SUMMARY

The management of patients with differentiated thyroid cancer is the main topic of this thesis.

Chapter 1 gives a short introduction in the anatomy and physiology of the thyroid gland. Knowledge about the regulation of thyroid growth and the transformation into a malignant thyroid tumor is summarized. Thyroid tumors can be divided in several histologic types, of which differentiated thyroid carcinoma is the most common form. In most differentiated thyroid cancers three important functional features of the normal thyroid cell are preserved, namely, the ability to respond to thyroid stimulating hormone (TSH), the ability to accumulate iodide and the ability to secrete thyroglobulin. These specific functional features are utilized in the management of patients with differentiated thyroid carcinoma.

In chapter 2 arguments for a genetic basis of differentiated thyroid carcinoma are described. The arguments can be found in epidemiological data, in the occurrence of occult carcinomas, in the occurrence of multifocality of the tumor and in the risk factors for tumor development. In approximately 5% of patients the differentiated thyroid cancer is dominantly inherited. Existing knowledge about germline mutations and somatic mutations in differentiated thyroid carcinoma is described. Currently, research into a specific germline mutation as basis for the development of familial differentiated thyroid carcinoma has yielded inconclusive results. Several genes have already been implicated, but no single locus has yet been identified by linkage analysis. It is hypothesized that association analysis will be of more value in elucidating the genetic base of differentiated thyroid cancer than linkage analysis.

Chapter 3 gives an overview of the management of differentiated thyroid carcinoma in elderly patients. Approximately 25% of the patients in which differentiated thyroid cancer is diagnosed, is 60 years or older. The prognosis of elderly patients is poor compared to younger patients, because old patients more often present with poor prognostic features, such as large tumors, follicular or Hürthle cell subtypes, extrathyroidal growth and distant metastases. Current therapy consists of a total thyroidectomy, if necessary combined with a lymph node dissection and followed by radioiodine ablation. Radioiodine therapy in elderly patients meets specific problems, concerning thyroid hormone withdrawal, side effects of 131I and nursing problems. Special attention is given to the use of external radiotherapy, chemotherapy and hormonal therapy in elderly patients. Additional treatment of residual, recurrent or metastatic disease must be tailored, according to the stage of the disease, and should not be denied on the basis of chronological age. Lifelong treatment with suppressive thyroid hormone therapy does not lead to long-term side effects at old age.
Because of the rarity of differentiated thyroid carcinoma and the high overall survival rate, prospective randomized studies addressing issues of diagnosis, treatment and follow-up, are hardly available. It is unlikely that such studies will become available in the near future. Instead, data from large patient cohort studies has to learn the clinicians, what is the best way to treat patients with differentiated thyroid carcinoma. In chapter 4 the results are presented of a cohort of 504 patients with differentiated thyroid carcinoma, referred to the Department of Endocrinology of the University Hospital Groningen for treatment with radioiodine over the past 23 years. All patients were initially treated with (near-) total thyroidectomy and 97% of patients received ¹³¹I ablation for residual thyroid tissue. Efficacy of ablation was checked after 3 months. Residual disease was treated in a 3 months treatment interval with¹³¹I. A follow-up regimen, including annual physical examination and serum thyroglobulin measurements without diagnostic ¹³¹I whole-body scintigraphy, was used for patients in complete remission. Mean follow-up was 9 years (range: 1 month - 23 years). In 85% of patients ablation, checked after 3 months, was successful and in 59% of patients treatment was completed within 6 months after initial surgery. At 10 year the overall survival was 87%. Recurrence occurred in 8.5% of patients. Risk factors for recurrence were older age at presentation, extrathyroidal growth and follicular or Hürthle cell subtype. It was concluded that the efficacy of ¹³¹I ablation in patients with differentiated thyroid carcinoma can be successfully checked already after 3 months. There reported treatment strategy with a short ¹³¹I treatment interval shows a low recurrence rate and a high overall survival rate. These results justify a follow-up regimen limited to annual physical examination and serum thyroglobulin measurements for patients in complete remission.

In the literature considerable variations exist in the follow-up protocols for patients with differentiated thyroid carcinoma after initial treatment with total thyroidectomy and radioiodine ablation. Most protocols rely on serial diagnostic ¹³¹I imaging and serum thyroglobulin measurements. The applied diagnostic ¹³¹I doses vary between 37 and 370 MBq. Better lesion detectability is obtained by higher diagnostic doses. The aim of the study, described in chapter 5 was to determine the yield of a high-dose diagnostic scan with 370 MBq ¹³¹I in patients with a negative low-dose diagnostic scan with 74 MBq ¹³¹I. Retrospective evaluation was performed in 158 patients, who received a high-dose diagnostic scan with 370 MBq ¹³¹I because of a negative low-dose diagnostic scan with 74 MBq ¹³¹I. In 127 (80%) of patients the 370 MBq ¹³¹I scan was negative, similar to the preceding low-dose scan. In 31 (20%) of patients abnormal uptake was present on the 370 MBq diagnostic scan. In 19 of these 31 patients serum thyroglobulin was undetectable. Special attention was paid to the patients with positive high-dose diagnostic scanning and undetectable serum thyroglobulin levels after thyroid hormone withdrawal. The high-dose diagnostic scan was false positive in seven patients and solitary thyroid bed uptake was seen in eight patients. In only four patients (2.5%) the high-dose diagnostic scans revealed relevant uptake caused by residual differentiated thyroid cancer. It was concluded that in 97.5% of patients the 370 MBq ¹³¹I diagnostic scan had no additional
value over the combination of a low-dose diagnostic 131I scan with 74 MBq and a serum thyroglobulin level measurement for correct clinical decision making whether the patient requires additional 131I therapy.

