Molecular dynamics simulations in rational protein design
Crevel, Lucia Deborah

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2001

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 01-10-2019
CHAPTER TWO

DSC STUDIES OF FUSARIUM SOLANI PISI CUTINASE: CONSEQUENCES FOR STABILITY IN THE PRESENCE OF SURFACTANTS

ABSTRACT

The application of cutinase from Fusarium solani pisi as a fat-stain removing ingredient in laundry washing is hampered by its lack of stability in the presence of anionic surfactants. We postulate that the stability of cutinase towards anionics can be improved by mutations increasing its temperature stability. The thermal unfolding, as measured with DSC appears to be irreversible, though the thermograms are more symmetric than predicted by a simple irreversible model. In the presence of taurodeoxycholate (TDOC), the unfolding temperature is lower and the unfolding is reversible. We conclude that an early reversible unfolding intermediate exists in which a number of additional hydrophobic patches are exposed to the solvent, or preferentially are covered with TDOC. Improvement of the stability of cutinase, with respect to both surfactants and thermal denaturation, should thus be directed toward the prevention of exposure of hydrophobic patches in the early intermediate.

Chapter 2

2.1. INTRODUCTION

Cutinases are enzymes with a molecular mass of 22-25 kDa that supposedly hydrolyse ester bonds of the cutin polymer in the plant cell wall. They are serine esterases, also able to hydrolyse a wide variety of synthetic esters and triacylglycerols.\(^1,2\) As cutinase is an efficient catalyst both in solution and at the water-lipid interface, it is potentially suitable for lipid stain removal applications in the detergent industry.\(^3\) The implementation of the enzyme as a fat-stain removing ingredient in laundry washing is hampered by its unfolding in the presence of anionic surfactants. We postulate that the stability of cutinase towards anionics can be improved by mutations increasing its temperature stability. The structure\(^4-6\), flexibility\(^7-9\), and the stability (as reviewed in reference 10) of \textit{Fusarium solani pisi} cutinase have been studied extensively, which makes it particularly suitable to test this hypothesis.

The first measurements of the thermal stability of cutinase in solution showed that formation of aggregates was one of the processes leading to thermal inactivation. Aggregation decreased rapidly above pH 7, and was not affected by salt concentration or by the presence of metal ions.\(^2\) The formation of aggregates is also found for NMR samples of cutinase above a concentration of 0.5 mM. After a delay, depending on the conditions but hard to predict precisely, the sample suddenly becomes turbid, and then the aggregate precipitates. After aggregation, 0.5 mM is still left in solution (personal communication Anneke Groenewegen).

The first thermal stability study reported that cutinase displays activity till 85 °C.\(^2\) Other authors found unfolding temperatures ranging from 39 to 70 °C, depending on method applied and solvent used.\(^3,11,12\) Several studies have been performed on the immobilisation of cutinase in reversed micelles, or on solid supports.\(^10\) Immobilisation often increases the thermostability of the enzyme as the interaction of the support with the enzyme leads to a more rigid conformation of the enzyme.\(^13\) Moreover, immobilisation is of interest with regard to the applications to biocatalysis in organic media.

Pocalyko and Tallman\(^14\) have studied the adverse effect of sodium dodecylsulphate (SDS - an anionic surfactant, figure 2.1) on the activity and stability of cutinase, reported earlier by Kolattukudy.\(^1\) They suggested that SDS causes local conformational changes in the active site that result in inhibition, partial reversible unfolding, and subsequent inactivation. They showed that these changes could be reversed by the addition of Triton X-100 (non-ionic surfactant). This is accompanied by an irreversible loss of activity, more slowly than the initial loss. Similarly, Egmond et al found that the description of the unfolding process in the presence of LDS, at concentrations above 0.5 mM, requires at least two first-order rate constants.\(^15\) They also found that refolding can be achieved by addition of detergents that are inert toward cutinase. In addition, Egmond and van Bemmel found that the inactivation is preceded by a specific interaction between the anionic surfactant and the surface of the protein. For this process, the location of the positive charge as well as the distribution of hydrophobicity over the surface of the enzyme is important: it should be complementary to the negatively charged head group and the long, extended tail of the anionic surfactants.\(^16\) One of the
possible recognition sites is the substrate binding site. This may explain the inhibition of cutinase by SDS, without effecting the stability.

