Exploiting multilevel preconditioning techniques in eigenvalue computations
Sleijpen, Gerard L.G.; Wubs, Fred W.

Published in:
SIAM: Journal on Scientific Computing

DOI:
10.1137/S1064827599361059

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2003

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
https://doi.org/10.1137/S1064827599361059
EXPLOITING MULTILEVEL PRECONDITIONING TECHNIQUES IN EIGENVALUE COMPUTATIONS∗

GERARD L. G. SLEIJPEN† AND FRED W. WUBS‡

Abstract. In the Davidson method, any preconditioner can be exploited for the iterative computation of eigenpairs. However, the convergence of the eigenproblem solver may be poor for a high quality preconditioner. Theoretically, this counter-intuitive phenomenon with the Davidson method is remedied by the Jacobi–Davidson approach, where the preconditioned system is restricted to appropriate subspaces of codimension one. However, it is not clear how the restricted system can be solved accurately and efficiently in the case of a good preconditioner. The obvious approach introduces instabilities that hamper convergence.

In this paper, we show how incomplete decomposition based on multilevel approaches can be used in a stable way. We also show how these preconditioners can be efficiently improved when better approximations for the eigenvalue of interest become available. The additional costs for updating the preconditioners are negligible. Furthermore, our approach leads to a good initial guess for the wanted eigenpair and to high quality preconditioners for nearby eigenvalues. We illustrate our ideas for the MRILU preconditioner.

Key words. eigenvalues and eigenvectors, Davidson method, Jacobi–Davidson, multilevel ILU-preconditioners

AMS subject classifications. 65F15, 65N25

DOI. 10.1137/S1064827599361059

1. Introduction. The Jacobi–Davidson method [19, 18] is an iterative method for computing one selected eigenvalue with an associated eigenvector of standard as well as generalized eigenvalue problems. In [8], an extension of the Jacobi–Davidson method is given that computes a set of eigenpairs. The method is flexible and efficient.

For the generalized eigenvalue problem,

\[Ax = \lambda Bx, \]

the method extracts its approximate eigenvector \(u \) from a search subspace by testing \(u \) with associated approximate eigenvalue \(\vartheta \) against a test subspace (a Petrov–Galerkin approach). The dimensions of the two subspaces are equal and relatively low with respect to the dimension, \(n \), of the full problem (1.1). The approximate eigensolution (\(\vartheta, u \)) is used to compute effective expansion vectors for both the search and the test subspace. The expanded subspaces lead to better approximate eigenvectors, and the process can be repeated if the required accuracy has not been achieved.

The Petrov–Galerkin approach guarantees that the residual of the approximate eigenpair, \(r \equiv Au - \vartheta Bu \), is orthogonal to the test subspace. We assume that \(u \) is of unit length. The computation of the expansion vectors requires the (approximate) solution \(z \) of a correction equation:

\[(I - q q^*) (A - \vartheta B) (I - u u^*) z = -r, \]

\[z \perp u, \]
where $q \equiv Bu/\|Bu\|$. The search subspace is expanded with z. We expand the test subspace with Bz, but other convex combinations of Az and Bz can also be used [18, 8]; see also section 2.3.

If the correction equation (1.2) is solved exactly, then this method can be viewed as an accelerated Newton method [20, 18, 26], and with proper selections of the approximate eigensolutions (ϑ, u), the method converges quadratically [19]. For realistic, high dimensional problems (n large), it is usually not feasible to compute the solution of (1.2) exactly. However, solutions that are accurate enough also lead to fast convergence [19, 8]. The preconditioning techniques that we will discuss in this paper aim to accelerate iterative solvers for the linear system (1.2). We will explain how preconditioners of multilevel ILU type [15, 13, 4, 2] can be used efficiently: often one preconditioned step solves (1.2) sufficiently accurately.

The projections in (1.2) have a double effect. Not only do they lead to effective expansion vectors, but they also improve the conditioning of the linear system (think of the realistic situation where $u \approx x$, $\vartheta \approx \lambda$, and 0 is a simple eigenvalue of $A - \lambda B$). The conditioning is of importance for numerical stability of the solution and for the speed of convergence of iterative linear solvers. Unfortunately, the projections also complicate some of the computations.

Although (1.2) is a linear system that can be treated without reference to the eigenproblem, ignoring the special nature of the system will affect the efficiency of the eigenproblem solver. Both the approximate eigenvalue ϑ and the approximate eigenvector u are updated with every expansion step. The Davidson method [7, 10, 11] ignores u, and often ϑ is replaced by some fixed target value τ. For the expansion vector the solution z of the system

$$Mz = -r \tag{1.3}$$

is taken, where M is some convenient but fixed preconditioner for $A - \tau B$. A better approximation M of $A - \lambda B$ may be expected to lead to faster convergence. Unfortunately, as was observed in [6, 14], the opposite can happen: preconditioners that are excellent in the sense that they approximate $A - \lambda B$ very well may lead to stagnation of the Davidson method. Olsen, Jørgensen, and Simons [12] noted the importance of the vector u, and—for symmetric standard eigenproblems ($A^* = A$ and $B = I$)—they suggested to compute z as

$$z = -M^{-1}r + \alpha M^{-1}q, \quad \alpha \equiv u^*M^{-1}r/u^*M^{-1}q, \tag{1.4}$$

thus solving (see [19])

$$M_u z = -r \quad \text{with} \quad M_u \equiv (I - qq^*)M(I - uu^*), \tag{1.5}$$

with M still a fixed preconditioner for $A - \tau B$. For experimental results showing Olsen’s improvements of the Davidson method, see [12]. As pointed out in [19, 8, 21], approach (1.4) can be used conveniently as a preconditioner for iterative linear solvers of the system (1.2). However, there are two potential drawbacks with this approach. In the first place, no advantage is taken of the improved eigenvalue approximation ϑ. But more important, the solution z can be seriously affected by rounding errors if it is computed in the straightforward approach of (1.4). To see this, consider the case where $M \approx A - \vartheta B$ then $M^{-1}r \approx u$. Since $z \perp u$, approach (1.4) computes z as the difference of two nearby vectors. Therefore, serious pollution by rounding errors can make the expansion vector ineffective. Note that this may happen in cases where
problem (1.5) is well-conditioned (if, for instance, $M \approx A - \lambda B$, $\vartheta \approx \lambda$, $u \approx x$, and 0 is a simple eigenvalue of $A - \lambda B$). So, if M is a good preconditioner for $A - \lambda B$, the method may run into problems also with Olsen’s approach. An example of the effect of this instability in the Olsen approach can be found in section 4.3.

The observations above can be summarized as follows. Since λ is not known in advance, a good preconditioner for $A - \tau B$ is used in the hope that this is a good preconditioner for $A - \lambda B$ as well. It is expected that this leads to a good preconditioner for (1.2). Since $A - \lambda B$ is singular, the preconditioners that are expected to be effective will be ill-conditioned. The ill-conditioning will be in the direction of the wanted eigenvector, which is precisely the reason why the preconditioner is expected to be effective for eigenvector computation, since components in the direction of the wanted eigenvector will be amplified. Unfortunately, it also hampers stable computation, which may obstruct full exploitation of the potentials of the preconditioner for eigenvalue computation.

If a good preconditioner for $A - \lambda B$ is of block ILU type then, due to the ill-conditioning, some diagonal block of its factors will have a relatively small singular value. For a proper and stable treatment of the projections in (1.5) we would like to control the position of this “ill-conditioned” block. Preconditioners of multilevel ILU type, such as NGILU (nested grids ILU) [24], ILUM (multi-elimination ILU) [15], MRILU (matrix renumbering incomplete LU-decomposition) [4], and MLILU (multilevel ILU) [2], offer this possibility: while keeping their factors sparse, they “push” the ill-conditioned block to the lower-right position of the matrix. We will show in section 3.1 that this property can be exploited to avoid stability problems with the projections. For this, it is convenient to switch to a representation of (1.5) with augmented matrices (cf. section 2.3).

If K is a preconditioner for $A - \tau B$ and ϑ is closer to λ than τ, then $K - (\vartheta - \tau)B$ can be viewed as a preconditioner for $A - \lambda B$. To allow efficient computations, we modify this preconditioner using first order Neumann series (cf. section 2.2). Here, we also need control over the position of the ill-conditioned block (see also section 2.2). For good multilevel preconditioners K, this leads to preconditioners M that depend on ϑ and that improve as ϑ approaches λ. The construction of a K (see section 2.1.1) is the costliest part of the construction of M. However, K has to be constructed only once, and at low additional costs M can be constructed and efficiently updated if better approximation ϑ of λ become available during the computational process (see section 3.2).

The preconditioner M can also be used to efficiently obtain a good initial search subspace for the Jacobi–Davidson process (see section 3.3).

In summary, we want to demonstrate in this paper that multilevel preconditioners possess attractive features that can be exploited in the computation of eigenvalues and eigenvectors and that lead to

- more stability (more robustness)
- effective updates of the preconditioner if better eigenvalue approximations become available
- good initial approximations of the eigenpairs at low additional costs.

