Induction of a metabolic syndrome relies on timing of high fat feeding and brain melanocortin system blockade.
Morens, C.A.O.; Vries, K. de; van Dijk, Gertjan

Published in:
Diabetologia

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2003

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Differential role of insulin in the Nitric Oxide (NO) production and Plasminogen Activator Inhibitor-1 (PAI-1) release in fibroblasts from insulin resistant individuals. Insights into the signaling pathway.

A. Pandoli,1 A. Solini,3 S. Di Silvestre1, P. Ghiozzi,2 G. Formoso3, A. Consoli2
1University G d’Annunzio, Chieti, Italy
2University of Pisa, Pisa, Italy

Background and Aims: Insulin resistance is associated to both increased plasma PAI-1 and decreased NO availability. This might contribute to accelerated atherosclerosis in insulin resistant states. Insulin can stimulate both NO and PAI-1 release in a variety of cell types. However, in order for PAI-1 to be increased in insulin resistant states, one has to postulate that, in these conditions, pathways leading to insulin stimulated PAI-1 synthesis are still insulin sensitive while pathways leading to NO production are impaired. We determined insulin effect on both NO and PAI-1 release in fibroblasts from individuals with different degrees of insulin resistance.

Materials and Methods: Six fibroblast strains were cultured from skin biopsies obtained from 3 insulin sensitive (IS, clamp M>7mg/Kg/min) and 3 insulin resistant (IR, clamp M<5mg/Kg/min) volunteers matched for age and BMI. On each strain, we measured, in separate experiments, insulin stimulation of NO synthesis (conversion of H+-arginine into H+-citrulline) and PAI-1 release (ELISA).

Results: Insulin stimulated PAI-1 release was not different in fibroblasts from IS and IR individuals (54±6 vs 43±5 ng/ml and 100±11 vs 88±9 ng/ml), at 10 and 100 nM insulin respectively, p= n.s.). Conversely, the effect of insulin (100nM) on NO release was significantly less in fibroblast from IR as compared to IS individuals (respectively 0.85±0.09 vs 1.25±0.14 nmol/mg/min; p<0.05). To gain insight into the signaling pathways leading to insulin stimulated PAI-1 release, we repeated the experiments in the presence and in the absence of Ly2940029 (an inhibitor of phosphatidylinositol 3-kinase [PI3-K]) or of PD98059 (an inhibitor of mitogen-activated protein kinases [MAPK]). After exposure to Ly2940029, insulin (100nM) induced PAI-1 secretion was decreased in both fibroblasts from IS and IR individuals, by 70% ± 6 and 65% ± 5, respectively (both p<0.05 vs control). Exposure to PD98059 was also followed by decreased insulin induced PAI-1 release in both cell strains (both by > 65% as compared to control, p< 0.05). This shows that insulin stimulated PAI-1 synthesis in both cell strains is due to PI3-K activation followed by MAPK activation.

Conclusion: We conclude that insulin ability to stimulate PAI-1 release is preserved in cells from IR individuals in which NO release is resistant to insulin stimulation and that MAPK activation plays a central role in insulin stimulation of PAI-1 release in cells from both IR and IS individuals. Thus, in the insulin resistance syndrome, hyperinsulinemia might be one the culprit for the observed increase in PAI-1 levels while insulin resistance can account for impaired insulin induced vasodilation.

Induction of a metabolic syndrome relies on timing of high fat feeding and brain melanocortin system blockade.

C. A. O. Morens, K. de Vries, G. van Dijk
Animal Physiology, University of Groningen, Haren, Netherlands.

Background and aims: Obesity is associated with the development of a metabolic syndrome characterized firstly by an insulin and leptin resistance. In a rat model for diet induced obesity (blockade of the brain melanocortin system by a 14-day icv infusion of SHU9119 combined with a high fat diet), we previously observed that, despite exaggerated hyperleptinemia in SHU9119-treated HF rats relative to rats fed a high carbohydrate diet (HC, CHO = 60% of energy), plasma insulin and adiponectin levels were comparable among diet groups. The present study investigated whether these secretion profiles of adipose and muscle hormones are influenced by the duration of adaptation to HF feeding before SHU9119 treatment.

Materials and Methods: Male Wistar rats (n=64) were either adapted to HF feeding for 2 months prior to the onset of SHU9119-infusion (LT), or were switched from the HC to the HF diet at the onset of SHU9119 infusion (ST).

Results: Following 14-day SHU9119 treatment, early light phase plasma leptin levels were not different among groups (44.4 ± 7.7 ng/ml in LT and 36.5 ± 5.3 ng/ml in ST rats). Baseline plasma adiponectin levels were significantly higher in LT (7.9 ± 0.9 mg/ml) than in ST rats (5.0 ± 0.4). Interestingly, plasma insulin levels were markedly higher in ST (33.0 ± 7.4 mg/ml) than in LT (8.3 ± 1.1 mg/ml). These, despite comparable increases in food intake, plasma adiponectin was 36 % lower, whereas plasma insulin was 400% higher in ST relative to LT rats.

Conclusion: This dramatic increase in plasma insulin concentration in ST rats might indicate severe insulin resistance as a consequence of acute HF exposure and low brain melanocortin activity.

Paid by QLK4-CT-2001-51977 to CM.

Prevention of obesity and insulin resistance by glucokinase expression in skeletal muscle of transgenic mice.

P. J. Otaegui, T. Ferre, E. Riu, F. Bosch
Dept. Biochemistry and Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain.

Background and Aims: In type 2 diabetes, glucose phosphorylation, a regulatory step in glucose utilization by skeletal muscle, is impaired. Since glucokinase expression in skeletal muscle of transgenic mice increases glucose phosphorylation, we examined whether these mice can counteract the obesity and insulin resistance induced by a high-fat diet.

Materials and Methods: Transgenic mice expressing glucokinase in skeletal muscle were fed a high-fat diet for 12 weeks. Effects on body weight, food intake, glucose tolerance and insulin sensitivity were analysed.

Results: When fed this diet, control mice became obese while transgenic mice remained lean. Furthermore, high-fat fed control mice developed hyperglycemia and hyperinsulinemia (a 3-fold increase), indicating that they were insulin resistant. In contrast, transgenic mice were normoglycemic and showed only a mild increase in insulinemia (1.5-fold). They also showed improved whole-body glucose tolerance and insulin sensitivity and increased intramuscular concentrations of glucose 6-phosphate and glycogen. A parallel increase in uncoupling-protein 3 mRNA levels in skeletal muscle of GK-expressing transgenic mice was also observed.

Conclusion: These results suggest that the rise in glucose phosphorylation by glucokinase expression in skeletal muscle leads to increased glucose utilization and energy expenditure that counteracts weight gain and maintains insulin sensitivity.