Sodium taurodeoxycholate (TDOC, figure 2.1, CMC = 3.0 mM), an anionic surfactant with a bulky tail, has been shown to be applicable in experimental studies requiring high enzyme concentrations without aggregation. NMR T_2 relaxation measurements have been performed on TDOC in presence and absence of native cutinase (unpublished results). The measurements indicate that in the presence of the enzyme the mobility of the hydrophobic part of TDOC is reduced more than that of the taurine moiety. This indicates that TDOC binds at hydrophobic sites of the protein.

Differential scanning calorimetry (DSC) is a powerful technique to characterize temperature-induced conformational changes in proteins.17-21 An important advantage of this technique is that the unfolding temperature and enthalpy can be determined directly and do not have to be derived e.g. from activity measurements using spectroscopic methods at different temperatures.

Here, we present DSC measurements for cutinase to get a better picture of the unfolding behaviour of cutinase. We will discuss why unfolding as measured by DSC is a good model for the unfolding due to anionic surfactants.
2.2. MATERIALS AND METHODS

2.2.1. Enzyme

Recombinant cutinase was produced in *Saccharomyces cerevisiae* and purified as described previously.22,23 The enzyme was dissolved in 10 mM Tris buffer with 40 mM NaCl at pH 9.0 at a concentration of ≈1.0 mg ml-1. Protein concentrations were determined spectrophotometrically at 280 nm, using a molar extinction coefficient of 0.713 M-1cm-1. The DSC measurements at different scan rates were performed with one stock solution. The measurements in the presence of taurodeoxycholate (TDOC) were performed in the same buffer with 5.0 mM Na TDOC.

2.2.2. Differential Scanning Calorimetry

All DSC measurements were performed on a MCS differential scanning calorimeter from Microcal (Northampton, MA) with buffer in the reference cell under a 1.5 bar nitrogen pressure. Samples were degassed by stirring gently under vacuum prior to measurements. Protein unfolding events were recorded between 5 and 85 °C with a scan rate of 1.0 K min-1, unless indicated otherwise, and 15 s filter time. In order to check for reversibility of the observed transitions, rescans of the samples were performed after cooling to 5 °C. The scans were analysed after subtraction of an instrument baseline recorded with buffer in both cells using the software package ORIGIN (Microcal).

2.2.3. Simulation of irreversible models

Mathematica (Wolfram research) was used for analysis of the irreversible models. For curve fitting, only those experimental data were used that had c_p^{ex} values greater than a threshold, taken as twice the standard deviation calculated from points at temperatures less than 46 °C. At scan rates of 0.5, 1.0, and 2.0 K min-1, 88, 47, and 24 data points remained as a result of standard deviations of 0.2, 0.2, and 0.08 kJ mol-1 K-1, respectively. The parameters were fitted by minimising simultaneously the sum of the squared differences between the three experimental and simulated curves. The squared differences from the curve of the 2.0 K min-1 scan rate were given a five times larger weight than the squared differences of the curves of the two other scan rates.

2.3. THEORY

Corrected DSC curves are expressed as the excess heat capacity per mole of protein c_p^{ex} as a function of time, measured at a given constant scan rate ν. The total absorbed heat $Q(T)$ is defined as the integral of c_p^{ex} from a low temperature (here 45 °C) to T. The total absorbed heat over the full transition is the unfolding enthalpy ΔH. The temperature at which $Q(T) = 0.5\Delta H$ is called the apparent melting temperature T_{app}.24 The temperature at which the population of native and unfolded protein are equal if the
DSC studies of cutinase

folding process is a two-state reversible process. This is not necessarily equal to the temperature at which \(\epsilon_p^{\text{ex}} \) is maximal, which is indicated by \(T_{\text{max}} \).