For practical reasons, we select the multilevel preconditioner MRILU [4] to illustrate our ideas. It is not our purpose to identify the most effective preconditioner for eigenvalue problems. Nevertheless, we feel that MRILU is an attractive preconditioner for certain eigenvalue problems from discretized partial differential equations.

In section 2, we discuss the ingredients for our preconditioner: MRILU (section
2. Ingredients. We discuss the ingredients for our preconditioner.

2.1. Block incomplete LU-decompositions. If τ is a good target, i.e., there is some eigenvalue λ close to τ, then $A - \tau B$ will be ill-conditioned. Block LU-decompositions of $A - \tau B$ will have an ill-conditioned diagonal block.\footnote{One of the diagonal blocks will have a singular value that is relatively small with respect to the singular values of the other blocks. For ease of exposition, we say that this block is ill-conditioned.} This will also be the case for good incomplete decompositions. Rows and columns can be simultaneously reordered such that the ill-conditioned block will appear at the lower-right position. A reordering and partitioning strategy can be used to identify a well-conditioned diagonal block A_1 of $A - \tau B$ of almost full dimension:

$$A - \tau B = \begin{bmatrix} A_1 & E_u \\ E_\ell & A_2 \end{bmatrix}.$$ \hfill (2.1)

Some details are given below. The Schur complement of the well-conditioned part is an ill-conditioned matrix block, but it is one of low dimension. A preconditioner K can now be constructed by approximating the well-conditioned diagonal block by an incomplete LU-decomposition K_1. The other blocks, in particular the diagonal block associated with the ill-conditioned Schur complement, are included in K as they are:

$$K = \begin{bmatrix} K_1 & E_u \\ E_\ell & A_2 \end{bmatrix} = \begin{bmatrix} K_1 & 0 \\ E_\ell & I \end{bmatrix} \begin{bmatrix} I & K_1^{-1} E_u \\ 0 & \bar{A}_2 \end{bmatrix}.$$ \hfill (2.2)

We are interested in a modification of the preconditioner K in which the projections of (1.5) are used for stabilization. In section 2.3 we will explain how to accommodate these projections such that the ill-conditioning of the Schur complement $\bar{A}_2 \equiv A_2 - E_\ell K_1^{-1} E_u$ is harmless. The preconditioner K, or rather the factors of K_1, can be constructed simultaneously with the reordering and the partitioning, following a recursive construction.

In section 2.1.1 below, we give some details of the strategy followed in the construction of MRILU \cite{4}.\footnote{In practical computations, the reordering is through renumbering of indices. This explains why “renumbering” is used in the name MRILU.} We employ this specific multilevel preconditioner in our experiments.

2.1.1. MRILU. For simplicity of presentation, we assume that $\tau = 0$: in the general situation, A in the construction below can be replaced by $A - \tau B$.

In the first step, the columns and the rows of A are reordered simultaneously such that, with respect to the new ordering, A can be partitioned as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

with square diagonal blocks with the following properties: A_{11} is well-conditioned, A_{11} is of size of order n (i.e., A_{11} is $\kappa n \times \kappa n$ with $0 \ll \kappa \leq 1$), and a matrix C_1 that approximates A_{11}^{-1} well is explicitly available. In fact, the ordering and partitioning

\[\text{2.1) Neumann series (section 2.2), and augmented systems (section 2.3). Then, in section 3, we explain how to put the ingredients together. Numerical results are presented in section 4.} \]
strategy in MRILU yields a block A_{11} that is strongly diagonally dominant, and for C_1, the inverse of the diagonal of A_{11} is taken. With the Schur complement

$$\tilde{A}_{22} \equiv A_{22} - A_{21}C_1A_{12},$$

the preconditioner

$$\begin{bmatrix} C_1^{-1} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} C_1^{-1} & 0 \\ A_{21} & I \end{bmatrix} \begin{bmatrix} I & C_1A_{12} \\ 0 & \tilde{A}_{22} \end{bmatrix}$$

(2.4)

can be associated with this first step.

The computation of an exact solution of the preconditioned system is feasible only if the size of \tilde{A}_{22} is much less than n. If this is not the case, a reordering, partitioning, and approximation strategy such as for A can be applied to \tilde{A}_{22} in a second step. This can be repeated until, say, in step k, the Schur complement $\tilde{A}_{k+1,k+1}$ is of low dimension or the strategy fails to identify a well-conditioned part of relatively large size.

In the end, we have reordered and partitioned the matrix A as a $k+1$ by $k+1$ block matrix with, from top to bottom, blocks of exponentially shrinking order. The k by k left upper part is the matrix A_1 of (2.1); $A_{k+1,k+1}$ is \tilde{A}_2 of (2.2). The preconditioner K in (2.2) is exactly the one that is obtained if the standard construction of the factors L and U of the block LU-decomposition of the reordered A is followed, but with the inverses of the “pivot blocks” replaced by C_1, C_2, \ldots. In our actual computations, we store the ingredients (permutation, partitioning, approximate inverses C_j, \ldots) and solve systems associated with K by forward elimination and back-substitution.

Note that, in the successive steps, the Schur complements (such as \tilde{A}_{22}) will be more sparse if small elements of the off-diagonal blocks in A_{21} and A_{12} are removed as well (i.e., dropped or lumped on the diagonal). Sparse Schur complements allow diagonal blocks of higher order (i.e., they allow larger κ). This is desirable since it may increase the efficiency of the preconditioning steps. On the other hand, inaccurate Schur complements may result in a block \tilde{A}_2 that is less well-conditioned or of higher order. This may result in a less effective preconditioner. The dropping and lumping strategies form the major differences within the class of the preconditioners of multilevel ILU type. In MRILU, the removed elements are lumped to the diagonal, and the dropping tolerance, determined by a parameter ε, is a relative one. Elements are dropped when they are small with respect to relevant diagonal elements of the Schur complement yet to be formed. For the purpose of the dropping criterion, these diagonal elements are temporarily computed in advance. With this “look-ahead” step, growth of the ill-conditioning of the Schur complements, due to the lumping, can be avoided. Note that the parameter ε determines the fill. We refer to [4] for a detailed discussion. We also refer to this reference for details on the relation to similar approaches such as, e.g., in [24, 15, 13].

Of course, B and all n-vectors should be ordered and partitioned as $A - \tau B$ (cf. (2.1)). In the rest of this paper, we will implicitly assume that this is the case.

2.2. Neumann series

We will be interested in eigenvalues λ close to some target value τ. Suppose some appropriate preconditioner K for $A - \tau B$ is available (cf. section 2.1). Since τ approximates λ, K can be viewed as a preconditioner for $A - \lambda B$. Nevertheless, we would like to improve K efficiently to an even better preconditioner M for $A - \lambda B$ as better approximations for λ become available. Our approach can be described as follows.
Suppose \(\vartheta \) is a better approximation for \(\lambda \) than \(\tau \). Then, with \(\delta_\vartheta \equiv \vartheta - \tau \), it is tempting to take \(K - \delta_\vartheta B \) as a preconditioner for \(A - \lambda B \). However, this is attractive only if systems of the form \((K - \delta_\vartheta B)s = r \) can be solved efficiently, which in general is not the case. Therefore, we propose to solve these equations only approximately using first order Neumann series for the inverse of the operator,

\[
(K - \delta_\vartheta B)^{-1} = (I - \delta_\vartheta K^{-1}B)^{-1}K^{-1} \approx K^{-1} + \delta_\vartheta K^{-1}BK^{-1};
\]

our preconditioner \(M \) for \(A - \lambda B \) is such that \(M^{-1} = K^{-1} + \delta_\vartheta K^{-1}BK^{-1} \). This approach allows efficient computations. Note that the Neumann series approximation will give an improvement on \(K \) only if \(K \) itself is a good preconditioner for \(A - \tau B \).

In the above, we tacitly assumed that the approximation by Neumann series is accurate. This is, however, only the case if \(K \) is relatively well-conditioned (that is, if \(\|K^{-1}B\| \) is not too large). Unfortunately, if \(\tau \) is close to \(\lambda \), then \(K \) may not be expected to be both well-conditioned and a good preconditioner for \(A - \tau B \). Therefore, the approach sketched above needs some modification. We partition \(K \), as explained in section 2.1, and we use first order Neumann series on well-conditioned parts and exact inversion on others; for details, see section 3.2. Since, specifically for good preconditioners \(M \) for \(A - \lambda B \), Olsen’s approach (1.4) is unstable, we will use another representation of (1.5) that we discuss now (see section 2.3).

2.3. Augmented matrices. As explained above, the preconditioner \(M \) may be expected to be ill-conditioned. However, this will not be the case for its projection \((I - \varrho q^*q)M(I - u_*u^*) \). To see this, we first note that (see [18]) (1.5) is mathematically equivalent to the augmented system

\[
\begin{bmatrix}
M & q \\
u^* & 0
\end{bmatrix}
\begin{bmatrix}
z \\
\alpha
\end{bmatrix}
= -
\begin{bmatrix}
r \\
0
\end{bmatrix};
\]

that is, \(z \) is an exact solution of (1.5) if and only if it exactly solves (2.5) for some scalar \(\alpha \). In section 3.1, we will explain why representation (2.5) is also convenient in connection with the multilevel ILU preconditioner of the previous section.