Management of patients with negative diagnostic radioiodine scanning and elevated serum thyroglobulin levels, is a widely debated problem. It is advocated to treat patients with a negative 131I diagnostic whole-body scan with an empirical therapeutic dose of 100 -300 mCi 131I. However, the therapeutic benefit of this treatment is not clear. The aim of the study described in chapter 6 was to investigate the course of serum thyroglobulin and clinical outcome in patients with differentiated thyroid carcinoma, negative diagnostic 131I scanning and elevated serum thyroglobulin levels during thyroid hormone withdrawal, after treatment with the so-called “blind treatment” with high-dose 131I therapy. We identified 56 patients in the above mentioned cohort of 504 patients, who were treated with a blind therapeutic dose of 150 mCi 131I. Median follow-up from the blind therapeutic dose until end of observation was 4.2 years (range: 0.5 -13.5 years). Among the 56 blindly treated patients, 28 patients showed uptake at the posttherapy whole-body scan and 28 patients had a negative posttherapy whole-body scan. No differences between both groups were found in change of serum Tg before and after blind treatment. During follow-up 18 patients of the 28 patients with a positive posttherapy whole-body scan achieved remission compared to 10 of the 28 patients with a negative posttherapy whole-body scan ($P=0.06$). In the negative posttherapy whole-body scan group nine patients died because of their disease and none in the negative posttherapy group. This led to a different 5-years survival between both groups ($P=0.001$) with a better overall survival in the positive posttherapy group. It is likely that a better functional differentiation of the tumor, which is reflected by a positive posttherapy whole-body scan, is the main reason for the favorable prognosis in these patients.

Chapter 7 gives a short report of the first experience in the University Hospital Groningen of the use of 18F-fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET) scanning as a new diagnostic modality in differentiated thyroid cancer patients. FDG-PET was performed in 11 patients with differentiated thyroid carcinoma who all had undergone total thyroidectomy and 131I ablation therapy and in whom serum thyroglobulin (median 9.7 ng/ml) during suppression therapy with thyroxin, remained detectable, despite a negative whole-body scan with 150 mCi 131I. In all patients FDG-PET was read as positive. However, in seven of 11 patients (64%) other imaging techniques found no anatomical substrate and the FDG-PET was interpreted as false positive. Most of the false positive locations were considered to be cervical and thoracic lymph nodes. A change in clinical management directed by FDG-PET was made in only one patient (9%). Caution is suggested in the interpretation of abnormal uptake of FDG.

The influence of TSH stimulation on the accumulation of FDG in persistent, recurrent or metastatic differentiated thyroid carcinoma is studied in chapter 8. The accumulation of 131I, needed for diagnosis, is attained by the patient who underwent both treatments after thyroid hormone withdrawal. TSH stimulation was verified using suppression scanning. The TSH stimulation led to a change in clinical management (PET during TSH stimulation). The outcome of patients treated with 131I and with FDG-PET during TSH stimulation was worse compared to TSH suppression.

In chapter 9 the outcome of patients with large bone metastases, who underwent resection, was compared to the effect of radioiodine treatment. Serum thyroglobulin levels were elevated in all patients, but the bone metastases could not be found. Radioiodine therapy led to a reduction in serum thyroglobulin levels compared to the pretherapy scanning. The outcome of patients treated with radioiodine therapy was compared to the patients who were treated with radioiodine therapy and bone metastases treated with embolization.

In chapter 10 seven patients undergoing radioembolization were described. Seven patients were treated, four bone metastases, one lung metastasis, and one cervical lymph node metastasis.
A serum sample was taken from the patient.

Elevated serum thyroglobulin levels were observed in patients with a metastatic dose of radioiodine. The combination of serum thyroglobulin levels and protein expression in tissue sections was diagnostic of thyroid cancer in patients with a metastatic dose of radioiodine. The positive and negative predictive values of these tests were 95.7% and 100%, respectively.