Protein unfolding can be either reversible or irreversible. The simplest realistic model which includes both possibilities comprises two steps: (1) reversible denaturation of the native protein (N) with an equilibrium constant \(K_{\text{eq}} = k_1/k_2 \) to yield an unfolded, or partially unfolded state (U); and (2) irreversible alteration of the (partially) unfolded state\(^{17}\) with a rate constant \(k_3 \) to produce the final state (F), which is unable to fold back to the native protein. This model can be depicted as:

\[
\begin{array}{ccc}
N & k_1 & k_3 \\
\rightleftharpoons & U \\
k_2 & & F
\end{array}
\]

and is known as the Lumry-Eyring model.\(^{25}\) The possible processes enforcing the irreversible step, like aggregation, autolysis, chemical alteration of residues, have been reviewed by Klibanov and Ahern.\(^{26,27}\) Depending on the constants \(k_2 \) and \(k_3 \) two extreme cases may be identified:

- \(k_3 \ll k_2 \): The unfolding is a two-state reversible process. Detailed information about the energetics and mechanism of unfolding can be obtained.\(^{28,29}\) The Gibbs free energy (\(\Delta G = G_U - G_N \)) is related to the equilibrium constant \(K_{\text{eq}} \) by \(\Delta G = -RT \ln K_{\text{eq}} \), and may be expressed as: \(\Delta G = \Delta H - T \Delta S \), where the entropy term (\(\Delta S \)) favours the unfolded structure and the enthalpy term (\(\Delta H \)) favours the native fold;

- \(k_3 \gg k_2 \): The unfolding is a two-state irreversible process.\(^{30,31}\) Equilibrium thermodynamics analysis is not applicable, and only the unfolding enthalpy can be measured. It is generally assumed that the enthalpy change from U to F is negligible compared to that from N to U.

2.3.1. Two-state reversible unfolding

The two-state reversible unfolding model is given by:

\[
\begin{array}{ccc}
N & k_1 & k_3 \\
\rightleftharpoons & U \\
k_2 & & F
\end{array}
\]

Experimentally, the reversibility of unfolding is verified in a rescan. For a fully reversible process, the DSC thermograms for the first scan and the rescan should show identical transitions.

The fraction unfolded protein \(x \) is proportional to the integrated heat capacity:

\[
Q(T) = \Delta H \cdot x(T)
\]
Chapter 2

For slow scan rates, N and U are always in equilibrium and $x(T)$ is determined by the equilibrium constant $K(T)$:

$$K(T) = \frac{x}{(1-x)} = \exp \left(-\frac{\Delta G}{RT} \right)$$

(2.4)

The apparent van't Hoff enthalpy ΔH_{vH} can be found by plotting $\ln K(T)$ versus $1/T$. For a fully reversible unimolecular two-state process, ΔH_{vH} equals the total absorbed heat ΔH^{17} for reversible processes with intermediate states smaller values are found,\(^{32}\) while for irreversible processes ΔH_{vH} can be considerably larger than ΔH.

The shape of the DSC transition depends on the scan rate v when v/k, where $k = k_1 + k_2$, reaches values comparable to the width of the transition. From the rate equations it follows that

$$x = x_{eq} - \left(\frac{v}{k} \right) \frac{dx}{dT}$$

(2.5)

This implies that the transition curves shift from the ideal equilibrium curve ($v = 0$) to higher temperatures, for small scan rates approximately as:

$$x(T) = x_{eq} \left(T + \frac{v}{k} \right)$$

(2.6)

The shift should be proportional to v. Because of the temperature dependence of k the curves also become steeper and the apparent van't Hoff heats increase with v.

2.3.2. Two-state irreversible unfolding

The two-state irreversible model is given by:

$$N \rightarrow F$$

(2.7)

where the first-order rate constant k can be identified with k_1 of equation (2.1). In this case all molecules in the native state are irreversibly unfolded in the final state. The total absorbed heat now equals the enthalpy change from N to F.

A sensitive test of this model is the derivation of $k(T)$ from scans at various scan rates. From the kinetic equation one derives:\(^{30}\)
DSC studies of cutinase

\[k(T) = \frac{v c_p^{ex}(T)}{\Delta H - Q(T)} \quad (2.8) \]

For this model to hold, there must be agreement between the values of \(k \) calculated from DSC transitions obtained at different scan rates. Plotting \(\ln k \) versus \(1/T \) should yield overlapping curves with the same slope, from which an apparent activation energy can be derived.

The shape of the DSC transition follows from integration of the kinetic equation and is given by:31

\[c_p^{ex} = \frac{k(T)\Delta H}{v} \exp \left(-\frac{1}{v} \int_{T_o}^{T} k(T) \, dT \right) \quad (2.9) \]

Assuming Arrhenius behaviour for \(k(T) \) this equation can be used to simulate the curves for comparison with experiment.

