A new synthesis of enantiomerically pure syn-(S)-β-hydroxy-α-amino acids via asymmetric aldol reactions of aldehydes with a homochiral Ni(II)-glycine/(S)-BPB Schiff base complex

Yuri N. Belokon, a,* Konstantin A. Kochetkov, a Nikolai S. Ikonnikov, a Tatiana V. Strelkova, a Syuzanna R. Harutyunyan b and Ashot S. Saghiyan b

a A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 117813, Vavilova 28, Moscow, Russia
b Erevan University, Faculty of Chemistry, Department of Organic Chemistry, Erevan, Manukian 1, Armenia

Received 12 January 2001; accepted 9 February 2001

Abstract—syn-(S)-β-Hydroxy-α-amino acids were synthesised stereoselectively via elaboration of the asymmetric aldol reactions of aldehydes with a chiral Ni(II)-(S)-BPB:glycine Schiff base complex in the presence of equimolar NaH in THF. The stereoselectivity of the reaction was studied as a function of time, the reaction conditions, the nature of the carbonyl compounds and the base used. The synthetic potential of this asymmetric method was demonstrated in the preparation of syn-(S)-β-hydroxy-leucine on a multi-gram scale. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

α-Amino-β-hydroxy acids of differing structures are important components of physiologically active peptides, cyclic peptides (Vancomycin, Cyclosporin, etc.) and enzyme inhibitors. They are also useful intermediates in the synthesis of β-halo-α-amino acids, β-lactams and other important compounds. In addition, there is growing interest in the design and synthesis of novel unnatural homochiral amino acids (including β-hydroxy-α-amino acids) to serve as substitutes for their natural analogues in peptides.

A number of elegant approaches for the synthesis of enantiomerically pure β-hydroxy-α-amino acids, including the use of sugars, electrophilic amination, β-functionalisation of α-amino acids and diastereoselective aldol condensation protocols, have been described. The most synthetically viable strategies developed to date for the stereocontrolled preparation of β-hydroxy-α-amino acids are based on the aldol reaction of homochiral glycine equivalents with carbonyl compounds.

The aldol reaction between carbonyl compounds and the Ni(II) complex 1, which contains homochiral Schiff base ligands formed from glycine and (S)-o-[N-(N′-benzylprolyl)amino]benzophenone ((S)-BPB), is practically attractive since the structure of complex 1 offers the advantage of relatively high C–H acidity of the glycine α-protons, allowing the use of a wide range of weak and strong bases under various conditions. In addition, the chiral auxiliary (S)-BPB is cheap, readily available and recoverable, and can be used repeatedly without any loss of enantiomeric purity and chemical activity. Unfortunately, (S)-1 from commercially available (S)-BPB, according to the published procedures, furnished syn-(R)-β-hydroxy-α-amino acids under easily reproducible thermodynamically controlled conditions, whereas for the synthesis of syn-(S)-β-hydroxy-α-amino acids, the more expensive (R)-BPB had to be employed.

Herein, we describe a new synthetic protocol for the synthesis of syn-(S)-β-hydroxy-α-amino acids, employing (S)-BPB as a recoverable chiral auxiliary.

2. Results and discussion

A preliminary study of the mechanism of the condensation of aliphatic aldehydes with (S)-1 in MeOH at high
reaction pH10 indicated that the reaction had some unusual features. The most salient one was the rearrangement of the intermediate aldol condensation product, where the ionised hydroxyl group of the product substitutes for the ionised carboxyl group in the main coordination plane of the complex. This results in the formation of an ionised intermediate complex (see Scheme 1).10 Kinetic and thermodynamic stereoselectivities were observed in the reaction with the latter favouring syn-(R)-β-hydroxy-α-amino acids, whereas syn-(S)-β-hydroxy-α-amino acids were initially formed.10c Unfortunately, under the experimental conditions it was difficult to stop the reaction at the kinetically controlled stage and within minutes the initial kinetic product was transformed into the thermodynamic product via a series of C–C bond breaking and forming reactions.10c

It was thought that by completing the reaction in aprotic solvents of relatively low dielectric constant the basicity of the intermediate ionised hydroxyl group of the aldol adduct would be increased and its O–Ni bond stabilised. Thus, the rate of equilibration between the diastereoisomeric complexes should decrease favouring the kinetic aldol product, syn-(S)-β-hydroxy-α-amino acid.

