A donor–acceptor substituted molecular motor
Delden, Richard A. van; Koumura, Nagatoshi; Schoevaars, Annemarie; Meetsma, Auke; Feringa, B.L.

Published in:
Organic & Biomolecular Chemistry

DOI:
10.1039/b209378b

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2003

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
A donor-acceptor substituted molecular motor: unidirectional rotation driven by visible light.

Fig. 1. Chemical structural diagram (scheme 1) of the title compound

Fig. 2. Perspective PLUTO drawing of the molecule illustrating the configuration and the adopted numbering scheme.

Fig. 3. Molecular packing viewed down unit cell axes.

Fig. 4. Perspective ORTEP drawing of the title compound. All non-hydrogen atoms are represented by thermal vibrational ellipsoids drawn to encompass 50% of the electron density. The hydrogen atoms are drawn with an arbitrary radius.

5. CHEMICAL DATA

loop

_atom_type_symbol
_atom_type_description
 Atom type scat dispersion real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
S S 0.1246 0.1233
O O 0.0106 0.0060
N N 0.0061 0.0033
6. CRYSTAL DATA

loop

_symmetry_cell_setting Orthorhombic
_symmetry_space_group_name_Hall 'P 2ac 2ab'
_symmetry_space_group_name_H-M 'P 21 21 21'

<table>
<thead>
<tr>
<th>x, y, z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2-x, -y, 1/2+z</td>
</tr>
<tr>
<td>1/2+x, 1/2-y, -z</td>
</tr>
<tr>
<td>-x, 1/2+y, 1/2-z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>_cell_length_a</td>
<td>7.7426(3)</td>
</tr>
<tr>
<td>_cell_length_b</td>
<td>12.4048(5)</td>
</tr>
<tr>
<td>_cell_length_c</td>
<td>24.867(1)</td>
</tr>
<tr>
<td>_cell_angle_alpha</td>
<td>90</td>
</tr>
<tr>
<td>_cell_angle_beta</td>
<td>90</td>
</tr>
<tr>
<td>_cell_angle_gamma</td>
<td>90</td>
</tr>
<tr>
<td>_cell_volume</td>
<td>2388.36(16)</td>
</tr>
<tr>
<td>_cell_formula_units_Z</td>
<td>4</td>
</tr>
<tr>
<td>_cell_measurement_temperature</td>
<td>100</td>
</tr>
<tr>
<td>_cell_measurement_reflns_used</td>
<td>8722</td>
</tr>
<tr>
<td>_cell_measurement_theta_min</td>
<td>2.32</td>
</tr>
<tr>
<td>_cell_measurement_theta_max</td>
<td>29.58</td>
</tr>
</tbody>
</table>

7. EXPERIMENTAL DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>_exptl_special_details</td>
<td></td>
</tr>
<tr>
<td>_exptl_crystal_description</td>
<td>'platelet'</td>
</tr>
<tr>
<td>_exptl_crystal_colour</td>
<td>'red'</td>
</tr>
<tr>
<td>_exptl_crystal_size_max</td>
<td>0.520</td>
</tr>
<tr>
<td>_exptl_crystal_size_mid</td>
<td>0.440</td>
</tr>
<tr>
<td>_exptl_crystal_size_min</td>
<td>0.330</td>
</tr>
<tr>
<td>_exptl_crystal_size_rad</td>
<td>?</td>
</tr>
<tr>
<td>_exptl_crystal_density_meas</td>
<td>?</td>
</tr>
<tr>
<td>_exptl_crystal_density_diffrn</td>
<td>1.381</td>
</tr>
<tr>
<td>_exptl_crystal_density_method</td>
<td>'Not Measured'</td>
</tr>
<tr>
<td>_exptl_crystal_F_000</td>
<td>1040</td>
</tr>
<tr>
<td>_exptl_absorpt_coefficient_mu</td>
<td>0.254</td>
</tr>
<tr>
<td>_exptl_absorpt_correction_type</td>
<td>'Semi-empirical'</td>
</tr>
<tr>
<td>_exptl_absorpt_process_details</td>
<td>'(SADABS (Sheldrick, Bruker, 2000))'</td>
</tr>
<tr>
<td>_exptl_absorpt_correction_T_min</td>
<td>0.8792</td>
</tr>
<tr>
<td>_exptl_absorpt_correction_T_max</td>
<td>0.9209</td>
</tr>
</tbody>
</table>
diffrn_ambient_temperature 100(2)
diffrn_radiation_wavelength 0.71073
diffrn_radiation_type MoKα
diffrn_radiation_source 'fine focus sealed Siemens Mo tube'
diffrn_radiation_monochromator 'parallel mounted graphite'
diffrn_radiationDetector 'CCD area-detector'
diffrn_measurement_device_type Enraf Nonius CAD-4F diffractometer

