Characterization of two unusual guanylyl cyclases from Dictyostelium
Roelofs, Jeroen; van Haastert, Petrus

Published in:
The Journal of Biological Chemistry

DOI:
10.1074/jbc.M111437200

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2002

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Characterization of Two Unusual Guanylyl Cyclases from Dictyostelium*

Jeroen Roelofs‡ and Peter J. M. Van Haastert§

From the Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Guanylyl cyclase A (GCA) and soluble guanylyl cyclase (sGC) encode GCs in Dictyostelium and have a topology similar to 12-transmembrane and soluble adenyl cyclase, respectively. We demonstrate that all detectable GC activity is lost in a cell line in which both genes have been inactivated. Cell lines with one gene inactivated were used to characterize the other guanylyl cyclase (i.e. GCA in sgca null cells and sGC in gca null cells). Despite the different topologies, the enzymes have many properties in common. In vitro, extracellular cAMP activates both enzymes via a G-protein-coupled receptor. In vitro, both enzymes are activated by GTPγS (Ks = 11 and 8 μM for GCA and sGC, respectively). The addition of GTPγS leads to a 1.5-fold increase of Vmax and a 3.5-fold increase of the affinity for GTP. Ca2+ inhibits both GCA and sGC with Ks of about 50 and 200 nM, respectively. Other biochemical properties are very different; GCA is expressed mainly during growth and multicellular development, whereas sGC is expressed mainly during cell aggregation. Folic acid and cAMP activate GCA maximally about 2.5-fold, whereas sGC is activated about 8-fold. Osmotic stress strongly stimulates sGC but has no effect on GCA activity. Finally, GCA is exclusively membrane-bound and is active mainly with Mg2+, whereas sGC is predominantly soluble and more active with Mn2+.

cAMP and cGMP are important signaling molecules. In prokaryotes, cAMP regulates gene expression. Cyanobacteria contain high levels of cGMP relative to other bacteria, but their function as intracellular signaling molecules is not well understood (1). In eukaryotes, cAMP and cGMP regulate enzyme activities, channel activity, and gene expression, and gene expression, mainly during cell aggregation. Folic acid and cAMP activate GCA maximally about 2.5-fold, whereas sGC is activated about 8-fold. Osmotic stress strongly stimulates sGC but has no effect on GCA activity. Finally, GCA is exclusively membrane-bound and is active mainly with Mg2+, whereas sGC is predominantly soluble and more active with Mn2+.

* This research was supported by the Netherlands Organization of Scientific Research (NWO). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Present address: Dept. of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115-5730.

§ To whom correspondence should be addressed. Tel.: +31-503634172; Fax: +31-503634165; E-mail: P.J.M.van.Haastert@chem.rug.nl.

The abbreviations used are: AC, adenyl cyclase; GC, guanylyl cyclase; s, soluble; GTP-γ-S, guanosine 5′-O-(3-thio)triphosphate.
Characterization of Dictyostelium Guanylyl Cyclases

MATERIALS AND METHODS

Strains and Culture Conditions—AX3 (wild type), gca- null cells (17), sgc- null cells (18), and gca-/sgc- double null cells (see below) were grown in HG5 medium. When grown with selection, HG5 medium was supplemented with 10 μg/ml blasticidin S. To select for the expression of the uracil auxotroph DH1 cells by the pyr5/6 cassette (see below), cells were grown in uracil-deficient FM medium (22) (ICN). Cells were starved for up to 6 h by shaking in 10 mM phosphate buffer, pH 6.5, at a density of 10^6 cells/ml.

Gene Inactivation—The gca-/sgc- double knock-out cell lines were obtained in the uracil auxotroph strain DH1 using the pyr5/6 gene (23) and the bar gene (24) as selection markers. The pyr5/6 cassette contains the coding region of the Pyr5/6 protein (23), which was amplified by PCR and cloned into a vector between the actin-15 promoter and the actin-8 terminator. To make the double knock-out strain, first gsc was inactivated in DH1 using the knock-out construct of sGC (see Ref. 18) in which the DNA segment encoding the Bar selection marker was replaced by the pyr5/6 selection cassette, yielding psCycKOpyr. A linear fragment with the sGC flanks and the pyr5/6 selection cassette was obtained by two rounds of PCR. Homologous integration of this fragment in DH1 resulted in the replacement of the region coding for amino acids 1192–1224 of sGC for the pyr5/6 selection cassette. Subsequently, two independent sgc knock-out clones were used to disrupt the GCA gene with the Bar-containing construct as described previously (17). The disruption of both genes was confirmed by PCR as well as by Northern analysis. Two independent clones were used in this study.

