SUPPLEMENT (CHAPTER 7)

Early renin-angiotensin-system intervention is more beneficial than late intervention in delaying end-stage renal disease in patients with type 2 diabetes

Schievink B*
Kröpelin TF*
Mulder S
Parving HH
Remuzzi G
Dwyer J
Vemer P
de Zeeuw D
Lambers Heerspink HJ
* contributed equally

Diabetes, Obesity and Metabolism: 2015;
[Electronically published ahead of print]
Abstract

Aims:
Intervening in the renin-angiotensin-system (RAS) early in the course of diabetic kidney disease (DKD) may be more beneficial in delaying end-stage-renal-disease (ESRD) than late intervention. However, prospective randomized controlled trial data are lacking. We developed and validated a model to simulate progression of DKD from early onset until ESRD, and assessed the effect of RAS intervention in early, intermediate and advanced stages of DKD.

Methods:
We used data from BENEDICT, IRMA-2, RENAAL and IDNT trials that assessed effects of RAS intervention in patients with type 2 diabetes. We built a model with discrete disease stages based on albuminuria and eGFR. Using survival analyses we assessed the effect of RAS intervention on delaying ESRD in early (eGFR>60 ml/min/1.73m2 and albumin:creatinine ratio (ACR) <30 mg/g), intermediate (eGFR 30-60 ml/min/1.73m2 or ACR 30-300 mg/g) and advanced (eGFR <30 ml/min/1.73m2 or ACR >300 mg/g) stages of DKD for patients in different age groups.

Results:
For patients at early, intermediate and advanced stage of disease being 60 years on average and receiving placebo, median time to ESRD was 21.4, 10.8 and 4.7 years, respectively. RAS intervention delayed the predicted time to ESRD by 4.2, 3.6 and 1.4 years, respectively. Benefit of early RAS intervention was more pronounced in younger patients. For example for patients aged 45 years on average, RAS intervention at early, intermediate or advanced stage delayed ESRD by 5.9, 4.0 and 1.1 years versus placebo.

Conclusion:
RAS intervention early in the course of proteinuric DKD is more beneficial than late intervention in delaying ESRD.
Introduction

It has been suggested that intervention in the renin-angiotensin system (RAS) early in the course of type 2 diabetic kidney disease (DKD) might be more beneficial than intervention in later stages of disease, in order to prevent progression to end-stage renal disease (ESRD). Unfortunately, there are no prospective randomized controlled trials that have tested the effect of early RAS intervention on hard renal endpoints, because progression of DKD to end-stage renal disease (ESRD) can take decades to manifest. Clinical trials would therefore require an unfeasibly long follow-up time.

Progression of DKD is characterized by several stages. Initially, the harmful hyperglycemic effects in type 2 diabetes may yield a compensatory response in the kidney by increasing glomerular pressure, leading to hyperfiltration. The hyperfiltrating nephrons cause an increase in the filtration of plasma proteins, including albumin, which leads to microalbuminuria. In later stages of disease glomerular filtration rate declines due to progressive kidney damage and loss of functional nephrons, often exacerbated by hypertension and increasing levels of albuminuria, ultimately culminating in ESRD.

The current classification of DKD is based on both albuminuria and glomerular filtration rate (GFR). Past clinical trials have been conducted at different stages of DKD. These trials recorded transition in eGFR or albuminuria categories and determined the effect of RAS intervention using transitions in albuminuria stages (i.e. micro or macroalbuminuria) or ESRD as endpoint. One way to determine the treatment effect of RAS intervention early in the course of DKD would be to connect data from these past clinical trials in order to simulate the progression of DKD from early onset to ESRD and to assess the effect of RAS intervention at different stages of DKD. This would provide insight as to whether treatment initiation in early stages of DKD is more beneficial in delaying ESRD than initiation in advanced stages.