diffrn_measurement_method 'phi and omega scans'
diffrn_special_details Crystal into the cold nitrogen stream of the low-temparature
 unit (KRYOFLEX, (Bruker, 2000)).
diffrn_detector_area_resol_mean ' 512x512 / 62x62'
diffrn_standards_number ?
diffrn_standards_interval_count ?
diffrn_standards_interval_time ?
diffrn_standards_decay_% ?

loop_
diffrn_standard_refln_index_h
diffrn_standard_refln_index_k
diffrn_standard_refln_index_l

number of measured reflections (redundant set)
diffrn_reflns_number 22638
diffrn_reflns_av_R_equivalents 0.0160
diffrn_reflns_av_sigmaI/netI 0.0170
diffrn_reflns_limit_h_min -9
diffrn_reflns_limit_h_max 10
diffrn_reflns_limit_k_min -16
diffrn_reflns_limit_k_max 16
diffrn_reflns_limit_l_min -33
diffrn_reflns_limit_l_max 34
diffrn_reflns_theta_min 2.32
diffrn_reflns_theta_max 29.69
diffrn_reflns_theta_full 29.69
diffrn_reflns_reduction_process Intensity data were corrected for Lorentz and polarization
 effects, decay and absorption and reduced to F~o~^2^
 using SAINT (Bruker, 2000) and SABABS (Sheldrick, 2000)
 Intensity data were corrected for Lorentz and polarization effects,
 scale variation, for absorption and reduced to F~o~^2^

number of unique reflections
reflns_number_total 6379
reflns_number_gt 6253
reflns_threshold_expression >2σ(I)

