Computation, Efficiency and Endogeneity in Discrete Choice Models

Zsolt Sándor
RIJKSUNIVERSITEIT GRONINGEN

COMPUTATION, EFFICIENCY AND ENDOGENEITY IN DISCRETE CHOICE MODELS

Proefschrift

door

Zsolt Sándor

geboren op 9 december 1968 te Odorheiu Secuiesc (Romania)
Acknowledgments

The first step towards writing this thesis was made by my supervisors Tom Wansbeek, Michel Wedel and Peter Kooreman, who decided to hire me for this project. They continued having a great impact on the thesis afterwards with their valuable advice. Tom Wansbeek followed closely my work and contributed to virtually all chapters of the thesis. Michel Wedel co-authored chapters 6 and 7 and had very useful remarks on other topics of the thesis as well. Peter Kooreman contributed with his comments especially to chapters 2, 4 and 5. I am very much indebted to all three of them.

I thank professors Paul Bekker, Vassilis Hajivassiliou and Frank Verboven for their willingness to be in the reading committee of my thesis and for making the thesis defense possible by assessing the manuscript favorably.

I am grateful to Péter András for being the co-author of chapter 3 and for useful discussions about various topics of the thesis. Among my colleagues Erik Meijer is the one whom I asked the most questions on various problems related to the thesis. I thank him for his answers and for the discussions arising from the questions. I am grateful to Ulf Böckenholt and Ton Steerneman for discussions about certain specific topics of the thesis.

In various stages of my work I benefitted from the help of many colleagues. Among them I mention Chris Bojke, Diptesh Ghosh, Rinus Haaijer, Csilla Horváth, Erik Leertouwer, Ruud Koning, Thijs Knaap, Bert Smid, Mark Thissen and Kristine Vlagsma-Brangule. I acknowledge the assistance of Wouter Elshof, Ewald Hoppen and Josephine Woltman-Elpers at different stages of my project.
Contents

1 Introduction ... 1

2 Multinomial Discrete Choice Models 5
 2.1 Introduction .. 5
 2.2 The standard logit 6
 2.2.1 Model specification 6
 2.2.2 Log-likelihood and first-order properties 9
 2.3 The mixed logit 10
 2.3.1 Model specification 10
 2.3.2 Log-likelihood and first-order properties 13
 2.4 The probit ... 14
 2.4.1 Model specification 15
 2.4.2 Estimation of the probabilities 16

3 Monte Carlo and Quasi-Monte Carlo Methods 19
 3.1 Introduction .. 19
 3.2 Sampling methods 21
 3.2.1 Preliminaries 21
 3.2.2 Samples Based on orthogonal arrays 22
 3.2.3 Randomized (t, m, s)-nets 24
 3.2.4 Finite-digit randomization of (t, m, s)-nets .. 26
 3.2.5 Randomized Halton sequences 28
 3.2.6 Comparison, existence and construction 30
 3.3 Properties of the estimators 34
 3.3.1 ANOVA decomposition 35
 3.3.2 Intuitive arguments using lattice sampling ... 37
 3.3.3 Results on the variances 40
 3.4 Simulation results 42
 3.4.1 The samples 43
CONTENTS

3.4.2 Simulation design 43
3.4.3 Results ... 44
3.5 Conclusions and discussion 49
3.6 Appendix: Tables and figures 52

4 Market Equilibrium Models 59
 4.1 Introduction 59
 4.2 Demand .. 60
 4.2.1 Remarks on normalization 64
 4.3 Supply .. 64
 4.3.1 The standard logit case 67
 4.4 Price equilibrium 70
 4.4.1 Useful lemmas 72
 4.4.2 The standard logit case 75
 4.4.3 Some negative results 85
 4.4.4 Remarks on the mixed logit case 88
 4.5 Summary and conclusions 90

5 Estimation of Market Equilibrium Models 93
 5.1 Estimation by GMM 93
 5.1.1 The estimation procedure 94
 5.1.2 Asymptotic properties 96
 5.1.3 Computing the asymptotic variance 99
 5.2 Instruments 102
 5.2.1 Optimal instruments 102
 5.2.2 Instruments used by BLP 105
 5.3 Efficient estimation 106
 5.3.1 Remarks 110
 5.4 A Monte Carlo study 112
 5.4.1 The estimators 113
 5.4.2 Results 115
 5.5 Conclusions 120
 5.6 Appendix: Tables 121

6 Bayesian Designs Using Managers’ Prior Beliefs 123
 6.1 Introduction 123
 6.2 Choice designs 125
 6.2.1 Eliciting and using prior information 128
 6.2.2 Constructing the design 129
 6.2.3 Design generating algorithms 131
6.3 Comparisons and Monte Carlo studies 132
 6.3.1 Comparison with Huber and Zwerina (1996) 132
 6.3.2 Monte Carlo studies ... 133
6.4 Empirical application .. 136
 6.4.1 Comparison of design efficiency 137
 6.4.2 Comparison of predictive validity 139
6.5 A simple numerical example 140
6.6 Conclusions and discussion 144
6.7 Appendix: Tables and figures 146

7 Mixed Logit Designs .. 157
 7.1 Introduction ... 157
 7.2 Designs for the mixed logit 159
 7.2.1 Algorithms for design construction 160
 7.2.2 Adaptations for base alternative designs 161
 7.2.3 Adaptations for designs with three alternatives ... 162
 7.3 Performance of mixed logit designs 162
 7.3.1 The D_M-error ... 164
 7.3.2 Expected RMSE of the estimates 164
 7.3.3 Expected root mean squared prediction error 165
 7.3.4 Simulation results ... 166
 7.4 Conclusions ... 169
 7.5 Appendix: Tables and figures 170

8 Conclusions .. 179

Bibliography .. 182

Index ... 191

Samenvatting (Summary in Dutch) 196