We will now make plausible that the matrix in (2.5) is well-conditioned. For a more detailed discussion and more quantitative results, we refer to [22, section 2.3] (see also [1, 5, 26]).

Consider the extreme case where \(0 \) is a simple eigenvalue of \(M \) with \(q \) and \(u \) a left and right eigenvector, respectively. Simplicity of \(0 \) implies that \(u_*q \neq 0 \) and that \([M q] \) is of rank \(n \) with kernel spanned by \([u^T, 0]^T \). The only part of this kernel which is admitted by the last row \([u_* 0] \) of the augmented matrix is the zero vector. Hence, the augmented matrix is nonsingular. It can be proved that the augmented matrix is well-conditioned whenever \(0 \) is a well-conditioned eigenvalue of \(M \). If \(M \) is a good preconditioner for \(A - \lambda B \), \(\lambda \) is a well-conditioned simple eigenvalue of the generalized eigenvalue problem (1.1), \(u \) is a good approximation of the eigenvector \(x \), and \(q = Bu \), then we are close to the situation as considered above and the augmented matrix will also be well-conditioned. Moreover, the conditioning of the augmented matrix is comparable to that of the projected matrix in (1.5). If, on the other hand, \(u \) is not (directionally) close to \(x \), then the augmented matrix can be ill-conditioned (see [26] also for some instructive examples).

In section 3.3 we will explain how the multilevel ILU preconditioners of section 2.1 can provide accurate approximations of the desired eigenvectors before starting the Jacobi–Davidson process. By taking such an approximation as an initial guess in the
Jacobi–Davidson method, the stage in which (2.5) might be ill-conditioned can be avoided.

In the above discussion we assumed that \(\mathbf{q} = \mathbf{Bu} \). This choice corresponds to a test subspace that is the image of the search subspace under \(\mathbf{B} \). We considered this choice only for ease of explanation. Alternatives, where \(\mathbf{B} \) is replaced by another linear combination of \(\mathbf{B} \) and \(\mathbf{A} \), can improve the performance of the eigenproblem solver [8]. In [8], it is argued that, specifically for the computation of eigenvalues that are not extreme, the combination \(\mathbf{A} - \tau \mathbf{B} \) (the harmonic Petrov–Galerkin approach; cf. [8]) facilitates a safer selection of the approximate eigenvector from the search subspace. The vector \(\mathbf{Au} - \tau \mathbf{Bu} \) may lead to an augmented matrix with weaker conditioning. However, experiments in [8] indicate that a safer selection compensates for a weaker conditioning of (1.5) that is associated with harmonic Petrov values. The conditioning of the augmented systems (2.5) will in general be comparable to the conditioning of (1.5). Therefore, we expect the harmonic approach to be more effective also in relation to the augmented systems (2.5).

3. The recipe. Now, we only have to put the ingredients properly together to find effective preconditioners for (1.2).

First, construct a preconditioner \(\mathbf{K} \) for \(\mathbf{A} - \tau \mathbf{B} \) as explained in section 2.1. Next, follow the ideas of section 2.2 and modify \(\mathbf{K} \) to find a preconditioner for \(\mathbf{A} - \varphi \mathbf{B} = (\mathbf{A} - \tau \mathbf{B}) - \delta \mathbf{q} \mathbf{B} \) with the same block structure and similar conditioning as \(\mathbf{K} \). We give details in section 3.2. Finally, augment the resulting preconditioning system (see section 2.3) to accommodate the rank-one projections.

In section 3.1, we will explain why and how augmentation of \(\mathbf{K} \) efficiently leads to an accurate solution of the projected preconditioning equation (1.5) with \(\mathbf{M} = \mathbf{K} \).

Once the factors of the preconditioner are available, a good initial approximation for the eigenpair \((\lambda, \mathbf{x}) \), with \(\lambda \) a generalized eigenvalue close to \(\tau \), can also be efficiently computed, as we will see in section 3.3.

In this section, we suppose that \(\mathbf{K} \) is a good preconditioner for \(\mathbf{A} - \tau \mathbf{B} \). \(\tau \) is a good target, i.e., \(\tau \) is close to some eigenvalue \(\lambda \), and \(\mathbf{K} \) is ordered and partitioned as in (2.2): \(\mathbf{K}_1 \) is well-conditioned and of dimension almost \(n \), and the systems associated with \(\mathbf{K}_1 \) can be efficiently solved. For \(\mathbf{B} \) we use the same ordering and partitioning:

\[
(3.1) \quad \mathbf{K} = \begin{bmatrix} \mathbf{K}_1 & \mathbf{E}_u \\ \mathbf{E}_\ell & \mathbf{A}_2 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} \mathbf{B}_1 & \mathbf{F}_u \\ \mathbf{F}_\ell & \mathbf{B}_2 \end{bmatrix}.
\]

3.1. Accurate solution of systems with the augmented preconditioner. To see why the present preconditioner \(\mathbf{K} \) allows for a stable and efficient solution method of (2.5) with \(\mathbf{M} = \mathbf{K} \), note that, with \((\mathbf{u}_1^*, \mathbf{u}_2^*) = \mathbf{u}^*, (\mathbf{q}_1^*, \mathbf{q}_2^*) = \mathbf{q}^* \), \(\bar{\mathbf{u}}_2^* \equiv \mathbf{u}_2^* - \mathbf{u}_1^* \mathbf{K}_1^{-1} \mathbf{E}_u \), \(\bar{\mathbf{q}}_2 \equiv \mathbf{q}_2 - \mathbf{E}_u \mathbf{K}_1^{-1} \mathbf{q}_1 \), and \(\beta \equiv -\mathbf{u}_1^* \mathbf{K}_1^{-1} \mathbf{q}_1 \), we have

\[
(3.2) \quad \begin{bmatrix} \mathbf{K}_1 & \mathbf{E}_u & \mathbf{q}_1 \\ \mathbf{E}_\ell & \mathbf{A}_2 & \mathbf{q}_2 \\ \mathbf{u}_1^* & \mathbf{u}_2^* & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{K}_1 & \mathbf{E}_u & \mathbf{q}_1 \\ \mathbf{E}_\ell & \mathbf{I} & 0 \\ \mathbf{u}_1^* & 0^* & 1 \end{bmatrix} \begin{bmatrix} 1 & \mathbf{K}_1^{-1} \mathbf{E}_u & \mathbf{K}_1^{-1} \mathbf{q}_1 \\ 0 & \tilde{\mathbf{A}}_2 & \tilde{\mathbf{q}}_2 \\ 0^* & \bar{\mathbf{u}}_2^* & \beta \end{bmatrix}.
\]

Since \(\tau \) is close to \(\lambda \), \(\mathbf{K} \) will also be a good preconditioner for \(\mathbf{A} - \lambda \mathbf{B} \), and the matrix at the left-hand side of (3.2) will in general be well-conditioned (cf. section 2.3). Moreover, \(\mathbf{K}_1 \) is well-conditioned, which makes the “L-factor” in the LU-decomposition in (3.2) well-conditioned. Consequently, the “U-factor” is also
well-conditioned. Therefore, although \tilde{A}_2 is an ill-conditioned block, the augmented matrix

$$
\begin{bmatrix}
\tilde{A}_2 & \tilde{q}_2 \\
\bar{u}_2 & \bar{\beta}
\end{bmatrix}
$$

must be well-conditioned, and systems with this matrix will be accurately solvable with direct methods (such as LU-decomposition, possibly using entries from the last row as a pivot). Since the matrix in (3.3) is of low dimension, direct methods for such systems are efficient enough.

Note that (3.2) can also be obtained if the reordering, partitioning, and approximation strategy leading to K is applied to the augmented system associated with $A - \tau B$ and the reordering did not touch the position of the last row.