2.4. RESULTS AND DISCUSSION

2.4.1. Unfolding behaviour of cutinase

Figure 2.2 shows the DSC transition of *Fusarium solani pisi* cutinase. This thermogram was recorded at a pH of 9.0 in 10 mM Tris buffer and 40 mM NaCl, a protein concentration of 1.0 mg ml\(^{-1}\) and a scan rate of 1.0 K min\(^{-1}\). Under these conditions the \(T_{max} \) of cutinase is 54.4 °C. The thermogram shows a strongly exothermic process above 65 °C which is likely to be due to aggregation and precipitation of unfolded protein as is visible from the turbidity of the sample after heating. That the unfolding is completely irreversible is confirmed by the rescan after heating to 61 °C, shown in the insert of figure 2.2. If a rescan from \(T_{max} \) is performed a similarly shaped thermogram is measured where the apparent enthalpy is halved, corresponding to the unfolding of the half of the molecules not irreversibly unfolded in the first scan.

The \(T_{max} \) for this experiment is higher than the one of 50.1 °C at a pH of 9.6 determined through UV absorbance measurements, with a protein concentration of 0.67 mg ml\(^{-1}\) and lower scan rate.\(^{11}\) This difference can be readily explained, as the unfolding temperature of proteins depends strongly on the pH, the salt concentration in solution and the scan rate at which the measurements have been carried out. Petersen et al measured \(T_{max} \) as a function of pH and found an optimum \(T_{max} \) at a pH of approximately 8.8.\(^{12}\) Activity measurements at a pH of 7.5 and a concentration of 0.1 mg ml\(^{-1}\), indicated that the enzyme is stable up to 70 °C\(^3\) or even up to 85 °C.\(^2\) In general, the use of activity measurements is expected to yield higher values for \(T_{max} \) because actually the stability of the protein-substrate complex is measured.
Melo et al.11 also found irreversible unfolding, but they did not find aggregation despite the fact that they did their determinations with a comparable protein concentration. This difference can be explained by the experimental set-up, or the use of cutinase produced in \textit{E. coli}. The extra N-terminal tail of that construct2 lowers the proteins tendency towards aggregation (personal communication Anneke Groenewegen). Using UV-VIS and polarisation-fluorescence measurements, aggregation of cutinase without tail was observed directly (personal communication Hans Meder).

Figure 2.3 shows the baseline-corrected scans at three scan rates. Table 2.1 summarises some properties of these scans, including the \textit{apparent van t Hoff enthalpies} of each curve. The values of ΔH should be the same for the three scans; the differences are probably due to the arbitrariness of the baseline correction. Both the asymmetric shape of the thermograms and the displacement of the T_{max} with different scan rates show that the thermal unfolding is under kinetic control. This is in agreement with the measurements done by Petersen and co-workers.12 The \textit{apparent van t Hoff enthalpies} are more than twice as large as ΔH and do not increase with scan rate. This is inconsistent with any reversible model.
DSC studies of cutinase

Figure 2.3: DSC transitions for Fusarium solani pisi cutinase at three different scan rates: 0.5 K min\(^{-1}\) (full line), 1.0 K min\(^{-1}\) (dotted line) and 2.0 K min\(^{-1}\) (dashed line).

Table 2.1: Properties of the baseline-corrected scans of Fusarium solani pisi cutinase at three scan rates and in the presence of TDOC

<table>
<thead>
<tr>
<th>scan rate (K min(^{-1}))</th>
<th>(T_{max}) (°C)</th>
<th>(T_{app}) (°C)</th>
<th>(\Delta H) (kJ mol(^{-1}))</th>
<th>(\Delta H^{\text{vH}}) (kJ mol(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>53.4</td>
<td>53.3</td>
<td>398</td>
<td>910</td>
</tr>
<tr>
<td>1.0</td>
<td>54.3 ± 0.2</td>
<td>54.2 ± 0.3</td>
<td>434 ± 17</td>
<td>888 ± 64</td>
</tr>
<tr>
<td>2.0</td>
<td>55.2</td>
<td>55.1</td>
<td>443</td>
<td>840</td>
</tr>
<tr>
<td>1.0 in the presence of TDOC</td>
<td>47.5</td>
<td>46.6</td>
<td>386</td>
<td>510</td>
</tr>
</tbody>
</table>

