
- Standaard voor bereid maken van een epiduraal noodtoestand
- Context Condition
 - Material Op Tafel Positioneren:
 - 10. Pakken in blauwe bak
 - 11. Kleine bakje boven epiduraalnaaldset
 - 12. Grote bakje, voor roze Chlorhexidine, in andere bovenhok
 - 13. Geef de gat-dief met de 7 mathematical

Main results
- Sterility errors
- Order errors
- Clinically relevant errors

Discussion
- Contrary to expectation the context condition did not result in robust skill
 - This stands in contrast to Taatgen et al's study
- Context condition even resulted in more sterility errors than the list condition
- Why?
 - Environmental cues
 - In epidural anesthesia procedure, there are also many environmental cues in list condition
 - Boeing pilots used complicated system with low usability, so possibly profited more from context
 - Memory load
 - Context condition possibly imposed larger memory load on participants
 - The known advantages of the context method were at least partly offset by the disadvantages of this high memory load
- Sterility
 - Apparently, sterility errors are difficult to prevent.
 - Even though we explicitly noted which steps of the procedures were sterile or not
 - The participants in the experiment were probably unfamiliar with the concept of sterility
- Sterility is a complex concept
 - It is not obvious for example that crossing a sterile workspace with (unsterile) bare underarms is not sterile

Conclusions & recommendations
- Complex medical skills involve many steps and induce a high memory load to learn them
 - Providing context when teaching a procedure may therefore not necessarily lead to better skill acquisition than learning the steps
 - But the resulting skill may be more flexible and robust after context-learning
 - Further research is needed to test whether it may be advantageous to first study the steps in a procedure until all steps are remembered before performing the skill
 - Separating studying the declarative knowledge from the procedural skill
 - We can then also test the flexibility and robustness of the skill
- Further research is needed to test whether teaching sterility concepts separately from the procedure itself is needed

References