computing_data_collection 'SMART, Bruker Version 5.168, 2000'
8. REFINEMENT DATA

Refinement of \(F^2 \) against ALL reflections. The weighted R-factor wR and goodness of fit S are based on \(F^2 \), conventional R-factors R are based on F, with F set to zero for negative \(F^2 \). The threshold expression of \(F^2 > 2\sigma(F^2) \) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on \(F^2 \) are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Refinement of \(F^2 \) against ALL reflections. The weighted R-factor wR and goodness of fit S are based on \(F^2 \), conventional R-factors R are based on F, with F set to zero for negative \(F^2 \). The threshold expression of \(F^2 > 2\sigma(F^2) \) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on \(F^2 \) are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Refinement of \(F^2 \) against ALL reflections. The weighted R-factor wR and goodness of fit S are based on \(F^2 \), conventional R-factors R are based on F, with F set to zero for negative \(F^2 \). The threshold expression of \(F^2 > 2\sigma(F^2) \) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on \(F^2 \) are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Refinement of \(F^2 \) against ALL reflections. The weighted R-factor wR and goodness of fit S are based on \(F^2 \), conventional R-factors R are based on F, with F set to zero for negative \(F^2 \). The threshold expression of \(F^2 > 2\sigma(F^2) \) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on \(F^2 \) are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Refinement of \(F^2 \) against ALL reflections. The weighted R-factor wR and goodness of fit S are based on \(F^2 \), conventional R-factors R are based on F, with F set to zero for negative \(F^2 \). The threshold expression of \(F^2 > 2\sigma(F^2) \) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on \(F^2 \) are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Refinement of \(F^2 \) against ALL reflections. The weighted R-factor wR and goodness of fit S are based on \(F^2 \), conventional R-factors R are based on F, with F set to zero for negative \(F^2 \). The threshold expression of \(F^2 > 2\sigma(F^2) \) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on \(F^2 \) are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Refinement of \(F^2 \) against ALL reflections. The weighted R-factor wR and goodness of fit S are based on \(F^2 \), conventional R-factors R are based on F, with F set to zero for negative \(F^2 \). The threshold expression of \(F^2 > 2\sigma(F^2) \) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on \(F^2 \) are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Refinement of \(F^2 \) against ALL reflections. The weighted R-factor wR and goodness of fit S are based on \(F^2 \), conventional R-factors R are based on F, with F set to zero for negative \(F^2 \). The threshold expression of \(F^2 > 2\sigma(F^2) \) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on \(F^2 \) are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Refinement of \(F^2 \) against ALL reflections. The weighted R-factor wR and goodness of fit S are based on \(F^2 \), conventional R-factors R are based on F, with F set to zero for negative \(F^2 \). The threshold expression of \(F^2 > 2\sigma(F^2) \) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on \(F^2 \) are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.
