Teaching sterile skills in anesthesia
Is providing context helpful for robust skill acquisition?

Fokie Cnossen¹, Katja Paul¹, Roelof Lettinga² & Götz Wietasch²
¹ Cognitive Modeling group, Institute of Artificial Intelligence and Cognitive Engineering, University of Groningen
² Anesthesiology, University Medical Centre Groningen
¹cnossen@rug.nl

Epidural Anesthesia
- Pan relief method during childbirth and during and after operations
- As it is an invasive technique, it carries the risk of contamination
- Residents basically learn the procedure in the clinic
- Even after 4 years of training, residents still make sterility errors (Friedman et al., 2008)
- Sterility is a complex concept
- Sterility is not visible

Present Training Is Not Optimal
- Medical skills should be flexible and robust (Cnossen, 2015)
 - Flexible: applicable outside context in which it was learned
 - Robust: resistant to stress and workload
- Present training of complex procedures often focuses on the order of the steps of the procedure
 - This makes learning vulnerable
 - steps may be forgotten and skipped
 - steps may be performed in the wrong order
- In practice there is no fixed order of steps
 - different procedures have different steps, equipment, medication
 - not all steps have to be performed in a strict order
 - in practice, every supervisor has their own preferred order and method
- Focus on the steps in the procedure during learning
 - does not lead to flexibility in the skill
 - what if a step cannot be performed
 - does not lead to robustness of the skill
 - in stress situation memory errors can happen

Different Approach: Focus on the Context
- Taatgen, Huss, Dickson & Anderson (2005) showed that in teaching flexible cognitive skills teaching materials should draw attention to
 - the pre-conditions of actions (knowing when)
 - the post-conditions of actions (knowing the effects of actions in the environment)
- They found that Boeing pilots were more flexible and the skill was more robust after learning with a focus on these environmental cues
- Learners can then rely on environmental cues rather than keeping track of all the executed steps in their mind
- We applied this approach to training preparing and executing epidural anesthesia

Method
- 37 medical students participated in simulation study
- Skill preparation of epidural anesthesia
 - 14 steps
 - 10-15 minutes

Procedure
- Video instruction of procedure
- Studying description of steps on paper
 - non-sterile actions were written in red
 - sterile actions were written in green
- 15 minutes practice with materials and instruction sheets
- Test: perform the procedure with an "non-obstructive nurse"

Instructions
- List condition
 - 34 steps in chronological, strict, order
- Context condition
 - steps arranged in sets
 - order within set was not important
 - photographs
 - pre-conditions of a set of actions ("before")
 - post-condition ("after")
 - description of the actions to be performed within the set

List Condition

Context Condition

Error

Wenner: Ha jy een borst bent
Endosnare
- Naald in blauwe bakje
- Handschoen in blauwe bakje
- Grote bakje voor roze chloorhexidine in andere bovenhoek
- Goed de vlecht van de 2 persoon

Main Results

primitive_spin

Context

List

Sterility errors

Order errors

Clinically relevant errors

Discussion
- Contrary to expectation the context condition did not result in robust skill
 - This stands in contrast to Taatgen et al’s study
 - Context condition even resulted in more sterility errors than the list condition

Why?
- Environmental cues
 - In epidural anesthesia procedure, there are also many environmental cues in list condition (eg syringe filled or empty?)
 - Boeing pilots used complicated system with low usability, so possibly profited more from context
- Memory load
 - Context condition possibly imposed larger memory load on participants
 - The known advantages of the context method were at least partly offset by the disadvantages of this high memory load

Sterility
- Apparently, sterility errors are difficult to prevent, even though we explicitly noted which steps of the procedures were sterile or not
- The participants in the experiment were probably unfamiliar with the concept of sterility
- Sterility is a complex concept
 - it is not obvious for example that crossing a sterile workspace with (unsterile) bare underarms is not sterile

Conclusions & Recommendations
- Complex medical skills involve many steps and induce a high memory load to learn them
- Providing context when teaching a procedure may therefore not necessarily lead to better skill acquisition than learning the steps
- But the resulting skill may be more flexible and robust after context-learning
- Further research is needed to test whether it may be advantageous to first study the steps in a procedure until all steps are remembered before performing the skill
- Separating studying the declarative knowledge from training the procedural skill
- We can then also test the flexibility and robustness of the skill
- Further research is needed to test whether teaching sterility concepts separately from the procedure itself is needed

References