The starting material (S)-1 was prepared by a previously described procedure.12 Condensation of 1 with aliphatic aldehydes 2a–2c, and benzaldehyde 2d was carried out in THF at different temperatures. In these reactions, to arrest equilibration between diastereoisomers, the reaction mixture was poured into cold aqueous acetic acid. Reversing the order of addition invariably resulted in the formation of much greater amounts of the (R)-diastereoisomer. The complexes precipitated from the solution and were therefore easily isolated. Diastereoisomeric ratios were estimated either by 1H NMR or by chiral GLC analysis of the amino acids recovered from the complexes after decomposition with aqueous HCl. In addition, CD spectra of the complexes served to assign the absolute configuration of the α-carbon of the amino acid moiety.10 In all cases the diastereoisomeric complex 3, containing syn-(S)-amino acids, was predominantly formed in the reaction and could be separated from the reaction mixture (Table 1). Sodium hydride was found to be the base of choice as it gave better results than both \textit{t}-BuOK and \textit{t}-BuLi (with the ratio of syn-(S)-3a/syn-(R)-3a falling from 60/1 to 7/1 with \textit{t}-BuOK and 5/1 when \textit{t}-BuLi was used); additionally, anti-diastereoisomers formed in the mixture when sodium hydride was not used (Table 1, runs 1, 4 and 5). The effect of temperature on the diastereoisomeric ratio was not straightforward, with a seemingly negative influence on the reactions of 3a–3c (Table 1, runs 1, 2, 3, 8 and 9), but a positive effect in the formation of the benzaldehyde adduct 3d.

The acetone condensation was the most time-sensitive reaction, as extending the reaction by 7 min resulted in the ratio of (S)-3d/(R)-3d decreasing from 30/1 to 2/1 (Table 1, runs 12 and 13). The reaction of acetaldehyde gave the condensation product with a satisfactory ratio of syn-(S)/syn-(R) at 20°C after 3 minutes, whereas lowering the temperature and prolonging the reaction to 15 min resulted in a marked drop in selectivity (Table 1, runs 8 and 9).

Scheme 1.
Table 1. The aldol reaction of carbonyl compounds 2 with chiral Ni(II)-glycine complex 1, using NaH in THF

<table>
<thead>
<tr>
<th>Run</th>
<th>Carboxyl compound</th>
<th>T (°C)</th>
<th>Time (min)</th>
<th>Ratio of syn-(2S)-3/syn-(2R)-3</th>
<th>Yield of syn-(2S)-3 (%)</th>
<th>(S)-Amino acid 4, e.e. (%) (yield from 1 (%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(CH3)2CHCHO (2a)</td>
<td>16</td>
<td>10</td>
<td>60/1</td>
<td>96</td>
<td>95.5 (87)</td>
</tr>
<tr>
<td>2</td>
<td>(CH3)2CHCHO (2a)</td>
<td>-5</td>
<td>35</td>
<td>7/1</td>
<td>75</td>
<td>75 (87)</td>
</tr>
<tr>
<td>3</td>
<td>(CH3)2CHCHO (2a)</td>
<td>-20</td>
<td>180</td>
<td>10/1</td>
<td>80</td>
<td>80 (80)</td>
</tr>
<tr>
<td>4</td>
<td>(CH3)2CHCHO (2a)</td>
<td>20</td>
<td>5</td>
<td>7/1/4</td>
<td>60</td>
<td>60 (60)</td>
</tr>
<tr>
<td>5</td>
<td>(CH3)2CHCHO (2a)</td>
<td>20</td>
<td>10</td>
<td>5/1/1</td>
<td>70</td>
<td>70 (70)</td>
</tr>
<tr>
<td>6</td>
<td>(CH3)2CCHO (2b)</td>
<td>20</td>
<td>13</td>
<td>10/1</td>
<td>80</td>
<td>80 (80)</td>
</tr>
<tr>
<td>7</td>
<td>(CH3)2CCHO (2b)</td>
<td>-12</td>
<td>75</td>
<td>5/1</td>
<td>78</td>
<td>78 (78)</td>
</tr>
<tr>
<td>8</td>
<td>CH3CHO (2c)</td>
<td>20</td>
<td>3</td>
<td>60/1</td>
<td>80</td>
<td>80 (80)</td>
</tr>
<tr>
<td>9</td>
<td>CH3CHO (2c)</td>
<td>20</td>
<td>15</td>
<td>6/1</td>
<td>80</td>
<td>80 (80)</td>
</tr>
<tr>
<td>10</td>
<td>C6H5CHO (2d)</td>
<td>-7</td>
<td>30</td>
<td>20/1</td>
<td>75</td>
<td>75 (75)</td>
</tr>
<tr>
<td>11</td>
<td>C6H5CHO (2d)</td>
<td>20</td>
<td>4</td>
<td>3/2</td>
<td>55</td>
<td>55 (55)</td>
</tr>
<tr>
<td>12</td>
<td>CH3COCH3 (2e)</td>
<td>20</td>
<td>7</td>
<td>30/1</td>
<td>85</td>
<td>85 (85)</td>
</tr>
<tr>
<td>13</td>
<td>CH3COCH3 (2e)</td>
<td>20</td>
<td>14</td>
<td>2/1</td>
<td>70</td>
<td>70 (70)</td>
</tr>
</tbody>
</table>

* The concentration of complex 1 in THF was 0.18 M; the molar ratio of complex 1:NaH = 1:2.1; for details see Section 4.

b Determined by 1H NMR analysis of crude reaction mixture.

c See Section 4 for details of chiral GLC analysis of amino acids 4.

d Before crystallisation of the amino acids 4.

e The yield was determined after separating 1 from the reaction mixture (ratio 3:1 = 6:1).