<table>
<thead>
<tr>
<th>Atom Site</th>
<th>Symbol</th>
<th>Fractional Coordinates</th>
<th>Thermal Displacement</th>
<th>Occupancy</th>
<th>Calculated flag</th>
<th>Refinement Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>S</td>
<td>1.20021 (4) 0.22629 (2)</td>
<td>0.21798 (9) 0.23076 (4)</td>
<td>1.000</td>
<td>0.0189 (1)</td>
<td>. .</td>
</tr>
<tr>
<td>S2</td>
<td>S</td>
<td>0.72965 (4) 0.68509 (2)</td>
<td>0.11201 (1)</td>
<td>1.000</td>
<td>0.0173 (1)</td>
<td>. .</td>
</tr>
<tr>
<td>O1</td>
<td>S</td>
<td>0.67744 (16) 0.15916 (8)</td>
<td>0.15771 (4)</td>
<td>1.000</td>
<td>0.0291 (3)</td>
<td>. .</td>
</tr>
<tr>
<td>O2</td>
<td>S</td>
<td>0.55610 (14) 0.21798 (9)</td>
<td>0.23076 (4)</td>
<td>1.000</td>
<td>0.0270 (3)</td>
<td>. .</td>
</tr>
<tr>
<td>N1</td>
<td>S</td>
<td>0.79484 (15) 0.60899 (4)</td>
<td>0.12482 (4)</td>
<td>1.000</td>
<td>0.0183 (1)</td>
<td>. .</td>
</tr>
<tr>
<td>N2</td>
<td>S</td>
<td>0.72965 (4) 0.68509 (2)</td>
<td>0.11201 (1)</td>
<td>1.000</td>
<td>0.0173 (1)</td>
<td>. .</td>
</tr>
<tr>
<td>O1</td>
<td>S</td>
<td>0.67744 (16) 0.15916 (8)</td>
<td>0.15771 (4)</td>
<td>1.000</td>
<td>0.0291 (3)</td>
<td>. .</td>
</tr>
<tr>
<td>O2</td>
<td>S</td>
<td>0.55610 (14) 0.21798 (9)</td>
<td>0.23076 (4)</td>
<td>1.000</td>
<td>0.0270 (3)</td>
<td>. .</td>
</tr>
<tr>
<td>N1</td>
<td>S</td>
<td>0.79484 (15) 0.60899 (4)</td>
<td>0.12482 (4)</td>
<td>1.000</td>
<td>0.0183 (1)</td>
<td>. .</td>
</tr>
<tr>
<td>N2</td>
<td>S</td>
<td>0.72965 (4) 0.68509 (2)</td>
<td>0.11201 (1)</td>
<td>1.000</td>
<td>0.0173 (1)</td>
<td>. .</td>
</tr>
<tr>
<td>O1</td>
<td>S</td>
<td>0.67744 (16) 0.15916 (8)</td>
<td>0.15771 (4)</td>
<td>1.000</td>
<td>0.0291 (3)</td>
<td>. .</td>
</tr>
<tr>
<td>O2</td>
<td>S</td>
<td>0.55610 (14) 0.21798 (9)</td>
<td>0.23076 (4)</td>
<td>1.000</td>
<td>0.0270 (3)</td>
<td>. .</td>
</tr>
<tr>
<td>N1</td>
<td>S</td>
<td>0.79484 (15) 0.60899 (4)</td>
<td>0.12482 (4)</td>
<td>1.000</td>
<td>0.0183 (1)</td>
<td>. .</td>
</tr>
<tr>
<td>N2</td>
<td>S</td>
<td>0.72965 (4) 0.68509 (2)</td>
<td>0.11201 (1)</td>
<td>1.000</td>
<td>0.0173 (1)</td>
<td>. .</td>
</tr>
<tr>
<td>O1</td>
<td>S</td>
<td>0.67744 (16) 0.15916 (8)</td>
<td>0.15771 (4)</td>
<td>1.000</td>
<td>0.0291 (3)</td>
<td>. .</td>
</tr>
<tr>
<td>O2</td>
<td>S</td>
<td>0.55610 (14) 0.21798 (9)</td>
<td>0.23076 (4)</td>
<td>1.000</td>
<td>0.0270 (3)</td>
<td>. .</td>
</tr>
<tr>
<td>N1</td>
<td>S</td>
<td>0.79484 (15) 0.60899 (4)</td>
<td>0.12482 (4)</td>
<td>1.000</td>
<td>0.0183 (1)</td>
<td>. .</td>
</tr>
<tr>
<td>N2</td>
<td>S</td>
<td>0.72965 (4) 0.68509 (2)</td>
<td>0.11201 (1)</td>
<td>1.000</td>
<td>0.0173 (1)</td>
<td>. .</td>
</tr>
<tr>
<td>O1</td>
<td>S</td>
<td>0.67744 (16) 0.15916 (8)</td>
<td>0.15771 (4)</td>
<td>1.000</td>
<td>0.0291 (3)</td>
<td>. .</td>
</tr>
<tr>
<td>O2</td>
<td>S</td>
<td>0.55610 (14) 0.21798 (9)</td>
<td>0.23076 (4)</td>
<td>1.000</td>
<td>0.0270 (3)</td>
<td>. .</td>
</tr>
</tbody>
</table>
H29* H Uiso 0.788(3) 0.7574(19) -0.1602(8) 1.000 0.043(6)

loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_23
_atom_site_aniso_U_13
_atom_site_aniso_U_12
S1 0.0242(2) 0.0138(1) 0.0189(1) -0.0022(1) 0.0008(1) 0.0028(1)
S2 0.0234(2) 0.0131(1) 0.0189(1) -0.0027(1) 0.0012(1) 0.0029(1)
O1 0.0405(6) 0.0191(4) 0.0277(5) 0.0034(4) 0.0042(4) -0.0054(4)
O2 0.0265(5) 0.0343(5) 0.0203(4) 0.0118(4) 0.0037(4) -0.0040(4)
N1 0.0186(5) 0.0224(5) 0.0184(5) 0.0018(4) 0.0037(4) -0.0040(4)
N2 0.0199(5) 0.0213(5) 0.0138(4) 0.0030(4) -0.0009(4) 0.0023(4)
C1 0.0104(4) 0.0145(4) 0.0122(5) -0.0000(4) -0.0007(4) 0.0004(4)
C2 0.0127(5) 0.0156(5) 0.0132(5) 0.0006(4) -0.0006(4) -0.0007(4)
C3 0.0143(5) 0.0185(5) 0.0148(5) 0.0039(4) -0.0009(4) 0.0030(4)
C4 0.0161(5) 0.0272(6) 0.0134(5) 0.0005(4) 0.0018(4) -0.0009(5)
C5 0.0160(5) 0.0231(5) 0.0139(5) -0.0028(4) 0.0019(4) 0.0027(4)
C6 0.0133(5) 0.0154(4) 0.0134(5) -0.0012(4) -0.0009(4) 0.0009(4)
C7 0.0144(5) 0.0136(4) 0.0143(5) -0.0010(4) 0.0008(4) 0.0005(4)
C8 0.0183(5) 0.0139(5) 0.0201(5) 0.0004(4) 0.0005(4) 0.0045(4)
C9 0.0187(5) 0.0162(5) 0.0191(5) 0.0036(4) -0.0019(4) 0.0032(5)
C10 0.0143(5) 0.0153(5) 0.0153(5) 0.0019(4) -0.0007(4) -0.0016(4)
C11 0.0130(5) 0.0118(4) 0.0118(4) 0.0022(4) -0.0005(4) -0.0002(4)
C12 0.0105(4) 0.0117(4) 0.0149(5) 0.0010(4) -0.0008(4) -0.0001(4)
C13 0.0137(5) 0.0109(4) 0.0106(5) -0.0006(4) 0.0004(4) -0.0003(4)
C14 0.0129(5) 0.0112(4) 0.0118(5) -0.0009(4) -0.0009(4) 0.0001(4)
C15 0.0110(5) 0.0152(5) 0.0137(5) 0.0017(4) -0.0003(4) 0.0006(4)
C16 0.0108(5) 0.0201(5) 0.0151(5) 0.0017(4) -0.0008(4) 0.0008(4)
C17 0.0151(5) 0.0225(5) 0.0167(5) -0.0012(4) -0.0018(4) -0.0002(4)
C18 0.0189(6) 0.0302(7) 0.0195(6) -0.0062(5) -0.0003(5) 0.0002(5)
C19 0.0224(6) 0.0436(8) 0.0140(5) -0.0013(5) 0.0000(5) 0.0008(6)
C20 0.0194(6) 0.0360(7) 0.0165(5) 0.0070(5) -0.0006(5) 0.0023(5)
C21 0.0139(5) 0.0243(5) 0.0175(5) 0.0052(4) -0.0003(4) 0.0017(5)
C22 0.0188(6) 0.0239(6) 0.0232(6) 0.0091(5) 0.0007(5) 0.0030(5)
C23 0.0195(6) 0.0164(5) 0.0257(6) 0.0043(4) 0.0004(5) 0.0035(5)
C24 0.0126(5) 0.0162(5) 0.0175(5) 0.0006(4) -0.0002(4) 0.0018(4)
C25 0.0180(5) 0.0159(4) 0.0149(5) -0.0014(4) 0.0016(4) 0.0016(4)
C26 0.0119(5) 0.0149(5) 0.0139(5) -0.0006(4) 0.0010(4) 0.0006(4)
C27 0.0131(5) 0.0216(6) 0.0216(6) 0.0011(5) -0.0003(4) -0.0012(4)
C28 0.0246(6) 0.0211(6) 0.0171(6) 0.0001(4) 0.0036(5) 0.0003(5)
C29 0.0337(8) 0.0319(7) 0.0163(6) 0.0071(5) -0.0028(5) 0.0071(6)