The first aim of our study was therefore to develop and validate a statistical model to simulate progression of DKD from early onset to ESRD, by connecting data from past clinical trials in early, intermediate and advanced disease stages. Secondly, we assessed the effect of RAS treatment on ESRD in early, intermediate and advanced stages of DKD. Since the incidence of type 2 diabetes is increasing strikingly among individuals aged below 40 years, we also assessed the impact of treatment initiation at different stages of disease in age-specific subgroups. Thirdly, we compared the treatment effect of
RAS inhibition in patients responding to RAS treatment (based on a >30% initial decrease in albuminuria) versus patients who do not respond to RAS intervention.

Materials and Methods

Databases and data selection
We used data from the following completed clinical trials: BERgamo NEphrologic Diabetes Complications Trial (BENEDICT), Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria Study (IRMA-2), Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) and Irbesartan Diabetic Nephropathy Trial (IDNT) which included patients with type 2 diabetes. Design and results have been published elsewhere\(^8\). In all trials patients gave informed consent. Our study was conducted in accordance with the principles of the Declaration of Helsinki as revised in 2008. All trials investigated the effect of RAS inhibition (ACE-I/ARB). In BENEDICT, 1209 hypertensive patients with normoalbuminuria (<20 µg/min urinary albumin excretion) and serum creatinine <= 1.5mg/dL were randomly allocated to treatment with trandolapril, verapamil, their combination or placebo. Primary outcome was transition from normo- to microalbuminuria. The median follow-up time was 3.6 years. In IRMA-2, 590 hypertensive patients with microalbuminuria (20 to 200 µg/min urinary albumin excretion) and serum creatinine levels <1.5 mg/dL (men) and <1.1mg/dL (women) were enrolled. Patients were randomly allocated to either placebo or irbesartan (150 or 300 mg) treatment. Primary outcome was the transition to macroalbuminuria. The median follow-up time was 2.0 years. RENAAAL and IDNT both enrolled patients (RENAAL: 1513 patients, IDNT: 1715 patients) with type 2 diabetes and macroalbuminuria (>300mg/g albumin:creatinine ratio in RENAAAL and >900mg/24h proteinuria in IDNT), with serum creatinine levels between 1.0 and 3.0 mg/dL. Patients were randomly allocated to losartan or placebo in RENAAAL, or irbesartan, amlodipine or placebo in IDNT. Primary outcome was time to first event of a composite renal endpoint including doubling of serum creatinine, ESRD or death. IDNT included serum creatinine >6mg/dL as an additional component to the primary outcome. The median follow-up time was 3.7 years for RENAAAL and 3.4 years for IDNT. Albuminuria and eGFR were measured at baseline and every 3 months in RENAAAL and IDNT and every 6 months in BENEDICT and IRMA-2.
Classification and modelling of diabetic kidney disease progression

To simulate the progression of DKD we built disease stages based on albuminuria and eGFR classes. To this end we used the following albuminuria strata: 0-15, >15-30, >30-150, >150-300, >300-1000 and >1000 mg/g albumin:creatinine ratio. EGFR strata were: >90, 90- >60, 60- >30, 30- >15 and <15 ml/min/1.732. Due to low numbers in some strata, all patients with eGFR below 15ml/min/1.732 were merged in one group irrespective of their albuminuria and patients with albuminuria 0-30mg/g and 15-30ml min/1.732 eGFR were merged. These groups were combined to ensure that models could be fit for these disease stages. Occurrence of ESRD, defined as the need for renal replacement therapy (dialysis or transplantation), was recorded as the renal endpoint. All-cause mortality was used as a censoring event in the model. Albuminuria and eGFR follow-up data was used to determine individual course of kidney disease over time. If more than two subsequent albuminuria or eGFR values were missing during follow-up: those values were imputed using a last observation carried forward approach. If there were more than two subsequent missing values the patient was censored. Progression was defined as transition to a worse stage in renal disease (either a worsening in albuminuria, eGFR or both). A transition to the next category had to be accompanied with at least a 30% increase in albuminuria or confirmed by the next follow-up measurement.