4. Experimental

4.1. Methods, materials and chemicals

1H NMR spectra were recorded on Bruker WP-200 and 400 instruments (200 and 400 MHz) using CDCl3 as an external standard. NMR data are reported in δ units. The optical rotation measurements were obtained on a Perkin-Elmer 241 polarimeter. Electronic absorption spectra were recorded on a Specord M-40 instrument. CD-spectra were recorded on a JASCO-J-700 spectropolarimeter. The reactions were monitored by TLC on Silufol plates; for the preparative TLC silica gel 60 F254 (Merck) was employed. GLC enantiomeric analyses13 of the amino acids 4a-4e were performed on a Characal-1-Val type phase, by using their N-trifluoroacetyl n-propyl esters. Fused silica capillary column 40 m×0.23 mm ID. Film 0.12 μm. Col. temp.: 160°C for 2a, 2b, 140°C for 2c and 2e, 170°C for 2d. Carrier-gas He: 1.80 bar. All aldehydes and THF (from LiAlH4) were distilled prior to use. Synthesis of 1 was performed as described earlier.12 All reactions were performed under an anhydrous argon atmosphere.

4.2. Aldol reactions of complex 1 with carbonyl compounds

4.2.1. Reaction with 2-methylpropan-1-al 2a. A 1 L flask was flame dried in vacuo and filled with Ar, then charged sequentially with a solution of 1 (40 g, 0.08 mol) in THF (450 mL) and NaH (60% in oil, 3.2 g, 0.08 mmol). The stirred mixture was cooled (solid CO2-Me2CO bath) and degassed by the freeze/thaw technique under Ar. The temperature was raised to 16°C and aldehyde 2a (14.58 mL, 11.56 g, 0.16 mmol) was added. The reaction was monitored by TLC (EtOAc:CHCl3 = 3:1). After 10 min the reaction was quenched by pouring the mixture into 10% AcOH (3 L). The red crystals formed were filtered, washed with water and air-dried to afford near pure 3a (44.26 g, 0.077 mol, 96%, (S)-3a/(R)-3a = 60:1). An analytically pure sample of 3a was obtained by further purification by TLC (EtOAc:CHCl3 = 3:1).

Ni(II)-(S)-BPB/(2S,3R)-2-amino-3-hydroxy-4-methylpentanoic acid Schiff base complex 3a. Mp = 157°C. [α]D28 = +3100 (0.04, CHCl3); 1H NMR (CDCl3): 0.83 (3H, d, J = 6.5 Hz, 1.16 (3H, d, J = 6.9 Hz, 1.65–2.84 (8H, m, Pro-H, γ-CH), 3.86 (1H, m, β-CH), 3.59, 4.43 (2H, AB, J = 12.7 Hz, CH2Ph), 4.13 (1H, d, J = 6.9 Hz, α-CH), 6.67–7.56 (11H, m, ArH), 8.07–8.09 (2H, m, ArH), 8.23–8.25 (1H, m, ArH). Anal. calcd for C31H33N3NiO4: C, 65.29; H, 5.83; N, 7.36. Found: C, 64.9; H, 5.8; N, 7.11%.

4.2.2. Reaction with 2,2-dimethylpropan-1-al (trimethylacetaldehyde) 2b. The reaction was conducted as above starting from complex 1 (3 g, 6 mmol). Reaction time
was 13 min. Yield of crude product 3b was 80% ((S)-3b/(R)-3b = 10:1). The crude complex was dissolved in the minimum CHCl₃ and crystallised under stirring by addition of a small amount of hexane. After several hours the crystals were filtered to afford 3b in 70% chemical yield, ((S)-3b/(R)-3b = 50:1). Complex 3b was further purified by TLC (EtOAc:CHCl₃ = 3:1).

Ni(II)-(S)-BPB/(2S,3R)-2-amino-3-hydroxy-4,4-dimethylpentanoic acid Schiff base complex 3b. Mp = 161°C. [α]D²⁵ = +3020 (0.04, CHCl₃). Lit., 10c mp = 157–159°C. [α]D²⁵ = +3215 (0.04, CHCl₃).