10. MOLECULAR GEOMETRY
_geom_special_details

Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All esds are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles;

loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_1
_geom_bond_site_symmetry_2
_geom_bond_publ_flag
S1 C24 1.758(13) . . yes
S1 C25 1.829(12) . . yes
S2 C6 1.7588(11) . . yes
<table>
<thead>
<tr>
<th>Atom</th>
<th>Atom</th>
<th>Bond Length (Å)</th>
<th>Value</th>
<th>Value</th>
<th>Bond Length (Å)</th>
<th>Value</th>
<th>Value</th>
<th>Bond Length (Å)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>C7</td>
<td>1.7683(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>O1</td>
<td>N1</td>
<td>1.2285(15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td>N1</td>
<td>1.2315(14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>C3</td>
<td>1.4680(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>C10</td>
<td>1.3979(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>C28</td>
<td>1.4599(18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>C6</td>
<td>1.4074(15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>C13</td>
<td>1.4896(15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>C3</td>
<td>1.3871(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>C4</td>
<td>1.3930(18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>C5</td>
<td>1.3840(18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>C6</td>
<td>1.4037(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>C8</td>
<td>1.3896(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>C12</td>
<td>1.4051(15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>C9</td>
<td>1.3940(18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>C10</td>
<td>1.4072(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>C11</td>
<td>1.4121(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>C12</td>
<td>1.3981(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>C13</td>
<td>1.4899(15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C13</td>
<td>C14</td>
<td>1.3554(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>C15</td>
<td>1.4867(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>C26</td>
<td>1.5180(15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C15</td>
<td>C16</td>
<td>1.4382(18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C15</td>
<td>C24</td>
<td>1.3873(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C16</td>
<td>C17</td>
<td>1.4242(18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C16</td>
<td>C21</td>
<td>1.4256(18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C17</td>
<td>C18</td>
<td>1.3787(18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C18</td>
<td>C19</td>
<td>1.412(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td>C20</td>
<td>1.369(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>C21</td>
<td>1.4219(18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C21</td>
<td>C22</td>
<td>1.4228(19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C22</td>
<td>C23</td>
<td>1.3663(18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C23</td>
<td>C24</td>
<td>1.4263(17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C24</td>
<td>C25</td>
<td>1.5415(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C25</td>
<td>C26</td>
<td>1.5334(17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C26</td>
<td>H2</td>
<td>0.976(17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>H4</td>
<td>0.934(17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>H5</td>
<td>0.96(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>H8</td>
<td>0.918(17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>H9</td>
<td>0.957(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>H11</td>
<td>0.949(15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C17</td>
<td>H17</td>
<td>0.957(18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C18</td>
<td>H18</td>
<td>0.94(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td>H19</td>
<td>0.91(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>H20</td>
<td>0.93(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C22</td>
<td>H22</td>
<td>0.968(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C23</td>
<td>H23</td>
<td>0.96(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C25</td>
<td>H25</td>
<td>0.910(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C25</td>
<td>H25'</td>
<td>0.923(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C26</td>
<td>H26</td>
<td>0.958(16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C27</td>
<td>H27</td>
<td>0.972(17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C27</td>
<td>H27'</td>
<td>0.95(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C27</td>
<td>H27"</td>
<td>0.954(18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C28</td>
<td>H28</td>
<td>0.99(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C28</td>
<td>H28'</td>
<td>0.89(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C28</td>
<td>H28"</td>
<td>0.92(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C29</td>
<td>H29</td>
<td>0.88(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C29</td>
<td>H29'</td>
<td>1.02(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C29</td>
<td>H29"</td>
<td>0.97(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Angle</td>
<td>Flag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24</td>
<td>104.94(5)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>99.34(5)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1</td>
<td>123.93(11)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1</td>
<td>118.26(10)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>117.80(11)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>118.72(10)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>117.45(10)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28</td>
<td>112.34(10)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>118.16(10)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>121.36(9)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>120.47(9)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>119.33(10)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>117.89(10)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>119.35(11)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>122.74(11)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>118.28(11)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>119.90(11)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>119.38(8)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>119.25(9)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>121.36(10)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>118.72(9)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>121.24(8)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>120.04(10)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>121.03(11)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>120.30(11)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>121.74(11)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>120.32(10)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>117.86(11)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>122.00(10)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>118.64(10)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>118.39(10)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>122.83(9)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>113.13(9)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>121.16(9)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>125.69(10)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13</td>