RESULTS

Topology and Catalytic Pockets of GCA and sGC—Dictyostelium contains two genes that encode guanylyl cyclase enzymes, GCA and sGC. Both enzymes contain two cyclase domains, which is essentially the only feature that these enzymes have in common (Fig. 1A). GCA has the topology of a membrane-bound mammalian adenylyl cyclase with two stretches of six transmembrane-spanning segments. In contrast, sGC has the topology of soluble mammalian adenylyl cyclase, including a homologous long C-terminal segment. Based on the three-dimensional structure of mammalian adenylyl cyclase, the two cyclase domains are expected to form an antiparallel dimer with potentially two catalytic pockets, α and β. In mammalian adenylyl cyclase, ATP is bound in the β pocket; the α pocket contains many amino acids that could prevent binding and catalysis of ATP (6, 7). Instrumental in this respect is the transition state stabilizing Arg1029 from the C2 domain of mammalian adenylyl cyclase. The conserved glutamic acids that cover the potential binding pockets of sGC indicate that GTP is bound in the β pocket of sGC (Fig. 1, B and C). In contrast, in GCA the catalytic arginine is provided by the C1 domain, and consequently GTP is predicted to be bound and hydrolyzed in the α pocket.

The three-dimensional structure of mammalian adenylyl cyclase with bound ATP analogs in the catalytic site suggests that two aspartates (Asp996 and Asp1469) interact via two metal ions with the triphosphate moiety of ATP (35). These two metal-binding aspartates are conserved in GCA and sGC (Fig. 1, B and C). The γ-phosphate of ATP interacts with two positively charged amino acids (Arg848 and Lys1065 in AC), of which one (Arg848) forms a salt bridge to Glu518. These amino acids are conserved in GCA and sGC as well, except for Lys1065, which is a histidine in sGC (His1149). Although this histidine may still interact with Pγ, it can no longer interact with the conserved glutamate (Glu1185) unless it is protonated.

The purine moiety is bound to AC in a cleft that contains many hydrophobic amino acids. These hydrophobic amino acids are conserved in GCA and sGC, except for a lysine in sGC (Lys1334). Interestingly, sAC, the mammalian homolog of sGC, also contains a lysine at this position. The substrate specificity of cyclases is determined predominantly by a lysine for adenylyl cyclases (Lys938 in ACII), which is a glutamate in guanylyl cyclases (Glu924 in GCA). Both GCA and sGC comply with this general observation, as they do not possess the positively charged lysine but contain the negatively charged glutamate in GCA and aspartate in sGC. In mammalian GCE it has been modeled that the O-6 of the guanidine moiety forms a weak hydrogen bond to the side chain thiol of Cys1090. This hydrogen bond may still be possible with the histidine at this position in GCA (His504) but not with the alanine in sGC (Ala1397); perhaps in sGC the O-6 group forms a hydrogen bond with the backbone amide of Val1398. Gln928 of GCE has been modeled to interact with Arg998. At the position of this arginine GCA contains a histidine (His1284) that may fulfill this function. In contrast, in sGC this amino acid is replaced by a glutamate (Glu1170), which cannot provide the interaction with the corresponding aspartate; perhaps Glu1170 interacts with the N1H of guanine in sGC.

The noncatalytic pocket of GCA as well as that of sGC contains many hydrophobic amino acids and lacks the amino acids that bind the metal ion and the phosphates of GTP. In this respect they have the properties of the noncatalytic sites of many mammalian adenylyl and soluble guanylyl cyclases. Forskolin, which binds in the noncatalytic site of mammalian membrane adenylyl cyclase, does not affect GCA or sGC activity (Ref. 17 and data not shown).