Modelling of diabetic kidney disease progression was performed in two steps. Firstly, time to a transition in disease stage was estimated using survival analysis. Secondly, we used multinomial regression to calculate patient-specific probabilities for every possible transition from each disease stage (first event of worsening in albuminuria stage, worsening of eGFR stage, worsening in both or death). The models included treatment allocation, age, gender and systolic blood pressure as covariates. These covariates were selected because they provided the best overall model fit, as determined by Akaike Information Criterion (AIC). Other covariates that were tested but not included in the final model were: LDL cholesterol, HDL cholesterol, HbA1c and serum potassium. The multinomial regression models contained calculated time-to-event as determined in step 1 as an additional covariate. For model building purposes nonparametric data were log transformed and log values were used in further analyses. Statistical analysis were conducted using R version 3.1.0 (R Project for Statistical Computing, www.r-project.org) with a two sided P value <0.05 considered significant.
Simulating diabetic kidney disease progression

Two steps were performed to simulate patient-specific disease progression. Firstly, actual patient-specific time to transition from the survival model was based on a random pick from the 95% confidence interval around the patient-specific point estimate. We introduced this form of randomness to take into account patient-specific variability.

Secondly, the transition direction (i.e. progression in albuminuria, progression in eGFR, progression in both or death) was determined by a random weighted pick based on the probabilities derived from the multinomial regression model (i.e. transitions with a higher probability are more likely). After time (step 1) and direction (step 2) were calculated, the simulated patient entered a new disease stage which was used as starting point for a new simulation cycle. Calculations were repeated until the patient reaches the endpoint ESRD or death, while accumulated time (sum of all transition times) is recorded. Bootstrapping was used (100 iterations) to assess reliable point estimates.

Simulations were performed for separate patient groups by classifying patients into early, intermediate or advanced stages of DKD, and by different age categories. Our definition of early, intermediate and advanced stage of disease is based on the KDIGO guidelines and displayed in Supplemental Figure S1. Early DKD was defined as eGFR > 60 ml/min/1.73m2 and albumin:creatinine ratio (ACR) < 30 mg/g, intermediate DKD defined as eGFR 30-60 ml/min/1.73m2 or ACR 30-300 mg/g, and advanced DKD as eGFR < 30 ml/min/1.73m2 or ACR > 300 mg/g. Age categories ranged from 25 to 65 with 5-year intervals. The age distribution for each age category was similar to the age distribution in the trials used to develop the model. Additionally, we assessed the effect of RAS intervention on delaying ESRD in patients who responded to RAS interventions (defined as a regression in albuminuria stage accompanied with at least 30% reduction in albuminuria after 6 months of treatment) and non-responders. Patients with baseline albuminuria levels < 15 mg/g were excluded from this analysis because they could not regress in albuminuria stage.

For simulation purposes we added an age-specific mortality probability for patients older than 65 years, on top of the mortality probabilities observed in the dataset. This takes into account that as patients age their probability to die increases. These calculations were based on age- and sex-adjusted mortality rates for patients with type 2 diabetes as previously reported (Supplementary Table 1).
Model validation

Internal and external validity was assessed by comparing the proportion of events derived from our model with observed proportion of events in the trials. For internal validation, we applied the model to all patients from trials included in the training database. The time to ESRD for each individual was calculated using baseline characteristics of each individual. For external validation we applied the model to the individual patient-level data of clinical trials in diabetes not included in our training dataset: LIFE, SUN-MACRO and ALTITUDE. Their rationale, study design and results have been published elsewhere\(^\text{18-20}\). Additionally, we compared the proportion of ESRD events derived from our model with the observed proportion of ESRD events in trials of which no individual patient data was available. For these trials we used aggregated trial level data, by using the published mean and standard deviation for each parameter (e.g. mean age, mean blood pressure, etc) in order to simulate patient data. We used this approach for ADVANCE, ACCORD, TREAT, NEPHRON-D and ORIENT trials. The results and design of these trials have been published elsewhere\(^\text{9,21-24}\), and are summarized in Supplementary Table 2.