3.2. Updating the incomplete factorization. The preconditioner for $A - \varphi B = (A - \tau B) - \delta_\varphi B$ is constructed from $K - \delta_\varphi B$. A straightforward factorization according to the block partitioning of (3.1) would require the inversion of $K_1 - \delta_\varphi B_1$, or solving systems involving this operator, which are both unattractive options. Therefore, following the ideas of section 2.2, we choose to approximate the inverse by $C_\varphi \equiv (I + \delta_\varphi[K_1^{-1}B_1])K_1^{-1}$. Since K_1 is well-conditioned, this is accurate provided that δ_φ is not too large (cf. section 2.2). The resulting approximate Schur complement of $K_1 - \delta_\varphi B_1$ in $K - \varphi B$ is given by

$$
\tilde{A}_2 \approx \tilde{A}_2 - \delta_\varphi \tilde{B}_2,
$$

which can be simplified further by neglecting terms of order δ_φ^2:

$$
\tilde{A}_2 = A_2 - E_\varphi K_1^{-1}E_u,
\tilde{B}_2 = B_2 - E_\varphi K_1^{-1}F_u - [F_\ell - E_\varphi K_1^{-1}B_1][K_1^{-1}E_u].
$$

Note that \tilde{A}_2 is the Schur complement of K_1 in K (cf. (2.2)). The simplifications lead to the following approximate block factorization of $K - \delta_\varphi B$ that we use as a preconditioner for $A - \varphi B$:

$$
M \equiv M_{\delta_\varphi} \equiv \begin{bmatrix}
\bar{C}_\varphi^{-1} & 0 \\
E_\varphi - \delta_\varphi F_\ell & I
\end{bmatrix}
\begin{bmatrix}
I & \bar{C}_\varphi(E_u - \delta_\varphi F_u) \\
0 & \tilde{A}_2 - \delta_\varphi \tilde{B}_2
\end{bmatrix}.
$$

The system $M(x_1^T, x_2^T)^T = (b_1^T, b_2^T)^T$ can be solved as follows:

1. Solve x_1 from $K_1x_1 = b_1$.
2. Compute $x_1 \leftarrow x_1 + \delta_\varphi[K_1^{-1}B_1]x_1$.
3. Compute $\tilde{x}_2 = b_2 - E_\varphi x_1 - \delta_\varphi F_\ell x_1$.
4. Solve x_2 from $(\tilde{A}_2 - \delta_\varphi \tilde{B}_2)x_2 = \tilde{x}_2$.
5. Compute $\tilde{x}_1 = [K_1^{-1}E_u]x_2 - \delta_\varphi[K_1^{-1}F_u]x_2$.
6. Compute $x_1 \leftarrow x_1 - \tilde{x}_1 - \delta_\varphi[K_1^{-1}B_1]\tilde{x}_1$.

The components \mathbf{K}_1, \mathbf{A}_2, \mathbf{B}_2 and the quantities in square brackets are computed in the construction phase of the preconditioner (as will be explained below). None of these quantities depends on θ. The only nonlinear dependency on θ is in $(\mathbf{A}_2 - \delta \mathbf{B}_2)^{-1}$ (in step (4)). But the matrix here is of low dimension. Therefore, the scalar θ can be changed in the preconditioner at virtually no extra cost: the preconditioner can be efficiently updated whenever a better approximate eigenvalue θ becomes available.

The matrix

$$
(3.6) \quad \mathbf{\check{B}} = \begin{bmatrix}
\mathbf{K}_1^{-1} \mathbf{B}_1 & \mathbf{K}_1^{-1} \mathbf{F}_u \\
\mathbf{F}_\ell - \mathbf{E}_\ell \mathbf{K}_1^{-1} \mathbf{B}_1 & \mathbf{B}_2 - \mathbf{E}_\ell \mathbf{K}_1^{-1} \mathbf{F}_u
\end{bmatrix}
= \begin{bmatrix}
\mathbf{K}_1 & 0 \\
\mathbf{E}_\ell & \mathbf{I}
\end{bmatrix}^{-1}
\begin{bmatrix}
\mathbf{B}_1 & \mathbf{F}_u \\
\mathbf{F}_\ell & \mathbf{B}_2
\end{bmatrix}
$$

is computed recursively from \mathbf{B} simultaneously with the preconditioner \mathbf{K}: whenever reordering, partitioning, and block elimination steps are applied to the appropriate Schur complement in \mathbf{A}, the same steps are applied to the corresponding blocks in the “updated \mathbf{B}” (the “current” $\mathbf{\check{B}}$ is multiplied by the inverse of the left factor in (2.4)). Further, to maintain sparsity, our lumping strategy for \mathbf{A} is also followed for \mathbf{B}, in the intermediate steps as well as in the construction of \mathbf{B}_2 from the contributing blocks (cf. (3.6) and (3.4)).

The major costs for constructing the preconditioners \mathbf{K} and the components for its update \mathbf{M} are in the construction of \mathbf{K} (finding the reordering, partitioning, and diagonal approximations). Moreover, in our applications, the matrix \mathbf{B} is more sparse than \mathbf{A}. Therefore, the additional costs for constructing the factors in (3.6) and \mathbf{B}_2 are small. Similarly, the additional costs for working with \mathbf{M} rather than with \mathbf{K} are small.

The modification as suggested in section 3.1 for \mathbf{K} (see (3.2)) can also be applied to \mathbf{M} and leads to accurate solutions of system (1.5).

3.3. Computing approximate eigenpairs of the preconditioner. Since \mathbf{K} is a good preconditioner for $\mathbf{A} - \tau \mathbf{B}$, the small eigenvalue δ of the generalized eigenvalue problem

$$
(3.7) \quad (\mathbf{K} - \delta \mathbf{B}) \mathbf{y} = \mathbf{0}
$$

may be expected to be a good approximation for $\lambda - \tau$, for λ close to τ. The eigenvector \mathbf{y} associated with δ will have a relatively large component in the direction of the eigenvector \mathbf{x} of (1.1) associated with λ. We will indicate how, for the present preconditioner \mathbf{K}, an approximate solution of problem (3.7) can be obtained efficiently. This approximation for \mathbf{y}, and thus for \mathbf{x}, can be included in the initial search subspace of the Jacobi–Davidson process.

Consider the operator $\mathbf{M}_\delta = \mathbf{M}$ of (3.5), now with $\delta_0 = \delta$. As motivated in section 3.2, \mathbf{M}_δ approximates $\mathbf{K} - \delta \mathbf{B}$ well for small δ. Therefore, if \mathbf{M}_δ is singular for some small value $\overline{\delta}$ and $\mathbf{M}_\delta \mathbf{\check{y}} = \mathbf{0}$, then $(\mathbf{K} - \delta \mathbf{B}) \mathbf{y} \approx \mathbf{0}$ and $(\overline{\delta}, \mathbf{\check{y}})$ will approximately solve (3.7) (which can be seen from the Bauer–Fike theorem). For ease of discussion, we call these approximate eigenpairs $(\overline{\delta}, \mathbf{\check{y}})$ of (3.7) pre-eigenpairs (of the preconditioner). With $\mathbf{\check{y}} = (\mathbf{\check{y}}_1^T, \mathbf{\check{y}}_2^T)^T$, the problem $\mathbf{M}_\delta \mathbf{\check{y}} = \mathbf{0}$ is equivalent to

$$
(3.8) \quad \begin{cases}
\mathbf{A}_2 \mathbf{\check{y}}_2 - \overline{\delta} \mathbf{B}_2 \mathbf{\check{y}}_2 = \mathbf{0} \\
\mathbf{\check{y}}_1 = - (\mathbf{I} + \delta [\mathbf{K}_1^{-1} \mathbf{B}_1]) ([\mathbf{K}_1^{-1} \mathbf{E}_u] - \overline{\delta} [\mathbf{K}_1^{-1} \mathbf{F}_u]) \mathbf{\check{y}}_2.
\end{cases}
$$

Note that $\mathbf{\check{y}}_1$ can easily be computed if $\overline{\delta}$ and $\mathbf{\check{y}}_2$ are available (second equation of (3.8)). These quantities $\overline{\delta}$ and $\mathbf{\check{y}}_2$ comprise the solution of a generalized eigenvalue
problem of low dimension (first equation of (3.8)) and they can be computed exactly using dense matrix techniques (QZ algorithm [9]).

Since the matrices \tilde{A}_2 and \tilde{B}_2 do not depend on δ or y, this approach can be used to obtain approximations for all eigenvectors of problem (3.7) that are associated with sufficiently small eigenvalues δ. If the ingredients for the preconditioner M have been computed, then the pre-eigenvectors can be efficiently computed at hardly any additional computational costs.

In case of a standard symmetric eigenvalue problem (i.e., $A^* = A$ and $B = I$), our approach here for computing approximate eigenvalues coincides with one in [3], where wavelet-based preconditioners are discussed for certain symmetric eigenvalue problems. The derivation in [3] runs along other lines and it seems that it cannot be easily extended to the case of generalized eigenvalue problems. For standard symmetric eigenvalue problems, [3] also provides error bounds for the approximate eigenvalues $\tilde{\delta}$.

3.4. Discussion. The preconditioner M_δ in (3.5) may be expected to be effective for eigenvectors that are close to singular vectors of M_δ for some δ close to $\tau - \vartheta$. For eigenvalues λ that are further away from τ, M_δ could be employed as well, but success can not be guaranteed: for larger δ, the Neumann series approximation $K_1^{-1} + \delta K_1^{-1}B_1 K_1^{-1}$ of $(K_1 - \delta B_1)^{-1}$ may not be accurate enough (on the space spanned by the components x_1 of wanted eigenvectors x), $A_1 - \delta B_1$ can be ill-conditioned, etc.

If the desired eigenvalue is in a cluster of, say, ℓ eigenvalues, the rank-one projections in (1.2) and (1.5) and the one-dimensional expansion (2.5) will not substantially improve the conditioning of the systems. For this type of problem, a block version of the Jacobi–Davidson method would be more appropriate. In such a version, the vector u is replaced by an $n \times \ell$ orthonormal matrix U, where the columns of U approximate a basis for the invariant subspace associated with the cluster of eigenvalues. The eigensystem of the preconditioner (cf. section 3.3) can provide an estimate of the size of the cluster.