Inactivation of GCA and sGC—To investigate whether GCA and sGC encode all guanylyl cyclases in Dictyostelium, these two genes were inactivated separately and in combination. Wild-type cells contain high levels of Mg^2+-dependent guanylyl cyclase activity (Fig. 2). Guanylyl cyclase activity in sgc- cells is reduced to about 30% of the activity of wild-type cells. In gca- cells, the reduction of guanylyl cyclase activity is much smaller, to about 65% of that in wild-type cells. The double null mutant sgc-/gca- does not contain detectable guanylyl cyclase activity either with Mg^2+/GTP (Fig. 2) or with Mn^2+/GTP as substrate (data not shown). The sensitivity of the assay implies that the guanylyl cyclase activity in the double null cells is maximally 1% of the activity in wild-type cells. Basal cGMP levels are significantly reduced in sgc- cells and slightly reduced in gca- cells. Again, the double null cell line does not contain cGMP above the detection limit (Fig. 2). Additional experiments at different developmental stages and measurements of intracellular cGMP levels in vivo after cAMP stimulation all failed to detect significant levels of guanylyl cyclase or cGMP in the double null cells (data not shown). The guanylyl cyclase double null cells can aggregate and form fruiting bodies; these cells show reduced chemotaxis with approximately the same mild defects as sgc- cells (data not shown).
The results indicate that GCA and sGC account for all guanylyl cyclase activity in *Dictyostelium*. Consequently, this implies that sgc−/H11002 cells can be used to characterize GCA without background of any other guanylyl cyclase, and conversely, gca−/H11002 cells can be used to characterize sGC.

Mg2+ and Mn2+ Dependence of GCA, and sGC and Inhibition by Ca2+—Adenylyl and guanylyl cyclases require bivalent cations to support enzyme activity. In Fig. 3 dose-response curves are shown for gca− and sgc− cells at different concentrations of Mg2+ and Mn2+. The activity of sGC (gca− cells) is about 5-fold higher with Mn2+/GTP than with Mg2+/GTP, with maximal activity at 1–2 mM for both cations (Fig. 3A). Surprisingly, GCA (sgc− cells) is predominantly active with Mg2+/GTP, whereas Mn2+/GTP support only about 30% of the Mg2+-dependent activity (Fig. 3B). As the intracellular concentration of Mn2+ is only 10 μM and Mg2+ reaches a concentration of 3 mM (26), the

![Fig. 1. Two unusual guanylyl cyclases, *Dictyostelium* GCA and sGC. A, schematic of the topology of GCA and sGC with the two cyclase domains associated as an antiparallel dimer. The catalytic site is located at the interface of the two domains but not in the center. Therefore, there are two potential catalytic pockets, α and β. In a homodimer, such as in membrane-bound mammalian guanylyl cyclase GCE, the α and β catalytic sites are identical. However, in heterodimers α and β could be different. The catalytic arginine (Arg1029 in ACII) is indicated by a dot. Sequence alignment indicates that GTP is hydrolyzed in the α-site of GCA and in the β-site in sGC (as in all vertebrate cyclases). B, model of the interaction of GTP with amino acid side chains of GCA and sGC based on the three-dimensional structure of ACII/V (6, 35) and modeling of GCE (46). C, the table with the main interactions of substrates with amino acids of membrane-bound and soluble AC (AC/II and sAC), membrane-bound and soluble GC (GCE and GCsol), *Paramecium* GC (GCpar), and the *Dictyostelium* guanylyl cyclases, GCA and sGC. The data are based on sequence alignment and the identification of the amino acids that interact with ATP in the crystal structure of ACII/V. The active catalytic site is defined as the α or β pocket that contains the essential catalytic amino acids (Asn1025 and Arg1029 in ACII/V). In GCE, which is a homodimer, both the α- and β-sites are identical and catalytically active. Unusual amino acids are indicated in boldface italics.](image-url)
physiological substrate of both enzymes is probably Mg2+/GTP.

Ca2+ ions are known to inhibit Mg2+-dependent guanylyl cyclase in Dictyostelium (27–29). Fig. 4 reveals that both GCA and sGC are sensitive to Ca2+ inhibition. The Ca2+ dose dependence suggests that GCA is slightly more sensitive to Ca2+ inhibition than sGC, showing half-maximal inhibition at about 50 nM for GCA and at about 200 nM for sGC. The Mn2+-dependent activity of sGC (18) or GCA (data not shown) is not inhibited by 10 μM Ca2+.

