'Crystallographic Analysis of Orientational Variants in PbZr0.52Ti0.48O3 Ferrolectric Perovskite

Wu, Lijun; Zhu, Yimei; Li, Jianqi; Noheda, Beatriz

Published in:
Microscopy and Microanalysis

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2002

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Crystallographic Analysis of Orientational Variants in PbZr$_{0.52}$Ti$_{0.48}$O$_3$
Ferroelectric Perovskite

Lijun Wu*, Yimei Zhu*, Jianqi Li* and B. Noheda**

* Department of Materials Science, Brookhaven National Laboratory, Upton, NY 11973
** Department of Physics, Brookhaven National Laboratory, Upton, NY 11973

The ferroelectric perovskite PbZr$_{1-x}$Ti$_x$O$_3$ has been extensively studied due to its unique physical properties. It exhibits an unusual morphotropic phase boundary (MPB) which divides the regions with rhombohedral and tetragonal symmetry in its phase diagram. Upon cooling, PbZr$_{0.52}$Ti$_{0.48}$O$_3$ (PZT) undergoes a ferroelectric transition from cubic (C) to tetragonal (T) at about 600K. Recently, a tetragonal to monoclinic (M) phase transition was discovered at about 300K, revealing new characteristics of the MPB [1]. The relationship between T and M follows: $a_m = a_T + b_T$, $b_m = -a_T + b_T$, $c_m = c_T$. In this short presentation, we report twin structures formed during the transition of C to T and T to M in PZT at room temperature using transmission electron microscopy (TEM).

The transition from C to T in PZT results in the crystal symmetric change from Pm$\overline{3}$m to P4mm with the loss of point symmetry elements. The point group of the C phase is G= m$\overline{3}$m, while that of the T phase is H=4mm, where H of order q (q=8) is a subgroup of G, of order p (p=48). So six orientation variants are expected in the T phase. Table 1 lists all variants with their corresponding symmetry operations. The M phase has 4 orientation variants with respect to the T phase since its point group is H=Cm of order r=2. Because the M phase will inherit the variants from the T phase, it has totally 24 variants with respect to the C phase.

Fig.1(a) shows a typical morphology of the T phase. Three variants TV$_1$, TV$_2$ and TV$_6$ are present. Considering TV$_1$ as the matrix, the TV$_2$ is the ($\overline{1}$01) reflection twin, while the TV$_6$ is the ($\overline{1}$01)(101) secondary twin. Fig.1(b) and (c) are, respectively, the high resolution image (HREM) and its corresponding electron diffraction pattern (EDP) viewed along [010]$_{TV1}$/[001]$_{TV3}$ direction of the TV$_1$ and TV$_3$ variants. The boundary ($\overline{1}$T1) plane is inclined \sim46°. The displacement of Zr/Ti along c-axis can be seen in the insert I1. The simulation by multislice method in insert I1’ shows that the displacement of Zr/Ti along c-axis is bigger than that measured by x-ray diffraction [1]. Furthermore, TEM experiments showed that the displacement of Zr/Ti varies from grain to grain. Thus the smaller displacement value measured by x-ray diffraction is likely due to the nature of the volume averaged x-ray probe.

The room temperature monoclinic phase is shown in fig.2. The HREM (fig.2a) is rotated 45° with respect to its EDP (fig.2b). Two variants MV$_1$ and MV$_3$ are present in fig.2 with ($\overline{1}$T1) reflection twin relationship. The EDP of the M phase is similar to that of the T phase but the spots of the $h\overline{l}0$ row in the former split while those of the corresponding row in the latter do not. Similar to that of the T phase, the displacement of the Zr/Ti along the a and c axes can also be observed (fig.2a). The displacement of Zr/Ti along the a and c axes were determined by comparison with the image simulation. They were found to be 0.029 and 0.037 nm, respectively, which are slightly larger than those measured by x-ray diffraction.

References:

TABLE 1 Orientation variants and the essential operations in cosets of the T phase.

<table>
<thead>
<tr>
<th>Variant</th>
<th>Coset</th>
<th>Essential operations in coset</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV₁₀₀₁</td>
<td>H=P₄mm</td>
<td>1, 2₀₀₁, 4⁺₀₀₁, 4⁻₀₀₁, m₀₁₀, m₁₁₀, m₁₁₀, m₁₀₀</td>
</tr>
<tr>
<td>TV₂₁₀₀</td>
<td>m[₁₀₁]</td>
<td>m[₁₀₁], 4⁻₀₁₀, 3⁺₁₁₁, 3⁺[₀₁₁], 2₀₁₀, 3⁺[₁₁₁], 3⁺₁₁₁, 4⁺₀₁₀</td>
</tr>
<tr>
<td>TV₃₀₁₀</td>
<td>m[₀₁₁]</td>
<td>m[₀₁₁], 4⁺[₀₁₀], 3⁺[₁₁₁], 3⁺[₁₁₁], 4⁻₀₁₀, 3⁻₁₁₁, 3⁻₁₁₁, 2₀₁₁</td>
</tr>
<tr>
<td>TV₄₁₀₀</td>
<td>m[₁₀₁]</td>
<td>m[₁₀₁], 4⁺₀₁₀, 3⁺₁₁₁, 3⁺₁₁₁, 2₀₁₀, 3⁺₁₁₁, 3⁺₁₁₁, 4⁺₀₁₀</td>
</tr>
<tr>
<td>TV₅₀₁₁</td>
<td>m[₀₁₁]</td>
<td>m[₀₁₁], 4⁺₁₀₀, 3⁺₁₁₁, 3⁺₁₁₁, 4⁺₀₁₀, 3⁻₁₁₁, 3⁻₁₁₁, 2₀₁₁</td>
</tr>
<tr>
<td>TV₆₀₀₁</td>
<td>m[₀₀₁]</td>
<td>m₀₀₁, 1, 4⁻₀₀₁, 4⁺₀₀₁, 2₁₀₀, 2₁₁₀, 2₀₁₀</td>
</tr>
</tbody>
</table>

FIG.1. (a) A typical morphology of the tetragonal phase, the twins are clearly seen. The (1₀₁)TV₁ boundary between TV₁ and TV₂, and the (1₀₁)TV₂ boundary between TV₂ and TV₆ are both viewed edge on. (b,c) High resolution image (b) and its corresponding electron diffraction pattern (c) viewed along [₀₁₀]TV₁/[₀₀₁]TV₃ direction. The twin is the (₀₁₁) reflection twin. The twin plane (₀₁₁) is inclined ~46°. The inserts are magnified images of the boxed areas I₁ and I₂, while I₁’ and I₂’ are the simulation.

FIG.2. A high resolution image (a) and its corresponding diffraction pattern (b) of the monoclinic phase viewed along [₁₁₀]MV₁/[₀₀₁]MV₃ direction. Note, the high resolution image rotates 45° with respect to the diffraction pattern. The MV₃ is the (₁₁₁) reflection twin. The twin plane (₁₁₁) is inclined ~46°. The inserts are magnified pictures from the boxed areas, while I₁’ and I₂’ are the simulation. The diffraction pattern in fig.2b is similar to that in fig.1c except splitting of the spots in h₀₀ row.