Results

Characteristics of patients included in the dataset

An overview of the baseline characteristics of included trials are presented in Table 1. In all included datasets, participants were diagnosed with type 2 diabetes were and on average around 60 years of age. Albuminuria levels were in the normoalbuminuric range (N=1209), microalbuminuric range (N=590) and macroalbuminuric range (N=3228). Renal function (eGFR) ranged from normal (>90ml/min/1.732) to severely impaired (15-30 ml/min/1.732). The final dataset included 5027 patients. In this dataset, a total of 628 ESRD events and 576 death events were recorded during follow-up. The majority of deaths (357; 62%) were recorded in patients with eGFR <45/ml/min/1.732 and albumin:creatinine ratio >300mg/g at baseline. For modelling purposes, we used all available transitions that patients experienced during follow-up, resulting in a median of 551 transitions (interquartile range: 261-1122) for each disease stage (Supplemental Figure S1).
Supplement (Chapter 7)

Model validation

The predicted survival probabilities (with ESRD as endpoint and death as censoring event) corresponded well to the observed probabilities seen in BENEDICT, IRMA-2, RENAAL and IDNT, with predictions being within the 95% confidence intervals of the observed probabilities for almost all years of follow-up. For the trials in which ESRD events were observed (RENAAL and IDNT), the predictions for the RENAAL trial started to fall outside of the 95% confidence intervals after 2 years follow-up (Figure 1). We subsequently validated our model using past clinical trials not included in our training database. The predictions from our DKD model showed very good agreement with the observed probabilities of ESRD events in each treatment arm in each trial, with a calculated R² of 0.97 (Figure 2). The predicted and observed proportion of ESRD events appeared to be closer to the line of identity for trials where individual patient data was available compared to trials with aggregated trial level data.

Table 1. Baseline characteristics of patients in the included clinical trials.

<table>
<thead>
<tr>
<th></th>
<th>BENEDICT N=1209</th>
<th>IRMA-2 N=590</th>
<th>RENAAL N=1513</th>
<th>IDNT N=1715</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>61.9 (8.1)</td>
<td>58.0 (8.2)</td>
<td>60.2 (7.4)</td>
<td>58.9 (7.8)</td>
</tr>
<tr>
<td>Gender (% male)</td>
<td>53%</td>
<td>68%</td>
<td>63%</td>
<td>66%</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>150.8 (14.19)</td>
<td>153.1 (14.43)</td>
<td>152.5 (19.3)</td>
<td>159.1 (19.7)</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>87.5 (7.6)</td>
<td>90.1 (9.2)</td>
<td>82.4 (10.5)</td>
<td>86.9 (11.0)</td>
</tr>
<tr>
<td>eGFR (mL/min/1.73 m²)</td>
<td>81.2 (15.0)</td>
<td>72.2 (13.8)</td>
<td>39.8 (12.3)</td>
<td>47.3 (17.6)</td>
</tr>
<tr>
<td>Albuminuria (mg/g)</td>
<td>5.9 [4.0 – 9.9]</td>
<td>72.55 [54.0 – 97.3]</td>
<td>1246 [558 – 2545]</td>
<td>1500 [780 – 2757]</td>
</tr>
<tr>
<td>HbA1C (%)</td>
<td>5.8 (1.4)</td>
<td>6.9 (1.7)</td>
<td>8.5 (1.6)</td>
<td>8.1 (1.7)</td>
</tr>
<tr>
<td>Potassium (mmol/L)</td>
<td>4.3 (0.4)</td>
<td>4.7 (0.5)</td>
<td>4.6 (0.5)</td>
<td>4.6 (0.5)</td>
</tr>
<tr>
<td>LDL cholesterol</td>
<td>162.8 (36.1)</td>
<td>140.0 (40.3)</td>
<td>142.2 (46.8)</td>
<td>142.7 (46.5)</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dL)</td>
<td>46.9 (12.1)</td>
<td>43.6 (11.6)</td>
<td>45.1 (15.1)</td>
<td>42.4 (14.1)</td>
</tr>
</tbody>
</table>

Baseline characteristics of all the clinical trials that were included in the model building. Numbers represent mean (sd) unless otherwise indicated. Albuminuria (albumine:creatinine ratio) is calculated as median + interquartile range.
Early RAAS intervention is more beneficial than late intervention