Kinetics of GCA and sGC—cGMP formation is activated in vitro by extracellular cAMP via a G-protein-coupled signal transduction pathway. Expression of the G-protein subunits Ga2 and the single Gβ are essential to activate guanylyl cyclase (12). The Mg2+-dependent guanylyl cyclase activity is stimulated in vitro by GTP\textsubscript{γ}S (10). We observed that GTP\textsubscript{γ}S has no effect on Mn2+-dependent sGC (18) or GCA activity (data not shown). To investigate how GTP\textsubscript{γ}S regulates guanylyl cyclase activity, we determined the \(K_m \) and \(V_{max} \) of GCA and sGC for Mg2+/GTP in the absence and presence of GTP\textsubscript{γ}S (Fig. 5). The results indicate that both enzymes show Michaelis-Menten kinetics without indications for cooperativity and that GTP\textsubscript{γ}S stimulates enzyme activities by increasing the \(V_{max} \) and reducing the \(K_m \) of both enzymes. The \(K_m \) of GCA for GTP is 250 ± 50 μM (Fig. 5A). GTP\textsubscript{γ}S activates GCA by reducing the \(K_m \) to 66 ± 2 μM GTP. In addition, it induces a moderate increase of the \(V_{max} \) from 6.9 ± 0.7 to 9.8 ± 0.1 pmol/min/mg protein. The effect of GTP\textsubscript{γ}S on sGC is approximately the same (Fig. 5B); it reduces the \(K_m \) from 414 ± 110 to 112 ± 10 μM and increases the \(V_{max} \) from 16 ± 3 to 27 ± 1 pmol/min/mg protein. The GTP\textsubscript{γ}S dose dependence of enzyme activation is presented in Fig. 5C. The curves are best fitted by an equation with a Hill coefficient of 1.7 ± 0.4 for both GCA and sGC. Half-maximal activation of GCA is induced by 11 ± 2 μM GTP\textsubscript{γ}S and by 8 ± 2 μM GTP\textsubscript{γ}S for sGC. The data suggest that GCA and sGC are regulated by GTP\textsubscript{γ}S via a similar mechanism.

Developmental Expression of GCA and sGC—Northern blots have suggested that GCA is expressed in wild-type cells mainly during growth and development, whereas sGC is expressed maximally during cell aggregation (17, 18). For quantitation of these Northern blots (Fig. 6A) the expression levels for GCA and sGC during development were normalized for the expression of each gene at 0 h of development. The expression of GCA shows a 70% decline at the onset of cell aggregation (4 h), whereas the expression of sGC increases about 2-fold during cell aggregation. In the multicellular stage, the expression of GCA increases strongly to reach a maximum in the slug stage, which is about 2-fold higher than during growth and 10-fold higher than during aggregation. The expression levels of sGC in the multicellular stages decline to the levels during growth.

GCA activity in vegetative sgc cells is about 6 pmol/min/mg protein, which decreases significantly to 2.5 pmol/min/mg protein in starved cells (Fig. 6B). The Mg2+-dependent activity of sGC in vegetative gca cells amounts to 11 pmol/min/mg proteins and increases to about 17 pmol/min/mg protein during aggregation. These data indicate that during growth 20–40% of the Mg2+-dependent activity is attributed to GCA and 60–80% to sGC. After starvation the total activity increases about 1.5-fold; ~90% is attributable to SGC and ~10% to GCA. The reduction in GCA and increase in sGC activity are consistent with the developmental changes of mRNA expression seen on Northern blots.

Stimulation of GCA and sGC by cAMP, Folic Acid, and Osmotic Stress—Folic acid, cAMP, and osmotic stress induce
the activation of guanylyl cyclase activity in wild-type cells (10). These responses were analyzed in gca− and sgc− null cells to investigate which of the two guanylyl cyclases is activated by these agents (Fig. 7). In sgc− cells (regulation of GCA), the responses are small (follic acid and cAMP) or absent (osmotic stress), indicating that GCA is not or is weakly activated by these agents. In contrast, in gca− cells (sgc regulation), guanylyl cyclase activity is potently activated by follic acid, cAMP, and osmotic stress, indicating that sGC is strongly stimulated by these compounds.

Quantitation of these responses suggests that GCA contributes about 55% to the basal cGMP levels of vegetative wild-type cells and about 40% in starved cells. Folic acid stimulation of sgc− cells leads to a 2.2-fold increase of GCA-produced cGMP levels (filled bar in Fig. 7A) and cAMP stimulates cGMP levels about 2.7-fold in these cells (Fig. 7B). Interestingly, GCA is insensitive to osmotic stress, as sgc− cells show no increase of cGMP levels upon stimulation with 0.3 M sucrose (Fig. 7C). In contrast to the weak responses of GCA, sGC is potently stimulated by these agents, because in gca− cells follic acid and cAMP induce a 5.5- and 8-fold increase, respectively, in cGMP levels. The increase of cGMP levels after stimulation of wild-type cells by osmotic stress is totally attributable to sGC, because this response is fully preserved in gca− cells and is absent in sgc− cells.