If an eigenpair has been detected (i.e., the approximation is sufficiently accurate), a search can be started for another eigenpair. To enhance the performance of the method, the detected eigenvector should be included in the process. Including the detected eigenvector in the search subspace (explicit deflation) prevents the method from recomputing the same old vector. This can also be achieved by restricting the eigenproblem to some appropriate complement of the detected eigenspace [8]. We will give some details on this last approach since it also improves the conditioning of the correction equation. The effects of this improvement (more stability, faster converging linear solvers) compensate for the additional computational costs for handling the restrictions [8]. For stability reasons and to facilitate computations, orthogonal vectors are preferred: rather than computing ℓ eigenvectors, a partial generalized Schur form of order ℓ is computed:

$$AQ = ZS \quad \text{and} \quad BQ = ZT,$$

where Q and Z are $n \times \ell$ orthonormal and S and T are $\ell \times \ell$ upper triangular. Eigenvectors for the pencil $A - \lambda B$ can easily be extracted from this partial Schur form, since $(A - \lambda B)Qx = 0$ if $(S - \lambda T)x = 0$; λ is a diagonal element of $T^{-1}S$.

The next Schur vector, the new $(\ell + 1)$th column for Q, is an eigenvector x of the deflated generalized eigenproblem

$$Q^* x = 0, \quad (I - ZZ^*)A(I - QQ^*)x - \lambda (I - ZZ^*)B(I - QQ^*)x = 0.$$
In line with the Jacobi–Davidson approach, the restriction to a complement of the detected eigenspace is formulated as an orthogonal projection. The eigenvector \(x \) of the deflated system can be computed approximately with Jacobi–Davidson: the \(u \) converges to the new, the \((\ell+1)\)th, column for \(Q \), and the \(q \equiv Bu \) converges to the new column for \(Z \). The “deflated” correction equation that is involved can be written as

\[
\begin{align*}
(\mathbf{I} - [Z, q^\dagger] [Z, q])^\dagger (\mathbf{A} - \vartheta \mathbf{B}) (\mathbf{I} - [Q, u] [Q, u])^\dagger z &= -r. \\
(3.9)
\end{align*}
\]

It is easy to include the projections of rank \(\ell + 1 \) in the preconditioner: simply replace in (1.5), (2.5), and (3.2) the \(u \) and \(q \) by \([Q, u]\) and \([Z, q]\), respectively. Note that \(K_1^{-1} Q \) (see (3.2)) will be available from the computation of the first \(\ell \) Schur vectors. After accepting an approximate Schur vector, the current search subspace can be deflated and used as an initial search subspace for the next Schur vector.

In practical computations, the dimension of the search subspace and the test subspace can become too large and the Jacobi–Davidson process can be restarted with some appropriate lower dimensional subspace of the current search subspace. The reduced subspace will consist of the most promising eigenvector approximations. The resulting algorithm is called the \textit{JDQZ (Jacobi–Davidson QZ) algorithm}. For more details and an efficient implementation, see [8].

4. Numerical experiments. In the experiments below, we apply the preconditioning techniques described in the preceding section to the correction equation in the JDQZ algorithm. We apply this algorithm to compute eigenpairs of discretized convection-diffusion problems and linearized Navier–Stokes equations (see section 4.2). The preconditioners can be used in iterative solvers such as GMRES [17] for solving the correction equations (1.2) and (3.9) approximately. MRILU is a high-quality preconditioner for vectors with large components in the direction of the eigenvectors associated with absolute small eigenvalues (in general, vectors associated with “smooth” functions) and we expect that the solution of (1.5) already provides a good expansion vector for the search subspace. Therefore, we do not apply an iterative method to solve the correction equation. We simply take the preconditioned residual as an expansion vector, using the augmented preconditioner as the preconditioner.

The example in section 4.3 illustrates how Olsen’s approach can suffer from instabilities in the case of an excellent preconditioner. Furthermore, we present comparisons of the \textit{K-variant} from section 2.1.1 and its updated version presented in section 3.2, the \textit{M-variant} (see sections 4.4.2 and 4.7). The results are obtained by a nonoptimized MATLAB code, hence timings are unreliable and will not be presented. However, to get an impression, we will make use of a FORTRAN code of MRILU for the solution of linear systems in order to estimate the performance of the methods presented here (see section 4.4.1). We also discuss effects of the grid size on the convergence and the computational costs (see sections 4.5 and 4.7). In section 4.6 we compare the performance of MRILU with another high-quality preconditioner (LUINC with small drop tolerance) that lacks the features of multilevel preconditioners such as MRILU.

In all our examples, we use the JDQZ algorithm to compute the six eigenpairs with eigenvalues with smallest modulus.

Recall that in each iteration step JDQZ focuses on one approximate eigenpair and its associated residual (see section 1). The figures that show the convergence history give the \(\log_{10} \) of the Euclidean norm of these residuals (along the vertical axis) as a function of the iteration number (along the horizontal axis). The huge jumps in the
curves mark the detection of eigenpairs: an eigenpair approximation is accepted if the norm of the residual is less than 10^{-12}. Then, in the same iteration step, the search is started for another eigenpair, which causes the nonsmall residual at that moment.

4.1. Technicalities. The parameters for the JDQZ algorithm in our experiments were selected as follows.

Initiation. In the initiation phase of JDQZ, we specify an initial search subspace and (six) values $\bar{\tau}$: among the remaining eigenvalues, the jth eigenvalue to be computed should be closest to the jth $\bar{\tau}$. The selection of the $\bar{\tau}$ and of the initial search subspace depends on the preconditioner to be used.

For the K-variant, we take all $\bar{\tau}$ equal to 0. The initial search subspace is one-dimensional and spanned by a random vector.

If we use the M-variant, then we have the ingredients that allow efficient computation of good approximations to the smallest eigenvalues and associated eigenvectors (cf. section 3.3). For this variant, we compute the (six) pre-eigenvalues (cf. section 3.3) that are smallest in modulus. The associated pre-eigenvectors are computed as well and form the initial search subspace. For $\bar{\tau}$, we successively take the pre-eigenvalues in increasing magnitude.

Targets. We search for the eigenvalue nearest to a target τ. The value for τ is reset after each detection of an eigenvalue and is determined as follows. The generalized eigenvalue problem is projected on the current search subspace and the eigenvalue of the projected problem that is closest to the next $\bar{\tau}$ is taken as the new value for τ, where $\bar{\tau}$ is as selected in the initiation phase (see the previous paragraph). The new τ can be viewed as the best approximation of the next wanted eigenvalue that can be computed from the available data. For the first value of τ we take the first $\bar{\tau}$.

Preconditioners. K is constructed for A (cf. section 2.1.1). The preconditioner M is constructed for $A - \tau B$ (cf. section 3.2) and is updated whenever a new value for τ is selected. Note that M is updated only after detection of an eigenvalue and not in each step of JDQZ (when a new approximation ϑ for the wanted eigenvalue is available).

Restarts. The dimension of both the search and the test subspace increases by 1 in each iteration step of the JDQZ algorithm. If dimension 11 is reached, a restart is performed, reducing the dimension to 6.

Test subspace. We follow the harmonic Petrov–Galerkin approach to construct the test subspace (cf. section 2.3) with the value τ computed as explained above; that is, if v is the expansion vector for the search space, then the test space is expanded by $(A - \tau B)v$.

The approximate eigenpairs resulting from testing against this space (cf. section 1) are called harmonic Petrov pairs. In the case of a standard symmetric eigenvalue problem, the harmonic Petrov vector associated with the harmonic Petrov value closest to the target τ is close (in angle) to the wanted eigenvector, provided that the residual is relatively small. With other test subspaces, such as in the Ritz–Galerkin approach (where the test subspace is equal to the search subspace), this need not be the case. Therefore, harmonic Petrov values can be used safely for selecting the most promising approximate eigenpairs. Experiments in [8] suggest that the same conclusion also holds for more general eigenvalue problems. The concerned residual should be small relative to the distance of τ from the nearby wanted eigenvalue λ. Our way of determining the value for τ yields a τ for which $|\lambda - \tau|$ is small, and misselection in the first few steps of JDQZ may result from this otherwise desirable situation. In [21] a simple but efficient strategy is given to circumvent this type of misselection and we
follow this strategy here; for details see [21].

Stopping criterion. We accept an approximate eigenpair if the Euclidean norm of the associated residual is less than 10^{-12}. Then also $|\lambda - \vartheta| \leq 10^{-12}$.

4.2. Test problems. We will concentrate on computing eigenvalues of a simple convection-diffusion operator and, as an example of a generalized eigenvalue problem, we will compute eigenvalues that are relevant in the stability analysis of a solution of the Navier–Stokes equation.