Figure 1. Kaplan Meier plot showing the observed versus simulated renal events (with death as censoring event) over time in the BENEDICT, IRMA-2, RENAAL, and IDNT studies. For BENEDICT and IRMA-2 a black horizontal line is drawn because no ESRD events were observed in the trials. For RENAAL and IDNT the 95% confidence intervals are the shaded areas for placebo (red) and treatment (blue).
Effect of RAS intervention vs. placebo in early, intermediate or advanced stage disease

We subsequently assessed the effect of RAS intervention at early, intermediate or advanced stages of DKD. Figure 3 shows that the predicted time to ESRD was 21.4, 10.8 and 4.7 years for patients at early, intermediate, and advanced stage of disease respectively, being on average 60 years of age (the average age in most type 2 diabetes trials) and receiving placebo treatment. RAS intervention delayed the predicted time to ESRD by 4.2, 3.6 and 1.4 years, respectively (P values < 0.001 for pairwise comparisons between early, intermediate and advanced).
Early RAAS intervention is more beneficial than late intervention

The beneficial effect of RAS intervention in early stages of DKD became more apparent when treatment is initiated at younger age (Table 2). For example, among patients with an average of 45 years, RAS intervention in early, intermediate and advanced stages of disease delayed the median time to ESRD by 5.9 years, 4.0, and 1.1 years respectively (P values < 0.001 for pairwise comparisons between early, intermediate and advanced). Lastly, we assessed the differences in effects of RAS intervention between men and women and found that the treatment effect did not differ by gender.
Effect of treatment response on time to ESRD
We finally assessed the impact of treatment response (defined as a >30% reduction in albuminuria and an improvement in albuminuria staging from baseline to 6 months of treatment) on time to ESRD. Again, analyses were performed for treatment initiated in early, intermediate or advanced stages of DKD. As expected, treatment responders benefitted more from treatment than non-responders and this effect was particularly striking when treatment was initiated at early stages of disease (Figure 4). For patients who responded to RAS intervention aged 60 years, treatment in early stages of disease delayed the predicted time to ESRD by 11.8 years and 13.3 years compared to the non-responder subgroup and placebo group, respectively (P<0.001), while the model predicted a delay in ESRD in responders to RAS intervention in intermediate and advanced stages of 4.9 and 3.5 years compared to non-responders and placebo (both P<0.001).

Discussion
We have developed and validated a model for patients with type 2 diabetes that can simulate DKD progression and assess long-term treatment effects of RAS inhibition from the earliest stages of disease until ESRD with reasonable accuracy. Our model showed that RAS inter-

Table 2. Treatment effect of RAS intervention on delaying ESRD

<table>
<thead>
<tr>
<th>Age at which RAS treatment is initiated</th>
<th>Delay of ESRD (years) compared to placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disease stage at which RAS treatment is initiated</td>
</tr>
<tr>
<td></td>
<td>Early</td>
</tr>
<tr>
<td>35 years</td>
<td>7.4</td>
</tr>
<tr>
<td>40 years</td>
<td>6.9</td>
</tr>
<tr>
<td>45 years</td>
<td>5.9</td>
</tr>
<tr>
<td>50 years</td>
<td>5.7</td>
</tr>
<tr>
<td>55 years</td>
<td>5.1</td>
</tr>
<tr>
<td>60 years</td>
<td>4.2</td>
</tr>
<tr>
<td>65 years</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Numbers indicate years that treatment with RAS inhibition delays ESRD compared to placebo. Results are displayed for different age groups, ranging from on average 25 years to 65 years, and for treatment initiation in early, intermediate or late stages of DKD.
Early RAAS intervention is more beneficial than late intervention

Figure 4. This figure is similar to Figure 3. In this analysis we assessed the effect of treatment response (defined as a regression in albuminuria stage accompanied with at least 30% reduction in albuminuria after 6 months of treatment) on time to ESRD.

oltage in the earliest stages of disease is most beneficial in delaying ESRD, and that this treatment effect is even more pronounced among younger patients. The beneficial treatment effect was attributed to a large extent to the initial albuminuria lowering response. ESRD was markedly delayed among patients with an initial response in albuminuria whereas non-responders showed only little benefit compared to placebo, highlighting the importance of monitoring albuminuria during RAS intervention.