DISCUSSION

Dictyostelium contains two genes that encode for unusual GC enzymes, GCA and sGC. Amino acid sequence alignment, phylogenetic studies, and topology suggest that sGC belongs to the small group of soluble AC enzymes present in human, rat, and some bacteria (18, 30). GCA belongs to the large group of prevailing cyclases that harbors nearly all vertebrate ACs and GCs; GCA is most closely related to the family of 12-transmembrane ACs (17). Sequence alignment of cyclase domains and site-directed mutagenesis suggest that one amino acid may be crucial in determining substrate specificity of cyclases, which is a lysine in nearly all adenyl cyclases and a glutamate in guanylyl cyclase (6, 31–34). In GCA this amino acid is glutamate (Glu140) and in sGC an aspartate (Asp1332). Two other amino acids proposed to be important for determining substrate specificity are an aspartate and a glutamine in adenyl cyclases, which are an arginine and cysteine at the same positions in guanylyl cyclases. These amino acids are not conserved in GCA and sGC, as they are replaced by two histidines in GCA and by a glutamate and alanine in sGC. Although it is possible to provide a function for these amino acids in substrate recognition (Fig. 1B), it would be interesting to determine the three-dimensional structure of these unusual cyclases. Mutagenesis of GCA has shown that replacing the glutamate and histidine to the corresponding lysine and aspartate converts GCA into a fully active adenyl cyclase (34). The notion that GCA and especially sGC contain many unusual amino acids at positions that have been shown to provide substrate specificity suggests that conversion of an adenyl to a guanylyl cyclase can be achieved in different ways.

Regulation of adenyllyl and guanylyl cyclases by their natural effectors such as G-proteins or Ca2+ is generally detectable only with Mg2+, whereas Mn2+ uncovers all intrinsic activity (35). This notion also holds for sGC because this enzyme is more active with Mn2+/GTP than with Mg2+/GTP, whereas GTPγS and Ca2+ strongly affect Mg2+-dependent activity but have no effect in the presence of Mn2+. Interestingly, GCA is active predominantly with Mn2+/GTP as substrate, whereas with Mn2+ the activity is reduced at least 3-fold. A trivial but unprecedented explanation for the low Mn2+-dependent GCA activity is that conversion of an adenyl to a guanylyl cyclase can be achieved in different ways.

FIG. 4. Inhibition of GCA and sGC by Ca2+ ions. Mg2+-dependent GC activity was measured in sgc− cells for GCA (solid bars) and in gca− cells for sGC (hatched bars). Ca2+/EGTA buffers were used to obtain the indicated free Ca2+ concentrations. The incubation without added Ca2+ was set as 100%; the amount of cell-derived Ca2+ (maximally 5 μM in the assay) predicts that the free Ca2+ concentration will be 10−9 M or less.

FIG. 5. Kinetics of GCA and sGC. A. Mg2+-dependent GC activity was measured for GCA in sgc− cells at different concentrations of GTP in the presence (●) or absence (○) of 50 μM GTPγS. B, same as in A but using gca− cells for sGC. C. Mg2+-dependent GC activity was measured for GCA in sgc− cells and for sGC in gca− cells at 0.5 mM GTP and different concentrations of GTPγS. The curves represent linear regression analysis (A and B) and a Hill equation (C), respectively; this allows the determination of the Km and Vmax for GTP of GCA (A) and sGC (B) and the Km and Hill coefficient for GTPγS (C). The results suggest that both GCA and sGC are activated by GTPγS with a Km ~10 μM and a Hill coefficient ~1.7; thus, activation is due to an ~1.5-fold increase of Vmax and an ~3.5-fold decrease of Km.
could be that Mn$^{2+}$/H1001-dependent GCA activity remains inhibited by Ca$^{2+}$/H1001. Although lysates contain EGTA to chelate Ca$^{2+}$/H1001, Ca$^{2+}$/H1001 will be released during the GC assay because EGTA has a higher affinity for Mn$^{2+}$/H1001 than for Ca$^{2+}$/H1001. We are not aware of a chelator that binds Ca$^{2+}$/H1001 with 10,000-fold higher affinity than Mn$^{2+}$/H1001, which would be needed to test the hypothesis. However, the small Mn$^{2+}$/H1001-dependent GCA activity could not be inhibited by the addition of 10 mM Ca$^{2+}$/H1001, suggesting that GCA either has low intrinsic Mn$^{2+}$/H1001-dependent activity or that the low Mn$^{2+}$/H1001-dependent activity represents a residual Ca$^{2+}$/H1001-insensitive activity.