The convection-diffusion eigenvalue problem is defined on the unit square and given by

$$\Delta u + c(u_x + u_y) = \lambda u$$

with $u(0, y) = u(x, 0) = 0$ and $u_x(1, y) = u_y(x, 1) = 0$ on the boundaries. The constant c is specified below. It is discretized on a uniform mesh with central differences leading to the eigenvalue problem

$$Ax = \lambda x.$$

The boundary conditions are incorporated in the discretized operator (matrix) A of the differential operator in the left-hand side of (4.1).

4.3. Olsen versus augmented. In section 1 we noted the potential danger of solving the preconditioned correction equation (1.5) with the strategy of (1.4) (Olsen’s approach) in the case of a high-quality preconditioner M. We argued that instabilities could then be avoided with representation (2.5) and the strategy of section 3.1 (augmented approach). This is illustrated in Figure 4.1, where Olsen’s approach is depicted in the left figure and the augmented one in the right figure. In this example, problem (4.1) is solved for $c = 1$ on a uniform grid of 32 by 32 unknowns, but the phenomenon is not typical for this situation only.

The initial slow convergence in Olsen’s approach is caused by the fact that the first pre-eigenvalue is used as the first target, which renders M singular to machine
precision. Initially the method has severe difficulties getting relevant information in the search space. Nevertheless, the search space expands (though only through noise) and relevant information increases slowly during the first 80 iterations. This, in turn, leads to a right-hand side nearly orthogonal to the wanted eigenvector, which is close (in angle) to the right singular vector of M. Since M is symmetric, both the left and the right singular vector coincide. Hence, the angle between the right-hand-side vector and the left-hand-side vector will be large: the right-hand side is now better “compatible” with the near-singularity of M. The MRILU approach pushes the ill-conditioning to a low dimensional diagonal block to which a robust (direct) solution method for dense linear systems is applied. Such a dense method can handle the situation where the left-hand-side vector is (nearly) orthogonal to the left singular vector (producing least norm solutions). Hence, the effects of ill-conditioning diminish, and the speed of convergence increases.

In the augmented approach (right figure), the ill-conditioning of the right bottom diagonal block is annihilated by the bordering of a vector that is close to the singular vector. Now, we have fast convergence from the beginning.

As mentioned before, in this example, the convection coefficient is $c = 1$. The situation is aggravated by increasing c (results not shown here). The situation is less dramatic if the shift for M is selected farther away from the pre-eigenvalues, but, of course, one wishes to exploit the best approximations that are available.

In Olsen’s approach, two systems have to be solved (see (1.4)). For the augmented variant, the update of the borders in (3.2) costs about the same as solving one system. The costs for solving a system involving (2.2) are comparable to the costs for solving its augmented version (involving (3.2)). Therefore, the computational costs for the augmented approach and Olsen’s are the same. Hence the augmented approach is to be preferred and this is the one that is followed in our other experiments below.

4.4. The effect of updating the MRILU preconditioner. We are interested in the effect of updating the MRILU preconditioner in JDQZ: the K-variant versus the M-variant. We use JDQZ to compute eigenpairs of discretized versions of the convection-diffusion problem (4.1) with $c = 0.1$ on a uniform square grid (see section 4.4.2). First we make some observations on the computational costs of the separate steps.

4.4.1. Cost considerations. When writing this paper, we had only a MATLAB code for our eigenvalue experiments and timings were unreliable. However, the computationally costly ingredients for preconditioned iterative solution methods for linear systems such as Bi-CGSTAB [25] and for JDQZ in the case of eigenvalue problems are comparable if the matrices involved are the same. This fact can be exploited to get an indication of the performance of JDQZ by using timings from a FORTRAN code in which MRILU is used as a preconditioner for Bi-CGSTAB.

In JDQZ as well as in Bi-CGSTAB, a preprocessing phase where the preconditioner is constructed (i.e., the determination of the L and U factors for K and, in the case of JDQZ, the additional ingredients for M) can be distinguished from the iteration phase in which the problem is actually solved. In both methods, each iteration step requires high dimensional operations, such as matrix-vector multiplications (MVs), solves with the preconditioner, vector updates (AXPYs), and inner products (DOTs), plus some low dimensional operations. It is realistic to assume that the computational work for the low dimensional actions is negligible with respect to the work for the high dimensional ones. The number of iteration steps is code-independent and the number of AXPYs and DOTs per step can be counted. With this information, the performance of a FORTRAN code of JDQZ can be predicted from timings for
a FORTRAN code of Bi-CGSTAB. Therefore, we first discuss the performance of Bi-CGSTAB in a relevant setting. Then we interpret the results for JDQZ.

MRILU timings. We discretize (4.1) with $c = 0.1$ on a uniform grid of 256^2 unknowns and apply preconditioned Bi-CGSTAB to solve $Ax = b$ with A as in (4.2) and b as some nontrivial vector. The timings, to be shown, are virtually independent of b. The Bi-CGSTAB iteration with initial guess 0 is stopped at a reduction of the norm of the preconditioned residual by 10^{-15}.

Table 4.1 shows the time needed to construct the preconditioner (factorization time, second column) and the time spent in the iteration phase (solution time, third column). The first column shows the fill, that is, the average number of nonzeros in the rows of the factors of the preconditioner. Recall that for MRILU, the fill is not specified but rather a drop (or lump) tolerance ε that controls the fill (cf. section 2.1.1; in the table $\varepsilon = 0.02, 0.01, 0.001, 0.0005$ from top to bottom). Bi-CGSTAB requires two MVs and two solves with the preconditioner per iteration step; see the fourth column for the time per iteration step. The fifth column shows the number of flops per iterations step divided by the number of unknowns.

Note that the factorization time rapidly increases with increasing fill. The time per iteration step increases more slowly. With more fill, a “better” approximation of A can be anticipated, leading to a reduction in the number of iteration steps of Bi-CGSTAB. The solution time may decrease, and from the table we see that it does. The decrease here depends less sensitively on the fill than on the factorization time. Note that more fill pays itself back if more linear systems with the same matrix are to be solved. Recall that we want to compute six eigenpairs with JDQZ.

Preprocessing phase. The costs for the factorization should not dominate the entire computation. This was not case in our experiments, where JDQZ needs 50 to 100 iterations. Each iteration step requires two solves with the preconditioner and two MVs as for Bi-CGSTAB (although one of the MVs in a JDQZ step is by the matrix B. In our applications, B is much sparser than A). The other costs (as associated with DOTs and AXPYs) are much higher per step for JDQZ (see the paragraph below on JDQZ iteration).

For the computation of the update \hat{B}, that is, the matrix in (3.6), we can only give an indication. In our examples, the fill of \hat{B} is only a fraction of that of K. Since the time for the factorization is related to the amount of fill, the time to build \hat{B} will be only a fraction of that of K (in MATLAB this was indeed the case). Moreover, \hat{B} uses the reordering and partitioning of K.

Iteration phase. The number of flops per unknown for one solve with the factorization K is twice the amount of fill (multiplication and addition counted separately). For the M-variant, twice the fill of \hat{B} has to be added.

<table>
<thead>
<tr>
<th>Fill</th>
<th>Factorization time</th>
<th>Solution time</th>
<th># iteration steps</th>
<th>Time per iteration</th>
<th>Flops per iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>8.4</td>
<td>13.5</td>
<td>16</td>
<td>0.82</td>
<td>74</td>
</tr>
<tr>
<td>18</td>
<td>16.0</td>
<td>10.9</td>
<td>11</td>
<td>0.95</td>
<td>93</td>
</tr>
<tr>
<td>29</td>
<td>47.2</td>
<td>9.2</td>
<td>7</td>
<td>1.2</td>
<td>135</td>
</tr>
<tr>
<td>35</td>
<td>78.5</td>
<td>8.9</td>
<td>6</td>
<td>1.4</td>
<td>160</td>
</tr>
</tbody>
</table>
Table 4.2: Operations and approximate flop count for one iteration step of JDQZ (fill* to be counted only for the M-variant).

<table>
<thead>
<tr>
<th>Operation</th>
<th>Flops per unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve</td>
<td>$4 \text{fill}(K) + \text{fill}^*(B)$</td>
</tr>
<tr>
<td>Expand search and test subspace:</td>
<td></td>
</tr>
<tr>
<td>orthogonalize search subspace</td>
<td>$4(\text{dim}(Q) + \text{dim}(V))$</td>
</tr>
<tr>
<td>multiply by A and B</td>
<td>$2(\text{fill}(A) + \text{fill}(B))$</td>
</tr>
<tr>
<td>orthogonalize test subspace</td>
<td>$4(\text{dim}(Q) + \text{dim}(V))$</td>
</tr>
<tr>
<td>Expand projected eigenvalue problem</td>
<td>4</td>
</tr>
<tr>
<td>Solve projected eigenvalue problem</td>
<td>0</td>
</tr>
<tr>
<td>Compute approximate eigenpair</td>
<td>$6\text{dim}(V) + \text{dim}(Q)$</td>
</tr>
</tbody>
</table>

JDQZ iteration. In Table 4.2 the flop count per unknown per iteration step of JDQZ is shown. In our calculation $\text{dim}(Q) \approx 3$ and $\text{dim}(V) \approx 8$. Moreover, for the convection-diffusion problem, $\text{fill}(A) = 5$ and $\text{fill}(B)$ is 1 (of course, in this example, $B = I$, so there is no need to multiply by B). Hence, apart from the “solve” part, each step requires already about 160 flops per unknown. This is substantial. The double application of the factorization with the highest fill that we will apply (see Table 4.1) costs a similar amount of flops (one should keep in mind that for the latter much indirect addressing is used). Hence, also from this point of view, it is worthwhile to keep the number of iterations low.