The observed irreversibility leaves a two-state irreversible model (equation (2.7)) as the simplest model. A first test of this model is that \(k(T)\) should follow equation (2.8) at all scan rates. This is shown in figure 2.4, where \(k(T)\) is plotted logarithmically versus the reciprocal absolute temperature. There is a reasonable overlap of the three curves. The fitted line corresponds to
Figure 2.4: The Arrhenius plot for Fusarium solani pisi cutinase at three different scan rates. Experimental values are indicated for 0.5 K min⁻¹ (circles), 1.0 K min⁻¹ (squares) and 2.0 K min⁻¹ (stars). The full line corresponds to a least square fit to all the experimental value. At the three scan rates only k values corresponding to the thermal effects higher than 5% or lower than 95% of the total unfolding heat were used to limit the effect of the relative higher uncertainty at the beginning and the end of the transition.

\[
k(T) = k_0 \cdot \exp \left(-\frac{E_{\text{app}}}{R} \left(\frac{1}{T} - \frac{1}{T_0}\right)\right)
\]

(2.10)

with \(k_0 = 3.5 \times 10^{-4}\) min⁻¹ for \(T_0 = 318\) K, and \(E_{\text{app}} = 670\) kJ mol⁻¹.

This seems in agreement with a two-state irreversible model, but if we plot the theoretical melting curves for this process (equation (2.9)), we find that the experimental curves are more symmetric than the theoretical ones (figure 2.5). Values arrived at for the best fit were \(\Delta H = 416\) kJ mol⁻¹, \(k_0 = 4.0 \times 10^{-4}\) min⁻¹ and \(E_{\text{app}} = 678\) kJ mol⁻¹. The simulated curves are too asymmetric, even if fitted one by one rather than the three together, indicating that the process is more complex than a simple first-order two-state irreversible process. It is likely that a partly reversible intermediate unfolded state exists. If the exothermic reaction that takes place during the unfolding, as suggested from the increase of \(\Delta H\) with increasing scan rates in table 2.1, is included in curve fitting, then
the shape of the curve is even harder to fit to the experimental data. In assessing the validity of the model, it should be realised that the accuracy of the tails of the $c_p^{ex}(T)$ curves is rather low because of the arbitrariness of the baseline correction. This applies in particular to the high T-tail which is influenced by the onset of the thermal effects of aggregation.

We therefore conclude that the unfolding process is more complex and involves at least one intermediate state as in the Lumry-Eyring model. The most likely situation is that there is a reversible unfolding to an intermediate state which is subject to a further irreversible process. Measurement at two times lower concentration gave the same results within experimental error (not shown), in line with the process being unimolar. The first intermediate state is probably a short living state near to the native state, as it is not visible in the thermograms and because a rescan from the T_{max} shows that all the unfolded molecules are already irreversibly unfolded. The irreversible process will be followed by an aggregation process, which leads to a more complex reaction than the Lumry-Eyring model. Further, the unfolding is complicated by the fast aggregation of the irreversible unfolded state.
2.4.2. Unfolding in the presence of TDOC

When 5.0 mM TDOC is added to the cutinase solution before heating, the transition temperature decreases to 47.5 °C (see figure 2.6 and table 2.1). TDOC apparently stabilizes the unfolded state relative to the folded state. The process is completely reversible when the sample is cooled down directly after reaching 55 °C, but not when the maximum temperature during the measurement is higher. The ΔH of the unfolding is comparable with the measurements without TDOC, the ΔH^{unf} is however lower compared to the previous measurement but still larger than ΔH, indicating that the process is not a unimolecular two-state reversible process. The difference between the T_{max} and T_{app} also indicates that the process is not a unimolecular two-state reversible unfolding. Here TDOC probably slows down the irreversible unfolding of the unfolded molecules, allowing them to fold back into the native structure. Above 55 °C the process becomes partly irreversible. In none of these experiments, aggregation is visible as turbidity in the sample. Probably another irreversible process than the aggregation without TDOC takes place, e.g. the coalescence of micelles.
DSC studies of cutinase

Figure 2.6 displays, together with the experimental thermogram, the theoretical melting curve for a two-state reversible process. Again, it shows that the experimental curve is less symmetric than the theoretical one. The shape of the curve may be explained by the co-operative process that takes place by the binding of TDOC at extended hydrophobic patches, which are present at the surface of the unfolded molecules.