4.2.3. Reaction with ethanal 2c. The reaction was conducted as described above, starting from complex 1 (2 g, 4 mmol) at 20°C. The reaction was complete within 3 min. The reaction was monitored by TLC (CHCl₃; CH₃COCH₃ = 6:1). The yield of crude product 3c was 80% ((S)-3c/(R)-3c = 60:1). An analytically pure sample of complex 3c was obtained by preparative LC (EtOAc:CHCl₃ = 3:1).

4.2.4. Reaction with benzaldehyde 2d. The reaction was conducted as above starting from 2 g (4 mmol) of complex 1 at 7°C. Reaction time was 30 min. Yield of the crude product 3d was 75% ((S)-3d/(R)-3d = 20:1).

Ni(II)-(S)-BPB/(2S,3R)-2-amino-3-hydroxy-3-phenylpropanoic acid Schiff base complex 3d. Mp = 214–215°C. [α]D²⁵ = +1900 (0.04, CHCl₃). 1H NMR (CDCl₃): 1.52–3.30 (8H, m, Pro-H, β-CH), 3.40, 4.16 (2H, AB, J = 12.7 Hz, CH₂Ph), 4.46 (1H, s, OH), 4.60 (1H, m, α-CH), 6.68–7.62 (16H, m, ArH), 7.98–8.00 (2H, m, ArH), 8.27–8.29 (1H, m, ArH). Anal. calcd for C₃₅H₃₇NiN₃O₄: C, 67.5; H, 5.13; N, 6.95. Found: C, 66.84; H, 5.47; N, 7.20%.

4.2.5. Reaction with acetone 2e. The reaction was conducted as above starting from 0.5 g (1 mmol) of complex 1 at 20°C. Reaction time was 7 min. The reaction was monitored by TLC (CHCl₃; CH₃COCH₃ = 6:1). The yield of crude product 3e was 85% ((S)-3e/(R)-3e = 30:1).

Ni(II)-(S)-BPB/(2S)-2-amino-3-hydroxy-3-methylbutanoic acid Schiff base complex 3e. Mp = 218–221°C. [α]D²⁵ = +2707 (0.04, CHCl₃). Anal. calcd for C₂₅H₂₃NiN₃O₄: C, 64.75; H, 5.57; N, 7.55. Found: C, 65.3; H, 5.34; N, 7.02. 1H NMR (CDCl₃): 1.55 (3H, s, Me), 1.59 (3H, s, Me), 2.03–3.48 (7H, m, Pro-H), 3.46, 4.35 (2H, AB, J = 12.4 Hz, CH₂Ph), 3.96 (1H, s, α-CH), 6.65–7.57 (11H, m, ArH), 8.07–8.08 (2H, m, ArH), 8.37–8.39 (1H, m, ArH).

The reactions at low temperatures and with other bases such as tert-BuOK and tert-BuLi were conducted as above.

4.3. General procedure for the isolation of amino acids from the Ni(II)-complexes and recovery of chiral auxiliary (S)-BPB

The crude complex 3 was decomposed by refluxing with methanolic solution of 6N HCl as described earlier,¹⁰ then the solution was evaporated to dryness. Water was added to the residue and the insoluble material was filtered, washed with water and dried to afford (S)-BPB·HCl. To the aqueous layer a solution of ac. NH₃ was added to pH 8 and the solution was extracted with CHCl₃ several times. Amino acid 4 was recovered from the solution by the ion-exchange technique (DOWEX-50, H⁺ form). The yield was determined using ¹H NMR analysis of the reaction mixture with (S)-leucine as an internal standard, and the e.e. (>99%) was determined by chiral GLC.

4.3.1. (2S,3R)-2-Amino-3-hydroxy-4-methylpentanoic acid 4a [syn-(2S)-β-hydroxyleucine]. From complex 3a (44.0 g), 4a (10.2 g, 87%, e.e. 95.5%) was prepared. The crude product was recrystallised from an EtOH–H₂O mixture to give the enantiomerically pure compound (9.4 g, 80%, e.e. >99%). Mp = 210°C. [α]D²⁵ = +19 (1.0, 5N HCl). Lit., 10c [α]D²⁵ = +18.5 (1.0, 5N HCl).

4.3.2. (2S)-2-Amino-3-hydroxy-3-methylbutanoic acid 4e [(2S)-β-hydroxyvaline]. Yield before crystallisation 80% (e.e. 99%), after crystallisation 65% (e.e. 99.9%). Mp = 202–203°C. [α]D²⁵ = +13.5 (0.64, 6N HCl). Lit.¹⁰b for (2R)-β-hydroxyvaline. Mp = 200–201°C. [α]D²⁵ = −11.2 (2.0, 5N HCl).

Acknowledgements

The work was supported by ISTC Project A-356.

References