In patients with bone metastases of differentiated thyroid carcinoma, the outcome of patients with bone metastases is worse compared to the overall prognosis of patients with differentiated thyroid carcinoma. In chapter 9, the results of embolization as a new therapeutic approach for patients with large bone metastases, are described. Five symptomatic patients, who presented with a large unresectable bone metastasis of differentiated thyroid carcinoma were treated with radioiodine and embolization. The effect of this combined treatment was compared to the effect of radioiodine without embolization in a historical control group of six patients. Serum thyroglobulin levels, pain and neurological symptoms were scored. Both groups were treated similar with total thyroidectomy followed by ablation with 5.6 GBq (= 150 mCi) 131I and a second dose of 5.6 GBq 131I three months later, except for embolization in the embolization group, which took place between the two radioiodine treatments. Radioiodine therapy with or without additional embolization resulted in a rapid relief of pain and neurological symptoms. However, in the embolization group serum thyroglobulin at the second 131I therapy had decreased by 88.7%, which was more compared to the decrease of serum thyroglobulin in the control group (18.6%). CT-scanning showed a median volume reduction of the metastasis after radioiodine treatment combined with embolization of 52.5%. Embolization was not accompanied with severe complications and was well tolerated. This preliminary study suggests that embolization of bone metastases of differentiated thyroid carcinoma in combination with radioiodine treatment results in a better initial reduction of serum thyroglobulin level compared to radioiodine treatment alone.

In chapter 10 a pilot study in seven patients is described in which marimastat is added to embolization in the treatment of bone metastases. Marimastat is an inhibitor of matrix metalloproteinases. These matrix metalloproteinases are required for angiogenesis. All seven patients underwent total thyroidectomy, radioiodine therapy and embolization of bone metastases. Six patients discontinued marimastat therapy after a median of 12
weeks, four because of tumor progression, two because of severe musculoskeletal symptoms. In one patient the bone metastasis showed regression after marimastat combined with embolization. It was concluded that the addition of marimastat to embolization had no clear beneficial effects. In addition, musculoskeletal adverse effects proved to be a serious drawback.

FUTURE PERSPECTIVES

Differentiated thyroid cancer is a rare disease with a favorable prognosis. There is, however, a striking difference between 10-years overall survival and disease-free survival (87% vs. 69%) (chapter 4). This implies that most patients are cured after initial therapy with surgery and radioiodine. However, a considerable percentage of patients live for many years with persistent disease. A smaller part of these patients have more aggressive disease and dye rather soon after diagnosis. Only a small percentage of patients have recurrent disease after complete remission. The treatment and follow-up strategies for these different patient categories still need improvement. We have shown in chapter 4 that a limited regimen for long-term follow-up is justified for patients in complete remission. However, it is important to maintain detailed databases for long-term follow-up, also of these patients in complete remission. Cancer survivorship research must monitor late recurrences, late mortality, late toxicity related to the initial therapy or thyroid hormone suppressive therapy, second neoplasms, etcetera. This may also result in the identification of adverse effects in certain subpopulations (e.g. children, elderly, females in childbearing age) and in the development of effective prevention or intervention strategies. Life-long follow-up is thus necessary. This implies that a large number of differentiated thyroid cancer survivors has to be followed in the future. An increasing role for regional hospitals besides specialized centers is to be expected in monitoring these patients. Therefore, the patients should visit the specialized endocrine cancer centre for example every five years.

The exploration of new, perhaps more intense, diagnostic or treatment procedures is justified for patients with persistent disease and patients with a high risk for recurrence. Future research should especially focus on these patient categories with a less favorable prognosis. Improvement in the understanding of the biology and genetics of differentiated thyroid carcinoma may lead to new therapeutic targets and approaches. This research is an opportunity for employing interdisciplinary collaboration between endocrinologists, oncologists, nuclear physicians, epidemiologists and geneticists in and outside The Netherlands.

Treatment protocol

The results of the studies described in chapters 4, 5 and 6, have already been incorporated into a revised treatment and follow-up protocol for patients with differentiated thyroid carcinoma (Appendix 1). Two major adaptations compared to the old protocol were made.

First, follow-up referring hospitals and annual physical examination of patients with differentiated thyroid carcinomas, treatment, will be updated. The Universal Hospital Performance Chart has been updated. In all stages, it has lost the indication to perform a bone scan for bone metastasis and limited additional imaging exam will be performed.

The clinical evaluation will include serum thyroglobulin (Tg) measurement, body-scan, tumor markers and a prognostic evaluation and a treatment plan to manage the disease.

Molecular basis

Knowledge of the genetic basis of differentiated thyroid cancer is limited. More recent research on cancer and genes has revealed that diagnostic and patient classification is still the same but with a more accurate, better prognostic tool for patients with a worse prognosis.

An inherited pattern has been identified, and can be expected to have a genetic basis for differentiation. The approach is to use genetic testing to identify genetic abnormalities and focus in search for specific patient categories. These regions can be used to measure the involvement in the patient.

New strategies

A relative new technique to evaluate differentiated thyroid carcinoma is the PET scan. This study describes the use of 18F-fluorodeoxy-glucose (FDG)-PET scan for the detection of metastatic disease and for the clinical problems. The FDG-PET scan can be used to detect metastatic disease and the recurrence of thyroid carcinoma.