Our model predicted that half of the patients with normoalbuminuria and hypertension remain free of ESRD for approximately 21 years, while RAS intervention delayed this to approximately 26 years, confirming that progression from early stage to ESRD takes decades to manifest. This is in line with other studies that reported similar time frames. For example, the United Kingdom Prospective
Diabetes Study (UKPDS) showed that patients with normoalbuminuria take a median of 19 years to develop nephropathy (defined as microalbuminuria or macroalbuminuria), and patients with macroalbuminuria take a median of 9.7 years to reach ESRD, suggesting that progression from normoalbuminuria to ESRD takes approximately three decades25. The longer time to reach ESRD in the UKPDS model can be attributed to the inclusion of newly diagnosed diabetes population in the UKPDS whereas the normoalbuminuria population in our study had hypertension and a mean diabetes duration of approximately 8 years. An older study conducted in the United States showed that progression of DKD from onset of type 2 diabetes to ESRD takes around two decades26. The finding that early intervention was particularly fruitful in younger patients raises the question as to why older patients benefit to a lesser extent. Our model showed that progression from early stage to ESRD may take several decades. Many patients have already died from advanced age or from comorbidities by the time they would have reached ESRD, and therefore death likely obscures the beneficial effect of RAS intervention when initiated at advanced age. Large observational studies showed that patients with mild chronic kidney disease are much more likely to die before reaching ESRD27,28, with substantially larger risks for death instead of ESRD in populations with less severe kidney disease29,30. Indeed, our model, which censored patients in case of death, showed that with increasing patient age at treatment initiation the death/ESRD ratio increased substantially, especially in patients with less severe kidney disease. While age modified the treatment effect of RAS intervention, we did not observe such an effect modification with gender. It is known that females have a lower risk of developing chronic kidney disease31. Less is known about differences between males and females and effects of RAS intervention on delaying ESRD. Our results of no gender differences in treatment effects of RAS intervention are in line with a small study with irbesartan that also reported no gender differences in treatment effect32.

The necessity of investigating the advantages of intervention in early versus advanced stages of DKD for different age groups is prompted by the rapid increase in type 2 diabetes in younger populations. For example, a recent study showed that incidence of type 2 diabetes is increasing dramatically at ages <40 years33. Likewise, the incidence of type 2 diabetes is markedly increasing in pediatric and adolescent populations14,15,34. We have shown that the benefits of RAS intervention in early DKD stages becomes more apparent at younger age. We
Early RAAS intervention is more beneficial than late intervention

also showed that the ultimate treatment effect depends to a large extent on the initial albuminuria response, with more treatment benefit attributed to early intervention for patients classified as responders. Ideally, this should be confirmed in a prospective randomized clinical trial. However, given that the median time to reach ESRD takes more than two decades for patients in early DKD stages, it would require unfeasibly large patient populations and follow-up times, which makes it unlikely that such a trial will ever be performed.

Although early intervention delayed progression to ESRD compared to late intervention, patients have to be treated for many years which has obvious implications for the patient and healthcare system. Whether the benefits of early intervention to delay ESRD outweigh the medication burden and costs of treatment compared to late intervention requires further study. However, given the large burden of dialysis on individual patients, their relatives, and society coupled with the fact that ACE-Is and ARBs are generally well tolerated and cheap, it is likely that early intervention is beneficial from a pharmacoeconomic perspective as well.

The finding that RAS intervention in non-responders showed very little benefit compared to placebo raises the question whether treatment should be discontinued in this group. We recommend that such decision should not be made based on these data. This is a simulation study of multiple randomized controlled trials and firm conclusions about treatment discontinuation require adequately designed prospective randomized controlled trials.