Despite the different sensitivities of GCA and sGC to bivalent cations, the physiologically relevant cation is probably Mg$^{2+}$/H1001 for both sGC and GCA, because the intracellular concentration of Mn$^{2+}$/H1001 (~10 μM) is too low to support activity, whereas the Mg$^{2+}$/H1001 concentration (~3.5 mM) is sufficient. It is expected that GCA with 12 hydrophobic segments is found in the particulate fraction of a cell lysate and that sGC without hydrophobic segments resides in the soluble fraction. All Mg$^{2+}$/H1001- and Mn$^{2+}$/H1001-dependent GCA activity was found in the particulate fraction.2 Previously (18) we demonstrated that a significant portion of sGC (~20% of Mn$^{2+}$/H1001-dependent activity) is measured in the particulate fraction and is equally active with Mg$^{2+}$/H1001, whereas the large soluble Mn$^{2+}$/H1001-dependent activity is nearly

2 J. Roelofs and P. J. M. Van Haastert, unpublished observations.

Fig. 6. Developmental expression of GCA and sGC. A, mRNA was isolated from wild-type cells that were starved for different periods. Northern blots of this mRNA were probed with DNA-encoding fragments of GCA or sGC. The data shown are a quantification of these Northern blots and are presented for each gene relative to the expression in vegetative cells. The developmental stages indicate hours of starvation (numbers), vegetative cells (v, 0 h), slugs (s, ~14 h), and culminants (c, about 22 h). B, Mg$^{2+}$/H1001-dependent GC activity was measured in lysates from 1- and 5-h starved cells (sgc$^{-}$/H1002 for GCA and gca$^{-}$/H1002 for sGC). Cells were lysed in the presence of GTP·S. The data suggest that GCA activity is generally lower than sGC activity and that GCA is expressed mainly during growth and late development, whereas sGC is expressed mainly during aggregation.

Fig. 7. In vivo stimulation of GCA and sGC by folic acid, cAMP, and osmotic stress. Cells were starved for 1 h (folic acid and osmotic stress) or 5 h (cAMP) and stimulated with 1 μM folic acid (A), 0.1 μM cAMP (B), or 300 mM glucose (C). Cells were killed with perchloric acid just before stimulation (open bars) or with folic acid and cAMP 10 s after stimulation and with glucose 10 min after stimulation (hatched bars). cGMP levels were determined in the neutralized lysates. The fold stimulation levels are presented as filled bars.

Characterization of Dictyostelium Guanylyl Cyclases
inactive with Mg\(^{2+}\)/GTP as substrate. Thus, both GCA and sGC are membrane-associated enzymes with the physiologically relevant cation Mg\(^{2+}\).

GCA as well as sGC can be stimulated by the chemoattractants folic acid and cAMP, although maximal stimulation of GCA is much weaker (2.5-fold) than maximal stimulation of sGC (8-fold). There is no simple explanation for this difference, because potential regulators such as GTP\(\gamma\)S and Ca\(^{2+}\) have nearly the same effect on GCA as on sGC. Perhaps sGC is activated by additional mechanisms, a supposition that is also supported by the observation that osmotic stress activates sGC but not GCA. Translocation of soluble sGC to the membrane or modification of soluble sGC by which it becomes active with Mg\(^{2+}\)/GTP could provide the additional activation of sGC that is not possible for GCA.