2.5. CONCLUSION

The most simple mechanism of unfolding for cutinase in accordance with the experimental data are:

\[
N \leftrightarrow [U_1] \rightarrow U_2 \rightarrow \text{aggregate} \tag{2.11}
\]

The native state (N) irreversibly unfolds to state \(U_2 \) with a short-living on track intermediate unfolded state \(U_1 \). The unfolded state \(U_2 \) subsequently aggregates to a final state. The thermograms show only the transition of \(U_1 \) to \(U_2 \). The unfolded state \(U_1 \) is a short living state and is near to the native state as it is only indirectly inferred from the thermograms. We have not been able to detect this intermediate by neither DSC, CD, fluorescence or NMR (unpublished data).

In the presence of TDOC, the unfolding temperature is lower and the formation of \(U_2 \) becomes reversible. Above 55 °C, the unfolding remains irreversible. The most simple unfolding mechanism for cutinase in the presence of TDOC is thus:

\[
N \leftrightarrow [U_1] \leftrightarrow U_2 \xrightarrow{>55^\circ C} F \tag{2.12}
\]

In all states the protein is interacting with a number of TDOC molecules, which is not necessarily the same. The early intermediate \(U_1 \) is relatively more stabilized by this than \(U_2 \), as shown by the lower value of \(\Delta H \). However, the transition state between them is even more stabilized than \(U_1 \), as indicated by the lower \(T_m \). Apparently its stabilization with respect to \(U_2 \) is large enough to yield a substantial backward reaction.

In the same vein, interaction of both intermediates and the transition state with SDS or SDS/Triton X-100 mixtures will alternately their relative stabilities. Moreover, the binding of SDS in the lipid binding site may give inhibition, but also stabilization against unfolding.

Though this work did not elucidate all details of cutinase unfolding, it made clear the existence of an early intermediate. It is most likely that this differs from the native state by loosening one or more loops at the surface, creating additional hydrophobicity.

The avalanche-type aggregation of the protein at high concentrations can be explained by the coalescence of hydrophobic patches of colliding molecules of the unfolding in-
termediate U_1. As the latter state is near to native state, a certain fraction of the molecules will be in that state at temperatures lower than T_m. As soon as two molecules dimerise, the unfolded state of the molecules gets locked. If other patches are exposed in this dimer, it forms the nucleus for the further aggregation process. At higher concentrations, the concentration of U_1 is higher too, collisions are more frequent and hence the chance of forming dimers increases.

The first step in the mechanism of unfolding in the presence of surfactants or by increased temperature is similar: exposure of additional hydrophobic surface, which gives rise to attractive interactions with surfactants or other unfolded molecules at high concentration, and eventually to unfolding.

Improvement of the stability of *Fusarium solani pisi* cutinase might be achieved by mutations designed to avoid the transient formation of the hydrophobic patches during the motion of the protein. Insight into the internal mobility of the protein on an atomic level is obtained from molecular dynamics (MD) computer simulations. To obtain the early intermediate U_1 in a significant part of the MD runs, one would like to simulate a system where it is populated significantly, like in the presence of a surfactant like TDOC. As it is not straightforward to simulate the enzyme in the presence of anionic surfactants, in computer simulations this mechanism can be mimicked by making the interactions between hydrophobic groups and solvent molecules slightly more favourable. This will increase the hydrophobicity at the surface of the molecule thus increasing the chance of unfolding during the simulation. By monitoring the transient formation of hydrophobic patches, the regions where the unfolding starts are identified and variants can be designed to prevent this.

Acknowledgement

We thank Anneke Groenewegen, Hans Meder and Hans Peters for their help with the supplementary experiments, Gea Schuurman-Wolters for her help with the DSC experiments, Jacob the Vlieg for stimulating discussions, and Carlo van Mierlo and Yves Bollen for sharing their results prior to publication.

REFERENCES

4. Martinez, C., De Geus, P., Lauwereys, M., Matthyssens, G., and Cambillau, C. *Fu-
DSC studies of cutinase