To our knowledge this is the first study that investigated the entire course of proteinuric DKD and compared treatment effect in early, intermediate and advanced stages of disease. A previous study by Palmer et al with a Markov model compared intermediate and late intervention with data from the IRMA-2 and IDNT trials and showed that intervention in intermediate stages delays onset of ESRD compared to intervention in advanced disease stages. However, our model included more disease stages, a larger population, and covered the full range of DKD with smaller gaps between different disease stages thereby increasing precision and power. In addition, our survival analysis enabled us to calculate patient-specific time to event, which is not possible with a Markov model, and uses individual patient characteristics, therefore providing the possibility to determine whether these characteristics modify treatment effect.

Our study has limitations. Firstly, our resolution is limited by the number of defined disease stages used to develop the model. Larger
numbers of patients, in particular those with low eGFR and low albuminuria, will increase the accuracy and precision of the model. Secondly, our model was developed for RAS intervention but is in principle applicable to other drug classes. This however requires validation. Thirdly, the model does not consider improvement of disease stages during simulation. Instead of taking improvement into account, our model assumes patients stay in the same disease stage until worsening is observed. However, the model records time until worsening in albuminuria or eGFR stages occurs and takes it into account in the survival analysis. We used this approach to make sure our model does not include unfeasibly large numbers of possible transition directions, but acknowledge that this may have led to an underestimation of the treatment effect. However, only a small proportion of the patients in the observed data experienced improvements without subsequently worsening beyond their starting disease stage during follow-up, suggesting that this bias likely had little impact on the main results. Fourthly, while showing good agreement with absolute event rates, the relative deviance between predicted and observed ESRD is high for trials with low event rates. The goodness of fit for such trials is therefore more difficult to interpret. We also acknowledge that our internal validation did not produce a perfect fit of the observed data, which may have slightly affected the accuracy of the calculated treatment effect. Lastly, our model simulates disease progression for decades in some individual patients, beyond the follow-up duration of the included trials and thereby limits the accuracy of the prediction estimates.

In conclusion, we have built a model that is capable of simulating the entire course of DKD. Using this model, we showed that early intervention with RAS inhibitors is more beneficial in delaying ESRD than intervention in later stages.

Acknowledgements

H.J. Lambers Heerspink is supported by a VENI-Grant from the Netherlands Organisation for Scientific Research.
Declaration of interests

D.D.Z. is a consultant for and receives honoraria (to employer) from AbbVie, Astellas, AstraZeneca, Chemocentryx, J&J, Hemocue, Novartis, Reata, Takeda, Vitae. H.J.L.H. is a consultant for and receives honoraria (to employer) AbbVie, Astellas, Astra-Zeneca, Janssen, Reata Pharmaceuticals, and ZS-Pharma. BS, TK, SM, PV, HHP, GR and JD have nothing to declare.

Contributor statements

Each author contributed substantially to the design of the study, interpretation of the data, as well as drafting and revising the manuscript. All authors gave final approval to the manuscript. BS, TK and SM performed the analysis in this study.
References

17. Zhuo X, Zhang P, Barker L, et al. The Lifetime Cost of Diabetes and Its Implications for Diabe-
Autonomic function testing in diabetes mellitus

26. Pugh JA, Medina R, Ramirez M. Comparison of the course to end-stage renal disease of Type 1 (insulin-dependent) and Type 2 (non-insulin-dependent) diabetic nephropathy. Diabetologia 1993 10/01;36(10):1094-1098.

35. Palmer AJ, Annemans L, Roze S, et al. Cost-Effectiveness of Early Irbesartan Treatment Versus Control (Standard Antihypertensive Medications Excluding ACE Inhibitors, Other Angiotensin-2 Receptor Antagonists, and Dihydropyridine Calcium Channel Blockers) or Late Irbesartan Treatment in Patients With Type 2 Diabetes, Hypertension, and Renal Disease. Diabetes Care 2004 August 01;27(8):1897-1903.
Early RAAS intervention is more beneficial than late intervention
Supplement

Supplementary Figure 1. The X axis shows albuminuria stages in mg/g (stages 1 to 6) while eGFR is shown as mL/min/1.73 m2 (stages A to E) on the Y axis. Arrows show possible directions of disease progression. From every stage it is possible to reach ESRD directly. At every stage there is a probability to die instead of progressing in disease stage. The green, orange and red lines indicate which definitions are used for early, intermediate and late stages of DKD.