The mechanism by which GTP\(\gamma\)S stimulates GCA and sGC is not straightforward. Ample evidence indicates that in vivo chemoattractants stimulate cGMP formation through a G-protein-mediated pathway. No detectable cGMP formation occurs upon stimulation of cells in which the single G\(\beta\) subunit has been deleted, suggesting that chemotactic stimulation of GCA and sGC are both mediated via heterotrimeric G-proteins (37). In vitro GTP\(\gamma\)S stimulates both GCA and sGC by inducing a 1.5-fold increase of the \(V_{\text{max}}\) of the enzyme and a 3.5-fold reduction of the \(K_{\text{m}}\) for GTP. Also the \(K_{\text{m}}\) and Hill coefficient for the GTP\(\gamma\)S dose dependence of GC stimulation are similar for both enzymes, which may suggest that GCA and sGC are regulated by the same GTP-binding protein. The in vitro GTP\(\gamma\)S activation of sGC and GCA could represent the aforementioned essential requirement of heterotrimeric G-proteins for chemoattractant-mediated stimulation in vivo. However, several anomalies have been observed that are not consistent with a heterotrimeric G-protein as the target for GTP\(\gamma\)S-mediated GC activation. First, GTP\(\gamma\)S still stimulates GC activity in lysates from G\(\beta\)-null cells (37), suggesting that at least the prevailing sGC is still sensitive to GTP\(\gamma\)S. In addition, upon mutation of GCA to an adenylyl cyclase, the enzyme is still stimulated by GTP\(\gamma\)S when expressed in cells with a deletion of G\(\beta\) or two Ga subunits (34). Second, both GCA and sGC show normal Michaelis-Menten kinetics, suggesting that GTP does not stimulate these enzymes. Third, it has been observed in starved wild-type cells (mainly expressing sGC) that addition of GTP before GTP\(\gamma\)S inhibits the stimulating effect of GTP\(\gamma\)S (28). These observations suggest that the target of GTP\(\gamma\)S rapidly hydrolyses GTP and slowly releases the produced GDP. These properties have often been found in small GTP-binding proteins that, unlike Go, do not require a G\(\beta\) for activation. This may suggest that the guanylyl cyclases in Dictyostelium are regulated via the concerted activation of surface receptors, heterotrimeric G-proteins and small G-proteins. A similar hypothesis was recently obtained for Saccharomyces cerevisiae where G\(\beta\)\(\gamma\) recruits Far1p leading to the activation of Cdc42p (38), as well as for other systems like fibroblasts, COS-7 cells, and human airway smooth muscle cells where G\(\alpha\) mediates the activation of p21\(^{ras}\) (39–41).

The function of cGMP during chemotaxis and multicellular development is emerging. Previous mutant analysis uncovered several mutants with chemotaxis defects that have an altered cGMP metabolism (see Ref. 10), notably mutant IK-8, which has very low cGMP levels. In comparison with the absolute chemotaxis-null phenotype of IK-8, chemotaxis of gca\(^{-}\)/sgc\(^{-}\) double null cells is relatively normal. It has been demonstrated that cGMP induces the phosphorylation and rearrangement of myosin heavy chain II filaments. Chemotaxis of mhcII\(^{-}\) null cells is disturbed but not absent. The preliminary phenotypic experiments on gca\(^{-}\)/sgc\(^{-}\} double null cells suggest that cGMP may play a role in chemotaxis through myosin filament formation but is not absolutely requires for chemotaxis as is the case for myosin heavy chain. Detailed computer-assisted chemotaxis analysis and phosphorylation of the myosin heavy and light chains of gca\(^{-}\)/sgc\(^{-}\} single and double null cells is in progress and should uncover the mechanism by which cGMP regulates chemotaxis.

The identification of two guanylyl cyclases in Dictyostelium, GCA and sGC, uncovers unexpected evolutionary traits. GCA has the topology of a 12-transmembrane adenyl cyclase, whereas sGC is the homolog of a soluble adenyl cyclase. No close phylogenetic relationship can be found with mammalian guanylyl cyclase (17, 18), suggesting that the mammalian guanylyl cyclases, GCA and sGC, each developed independently into a guanylyl cyclase. From a biochemical point of view this may not be very surprising, considering the relative ease by which an AC can be converted experimentally to a GC (31–34, 42, 43). However, from an evolutionary perspective, one would expect that AC to GC interconversions would have occurred more frequently. In the family of phosphodiesterases that hydrolyze cAMP and cGMP, a change of substrate specificity during evolution may have been relatively common (44, 45), but it seems also scarce in cAMP- and cGMP-dependent protein kinases. Apparently, the specificity of cyclases and kinases cannot be changed easily because the mechanisms that regulate cyclases and the substrate specificity of kinases have to remain functionally coupled.

Acknowledgments—Some properties of GCA were established during the initial characterization of sgc\(^{-}\} cells in collaboration with Drs. P. Schaap and M. Meima (research supported by The Netherlands Organization of Scientific Research (NWO)).

REFERENCES
Characterization of Dictyostelium Guanylyl Cyclases