4.4.2. The K-variant versus the M-variant. We illustrate the effect of updating the preconditioner for problem (4.1) with $c = 0.1$ on a uniform grid of 32 by 32 unknowns: the matrices have size $n = 1024$.

We apply the MRILU preconditioner K with fill 30 (high fill) and with fill 19 (moderate fill). The corresponding fills in the update \hat{B} are 8 and 5, respectively. Figure 4.2 displays the convergence history of JDQZ with MRILU for the K-variant (top figures) and for the M-variant (bottom figures) for high fill (left figures) and for moderate fill (right figures).

We see that the M-variant leads to a significant reduction in the number of iteration steps.

In the case of high fill (left figures), the K-variant requires 72 iterations, whereas the M-variant detects the wanted eigenpairs in 45 iterations. Therefore, the solve part in the iteration phase of JDQZ needs $72 \cdot 4 \cdot 30 = 8640$ flops per unknown for the K-variant (with a factorization with fill 30) and $45 \cdot 4 \cdot (30 + 8) = 6840$ flops per unknown for the M-variant (with fill $30 + 8$). This already shows a gain for the M-variant of about 21%. The lower number of iteration steps leads to an even higher gain, since the substantial costs for the other operations in JDQZ (see Table 4.2) should also be taken into account.

For moderate fill, the gain is less (17% in the solve part): 81 iterations with fill 19 ($81 \cdot 4 \cdot 19 = 6156$ flops per unknown) and 61 iterations with fill 19+5 ($61 \cdot 4 \cdot 24 = 5124$ flops per unknown).

The gain in the M-variant cannot be explained only from the fact that this variant uses a better initial search subspace than the K-variant. The figures, and also the target values (see the discussion below), show that the effect of a better initial search subspace diminishes after a few steps. Inspection of the slopes in the convergence histories reveals that the speed of convergence of JDQZ for the M-variant is higher.
than for the K-variant, so updating the MRILU preconditioner K improves the quality of the preconditioner. The increasing computational costs per solve are compensated by this improvement.

For both variants, we obtain a fairly high speed of convergence, and there seems to be no need to obtain a more accurate solution of the correction equations with an iterative linear solver (such as GMRES; cf. the introduction to section 4).

From Figure 4.2, we see that the speed of convergence for the K-variant for the first eigenvalue is quite high already after a few steps. For the M-variant, pre-eigenpairs are available and form a better start (see Table 4.3), but the M-variant does not seem to profit from a better start. This is not surprising, since, as can be seen from Table 4.3, zero is also a reasonable guess for the first eigenvalue in this example. Hence, also for the K-variant, relevant information is added to the search subspace straight from the beginning. We will see another example (in section 4.7) where the K-variant needs more steps to reach the phase where JDQZ converges rapidly (even quadratically if the correction equations would have been solved exactly from this step on; see section 1). In such cases, the M-variant profits more from the better start with pre-eigenpairs.

In Table 4.3 the pre-eigenvalues and targets are listed for the case of high fill. The values for the case of moderate fill are similar.

Fig. 4.2. The figures show the convergence history (cf. the caption of Figure 4.1) of JDQZ with MRILU preconditioner for the K-variant (top figures) and the M-variant (bottom figures) with high fill (left figures) and moderate fill (right figures). The convection-diffusion equation (4.1) is solved for $c = 0.1$ on a grid of $32^2 = 1024$ unknowns (see section 4.4.2).
We see that the pre-eigenvalues are quite accurate. As expected (see section 3.3), the difference with the exact eigenvalue increases with the magnitude.

The target value for the last eigenvalue in the K-variant is close to the seventh eigenvalue, and the method converges to this “unwanted” eigenvalue. Convergence to an unwanted eigenvalue (or detection of the eigenvalues in nonincreasing order) may happen for any iterative eigenproblem solver. Here, misselection of the target causes the problem. The danger of misselection can be reduced by increasing the minimal dimension of the search subspace (cf. “Restarts” in section 4.1).

JDQZ tends to produce initial search subspaces for the second and following eigenvalues containing good approximations to the corresponding eigenvectors (see [8]). The approximations tend to be better if more steps are needed for detecting the preceding eigenpair(s). This explains why a better start for the M-variant with pre-eigenpairs is not always reflected in better targets for the second and following eigenvalues (cf. Table 4.3).

From these results we conclude that for this problem updating the MRILU preconditioner improves the performance and that an accurate factorization (higher fill) is helpful.

4.5. Grid independence. The computational costs per unknown for solving discretized convection-diffusion problems with preconditioned Bi-CGSTAB using M-RILU is almost independent of the mesh size [4]. It is of interest to know how JDQZ with MRILU behaves for larger problems.

Figure 4.3 shows the results for the M-variant on a grid of 64^2 unknowns (the left figure) and on a grid of 128^2 unknowns (the right figure) with fills of $34 + 9$ and $37 + 10$, respectively. The result on 32^2 unknowns with a fill of $30 + 8$ displayed before, at the bottom left figure in Figure 4.2, also fits in this sequence. Recall that in MRILU a drop/lump parameter ε controls the fill. We used here the same value for ε for all grid sizes. The fills appear to be comparable, and so are the computational costs per unknown per iterations step, as well as the costs per unknown for the factorization. Therefore, the computational costs per unknown for solving the eigenvalue problem are nearly independent of the grid size if the number of JDQZ iterations steps is nearly independent of the grid size.

We see that the first refinement, with $n = 64^2$, shows only a very modest increase in iteration steps and fill compared to the case $n = 32^2$. In the right plot we see one aberration, although most eigenvalues converge as expected. This is again due to a misselection of the target: the targets for both the third and fourth eigenvalue are close to the fourth eigenvalue. Hence, the third eigenvector is not yet deflated from the problem in the search for the fourth and hampers its convergence. The pre-eigenvalues are accurate in this case. Hence, apart from the aberration, the convergence here is nearly independent of the mesh size.
4.6. A preconditioner that is not of multilevel type. By means of MRILU, we showed how multilevel preconditioners can be efficiently updated if better approximations \(\vartheta \) of the eigenvalue \(\lambda \) become available during the computational process and showed how instabilities due to near-singularities can be avoided. Nevertheless, one may wonder whether other high-quality preconditioners that are not of multilevel type lead to a better overall performance even though it is relatively expensive to compute updates of the preconditioner. It is even conceivable that such preconditioners may do well without being updated.

As an example we also apply JDQZ with Saad’s LUINC (incomplete LU) preconditioner [16, Chap. X] to problem (4.1) with \(c = 0.1 \). The LUINC preconditioner is provided by MATLAB and we use, apart from the drop tolerance, the default settings (pivoting included). In order to be able to conclude safely that JDQZ with MRILU performs better than with LUINC if it requires less iteration steps, we select the drop-tolerance parameter for LUINC such that the preconditioner has (slightly) more fill than MRILU, where for MRILU the fill is the fill for \(K \) plus the fill for \(\tilde{B} \). We try several strategies. In the first strategy (LUINC0), we compute the LUINC preconditioner for \(A \) and use it as a preconditioner for the computation of all of the six wanted eigenvalues. This strategy corresponds to the \(K \)-variant of MRILU. Although it is just as expensive to compute a preconditioner for the shifted system \(A - \tau B \) as it is for \(A \) itself, we also computed and used the LUINC for the shifted system whenever a new \(\tau \) was selected. This is our second strategy (LUINC1). In the first and second strategy, we used Olsen’s approach (1.4) to solve the correction equation. Finally, in the third strategy (LUINC2), we computed the LUINC preconditioner for the augmented matrix variant (2.5) of \(M = A - \tau K \). This approach is extremely costly, since in each step of JDQZ we have a new \(u \) and new \(q \), and, therefore, the preconditioner has to be newly formed from scratch in each step. Except for the computational costs, this approach corresponds to the M-variant of MRILU.

Table 4.4 summarizes the results on four grids with size varying from \(32 \times 32 \) to \(256 \times 256 \). We do not have results for the finer grids for the second and third strategy (LUINC1 and LUINC2) since the construction of the preconditioner took too much time and we feel that the results for the coarser grids already show the relevant behavior.
The number “it” of JDQZ iterations that is needed to compute the six smallest eigenvalues for the convection-diffusion problem on grids with size varying from 32×32 to 256×256. JDQZ is preconditioned with MRILU using the M-variant and with LUINC for three variants (see section 4.6).