Supplementary Table 1. Age-adjusted mortality rates used in the model. Numbers indicate proportion of people that survive each year in each group (i.e. 0.9 indicates that 90% of patients survive each year for that age group).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Mortality rate per year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Female</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>65</td>
<td>0.93</td>
</tr>
<tr>
<td>70</td>
<td>0.84</td>
</tr>
<tr>
<td>75</td>
<td>0.71</td>
</tr>
<tr>
<td>80</td>
<td>0.53</td>
</tr>
<tr>
<td>85</td>
<td>0.32</td>
</tr>
</tbody>
</table>
Early RAAS intervention is more beneficial than late intervention.

Supplementary Table 2. Characteristics of the clinical trials used for validation purposes

<table>
<thead>
<tr>
<th>Trial Name</th>
<th>Inclusion Criteria</th>
<th>N Patients</th>
<th>Treatment Allocation</th>
<th>Primary Endpoint Definition</th>
<th>Trial Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCORD</td>
<td>Type 2 diabetes and chronic kidney disease</td>
<td>4038</td>
<td>Placebo vs. darbepoetin alfa</td>
<td>First occurrence of cardiovascular or renal event</td>
<td>Median 2.4 years</td>
</tr>
<tr>
<td>ADVANCE</td>
<td>Type 2 diabetes and nephropathy</td>
<td>1140</td>
<td>Placebo vs. losartan and irbesartan</td>
<td>First occurrence of doubling of serum creatinine, ESRD or death</td>
<td>Mean 3.2 years</td>
</tr>
<tr>
<td>ALTITUDE</td>
<td>Type 2 diabetes and chronic kidney disease or cardiovascular disease</td>
<td>8561</td>
<td>Aliskiren vs. placebo on top of RAS treatment</td>
<td>First occurrence of a cardiovascular or renal event</td>
<td>Median 4.7 years</td>
</tr>
<tr>
<td>LIFE</td>
<td>Type 2 diabetes, previously untreated or treated stage II–III hypertension with ECG left ventricular hypertrophy</td>
<td>1195*</td>
<td>Losartan vs. atenolol</td>
<td>Cardiovascular morbidity and mortality</td>
<td>Mean 4.7 years</td>
</tr>
<tr>
<td>LIFE</td>
<td>Type 2 diabetes, renal disease or ESRD</td>
<td>1501</td>
<td>Placebo vs. aliskiren</td>
<td>Composite of macrovascular events and composite of microvascular events</td>
<td>Median 4.7 years</td>
</tr>
<tr>
<td>LIFE</td>
<td>Type 2 diabetes, nephropathy</td>
<td>1448</td>
<td>Losartan and enalapril or matching placebo</td>
<td>Decline in eGFR (>30 ml/min/1.73 m² or >50%), ESRD or death</td>
<td>Median 2.2 years</td>
</tr>
<tr>
<td>NEPHRON-D</td>
<td>Type 2 diabetes and nephropathy</td>
<td>1148</td>
<td>Placebo vs. olmesartan</td>
<td>First occurrence of doubling of serum creatinine, ESRD or death</td>
<td>Mean 3.2 years</td>
</tr>
<tr>
<td>ORIENT</td>
<td>Type 2 diabetes and nephropathy</td>
<td>577</td>
<td>Olmesartan vs. placebo</td>
<td>First occurrence of doubling of serum creatinine, ESRD or death</td>
<td>Mean 3.2 years</td>
</tr>
<tr>
<td>TREAT</td>
<td>Type 2 diabetes and chronic kidney disease</td>
<td>4038</td>
<td>Darbepoetin alfa vs. placebo</td>
<td>First occurrence of cardiovascular event, ESRD or death</td>
<td>Median 2.4 years</td>
</tr>
</tbody>
</table>

* The overall LIFE population consisted of 9194 participants of whom 1195 had diabetes. Only participants with diabetes were used for validation purposes.