<table>
<thead>
<tr>
<th>Method</th>
<th>32 × 32</th>
<th>64 × 64</th>
<th>128 × 128</th>
<th>256 × 256</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>it</td>
<td>fill</td>
<td>it</td>
<td>fill</td>
</tr>
<tr>
<td>MRILU</td>
<td>61</td>
<td>24</td>
<td>44</td>
<td>43</td>
</tr>
<tr>
<td>LUINC0</td>
<td>90</td>
<td>28</td>
<td>73</td>
<td>55</td>
</tr>
<tr>
<td>LUINC1</td>
<td>60</td>
<td>19-27</td>
<td>60</td>
<td>38-56</td>
</tr>
<tr>
<td>LUINC2</td>
<td>60</td>
<td>20-50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For LUINC1 and LUINC2, the conditioning of the matrix $A - \tau B$ becomes worse if τ gets closer to an eigenvalue. As a consequence, it is “harder” to form an LUINC decomposition. This is shown by the increase of the fill (from, for instance, 19 for the first selected τ for LUINC1 on the 32×32 grid to 27 for the sixth τ on the same grid); recall that in LUINC, as in MRILU, the fill is controlled indirectly by the drop tolerance. We used the same drop tolerance for all τ’s. On the coarsest grid (32×32), the number of steps that JDQZ needs is comparable for preconditioners with comparable fill. On the finer grid of size 64×64, JDQZ with MRILU needs significantly less steps than with LUINC1. This may be due to the fact that with LUINC the near-singularity of the matrix $A - \tau B$ is less well controlled than with a multilevel preconditioner such as MRILU (cf. section 3.1). However, experimental results in [4] show that the computational costs per unknown for solving linear systems with MRILU with Bi-CGSTAB are independent of the size of the grid, whereas the costs for LUINC with Bi-CGSTAB increase for finer grids. A similar effect may also play a role in the computation of eigenvalues.

With LUINC0 and with MRILU with comparable fill the costs per JDQZ step are comparable. From the results in Table 4.4 we see that MRILU performs much better than LUINC0. The results for LUINC1 on the coarsest grid suggest that the better performance of MRILU can partly be explained from the effect of updating the preconditioner whenever a new shift τ is selected.

4.7. A generalized eigenvalue problem. We will now show a result for a generalized eigenvalue problem arising from the two-dimensional incompressible Navier–Stokes equations

$$u_t = -uu_x - vu_y + \nu \Delta u - p_x,$$
$$v_t = -uv_x - vv_y + \nu \Delta v - p_y,$$
$$u_x + v_y = 0.$$

Here, u and v are the horizontal and vertical velocities, respectively, p is the pressure, and ν the viscosity parameter. An analysis of the stability of the steady states of these equations leads to generalized eigenvalue problems.

We concentrate on the Navier–Stokes equations for the lid-driven cavity problem, which describes a flow in a square box driven by a moving lid (for an alternative analysis of the stability of this problem for low viscosity, see [23]). We use finite differences on a staggered grid to discretize the equations; apart from the first-order upwind discretization for the convective terms, second order central differences are
The associated generalized eigenvalue problem is in block form represented by

\[
\begin{pmatrix}
 C_{11} & C_{12} & D_x \\
 C_{21} & C_{22} & D_y \\
 D_x^T & D_y^T & 0
\end{pmatrix} - \lambda \begin{pmatrix}
 I & 0 & 0 \\
 0 & I & 0 \\
 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
 u \\
v \\
p
\end{pmatrix} = 0.
\]

(4.3)

The first matrix in this equation is the Jacobian matrix of the discretized Navier–Stokes equations evaluated at the steady solution.

In our computations here, we focus on the eigenvalues closest to the origin for a problem with viscosity \(\nu \) and speed of the lid such that the Reynolds number \(Re \) is = 1000. In our experiment below a very coarse grid of size 15 \(\times \) 15, leading to 675 unknowns, is used. For an impression of the relevant part of the spectrum, see Figure 4.4, where the in modulus smallest eigenvalues are displayed. Since the grid is coarse, the eigenvalues are expected to be inaccurate approximations to those of the continuous problem. However, the experiment in this section is included only to show that the ideas in this paper can also be applied to problems as in (4.3).

For application within MRILU we group per grid cell a triple \((u, v, p)\) and reorder the eigenvalue problem accordingly. Then the first matrix in (4.3) leads to the matrix \(A \) and the second matrix leads to the matrix \(B \) in (1.1). Here, \(B \) is a diagonal matrix with diagonal entries \(B_{ii} = 0 \) if \(i = 0 \mod 3 \) and \(B_{ii} = 1 \) else. Now, it is convenient to work in the MRILU factorization with block diagonals with blocks of size 3 \(\times \) 3 rather than with diagonal matrices (cf. section 2.1.1). (In general these diagonal blocks are nonsingular.)

The matrices are real and the eigenvalues appear in conjugate pairs. This is exploited in the algorithm: a jump in the convergence history may mark detection of a real eigenvalue, but also of a conjugate pair. In Figure 4.5, results for the K-variant (left figure) and for the M-variant (right figure) are shown in the case of 675 unknowns. The fill here is 44 for preconditioner \(K \) and 16 for the update \(\hat{B} \).

As for the convection-diffusion problem, we see that the use of the update improves the performance. The speed of convergence for the M-variant is higher than for the K-variant and that forms the main reason for the better performance. However,
Fig. 4.5. Convergence history of JDQZ for the computation of the six smallest eigenvalues of the Jacobian system of Navier–Stokes (see section 4.7). The matrices are 675 × 675. For the left figure, the K-variant is used, for the right figure, the M-variant.

Table 4.5
Pre-eigenvalues, targets, and computed eigenvalues for the Jacobian of the Navier-Stokes equations (see section 4.7). All values should be multiplied by 0.1.

<table>
<thead>
<tr>
<th></th>
<th>K-variant</th>
<th>M-variant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Target</td>
<td>Computed eigenvalue</td>
</tr>
<tr>
<td></td>
<td>0 2.94 3.68 + 2.62i 3.66 − 2.65i 3.80 − 3.12i 3.84 + 3.21i</td>
<td>1.67 2.94 3.66 + 2.65i 3.66 − 2.65i 3.84 − 3.21i 3.84 + 3.21i</td>
</tr>
<tr>
<td>Pre-eigenvalue</td>
<td>1.84 3.09 3.49 − 2.66i 3.66 − 2.65i 4.10 + 3.49i 3.84 + 3.21i</td>
<td>1.67 2.94 3.66 − 2.65i 3.66 + 2.65i 3.84 + 3.21i 3.84 − 3.21i</td>
</tr>
</tbody>
</table>

here, the better start for the M-variant with a space of pre-eigenvectors also pays off. Although the initial guess for the M-variant is only slightly better (the difference of eigenvalue and target is about ten times less) than for the K-variant, the M-variant brings JDQZ in the fast converging phase right from the beginning, whereas the K-variant needs seven steps to achieve this. Note that this effect on the performance would have been much more significant if the required tolerance would have been larger (say 10⁻⁵ instead of the 10⁻¹² as it is now).

In Table 4.5 the targets and computed eigenvalues are shown. The pre-eigenvalues give a good approximation of the exact eigenvalues, although they are less accurate than in the convection-diffusion case.

We also did experiments on finer grids (not reported here). The convergence behavior appears to be very similar and the conclusions for the M-variant versus the K-variant seem to hold on finer grids as well. However, the number of iteration steps appears to depend on the grid size. For instance, on a 33 × 33 grid it took almost twice as many iterations to detect the eigenvalues. So, as it is now, we may not state that the speed of convergence is independent of the size of the grid. This asks for an improvement of MRILU, which is a subject of current research.

5. Conclusions. Multilevel ILU preconditioners such as MRILU can be exploited for the efficient computation of the absolute smallest eigenvalues and associated eigenvectors. Residuals that are properly preconditioned by MRILU form effective expansion vectors for the search subspaces in the Jacobi–Davidson algorithm:
there is no need to employ an iterative linear solver such as GMRES to obtain more accurate solutions of the correction equation. In general, only one incomplete factorization will suffice to compute a range of eigenvalues with associated eigenvectors. The dimension of the search subspace can be kept low, and solving an eigenvalue problem for the absolute smallest eigenvalues is not more costly than solving a linear system of equations with the same matrix. The factorization can be efficiently updated to accommodate better eigenvalue approximations whenever they become available during the computational process. Updated factorizations enhance the performance of the Jacobi–Davidson process. The preconditioner can be implemented in a stable fashion but, specifically, the implementation of the updated preconditioner needs some care. The updated factorization can be used efficiently (i.e., at the cost of the solve of one preconditioner equation) to find accurate initial eigenvalue and eigenvector approximations. These accurate initial approximations put the process in the “quadratic converging phase” straight from the beginning.

For convection-diffusion problems, the MRILU approach seems to lead to a speed of convergence that is independent of the grid size. For more complicated eigenvalue problems, such as problems associated with the stability analysis of Navier–Stokes equations, the approach is effective, but a speed of convergence independent of the grid size has not yet been achieved.

REFERENCES