<td>121.36(10)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13</td>
<td>125.54(10)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>112.91(10)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>123.08(10)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>118.04(11)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16</td>
<td>118.88(11)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15</td>
<td>122.23(11)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15</td>
<td>119.36(11)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17</td>
<td>118.40(11)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17</td>
<td>120.76(12)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17</td>
<td>120.67(13)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C18</td>
<td>119.77(12)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td>121.28(12)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16</td>
<td>119.09(12)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16</td>
<td>119.19(11)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>121.71(12)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21</td>
<td>120.67(12)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22</td>
<td>120.41(12)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>123.62(9)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>115.76(9)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15</td>
<td>120.56(11)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>115.65(8)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>108.49(9)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>111.88(9)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C25</td>
<td>112.27(10)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>119.7(10)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>120.8(10)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>118.4(11)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>123.3(11)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>119.7(12)</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>120.4(12)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>117.8(11)</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>C8</td>
<td>H8</td>
<td>121.0(11)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>C9</td>
<td>H9</td>
<td>118.3(9)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>C9</td>
<td>H9</td>
<td>121.3(9)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>C11</td>
<td>H11</td>
<td>121.9(9)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>C11</td>
<td>H11</td>
<td>116.1(9)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16</td>
<td>C17</td>
<td>H17</td>
<td>120.4(11)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17</td>
<td>C18</td>
<td>H18</td>
<td>118.4(12)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td>C18</td>
<td>H18</td>
<td>120.9(12)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C18</td>
<td>C19</td>
<td>H19</td>
<td>119.3(13)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>C19</td>
<td>H19</td>
<td>120.9(13)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td>C20</td>
<td>H20</td>
<td>123.6(14)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21</td>
<td>C20</td>
<td>H20</td>
<td>115.2(14)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21</td>
<td>C22</td>
<td>H22</td>
<td>120.3(9)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C23</td>
<td>C22</td>
<td>H22</td>
<td>119.0(9)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22</td>
<td>C23</td>
<td>H23</td>
<td>118.1(12)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24</td>
<td>C23</td>
<td>H23</td>
<td>121.4(12)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>C25</td>
<td>H25</td>
<td>105.0(11)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>C25</td>
<td>H25'</td>
<td>105.9(11)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C26</td>
<td>C25</td>
<td>H25</td>
<td>113.0(11)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C26</td>
<td>C25</td>
<td>H25'</td>
<td>109.0(11)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H25</td>
<td>C25</td>
<td>H25'</td>
<td>107.7(15)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>C26</td>
<td>H26</td>
<td>110.3(9)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C25</td>
<td>C26</td>
<td>H26</td>
<td>106.1(9)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C27</td>
<td>C26</td>
<td>H26</td>
<td>107.6(9)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C26</td>
<td>C27</td>
<td>H27</td>
<td>111.7(10)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C26</td>
<td>C27</td>
<td>H27'</td>
<td>109.2(14)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C26</td>
<td>C27</td>
<td>H27'</td>
<td>110.7(9)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H27</td>
<td>C27</td>
<td>H27'</td>
<td>108.2(17)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H27</td>
<td>C27</td>
<td>H27'</td>
<td>107.7(15)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H27'</td>
<td>C27</td>
<td>H27'</td>
<td>109.2(17)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>C28</td>
<td>H28</td>
<td>108.2(13)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>C28</td>
<td>H28'</td>
<td>109.8(14)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>C28</td>
<td>H28'</td>
<td>109.2(14)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H28</td>
<td>C28</td>
<td>H28'</td>
<td>106.4(18)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H28</td>
<td>C28</td>
<td>H28'</td>
<td>112.4(19)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H28'</td>
<td>C28</td>
<td>H28'</td>
<td>111(2)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>C29</td>
<td>H29</td>
<td>111.1(14)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>C29</td>
<td>H29'</td>
<td>109.2(11)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>C29</td>
<td>H29'</td>
<td>113.9(13)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H29</td>
<td>C29</td>
<td>H29'</td>
<td>108.8(19)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H29</td>
<td>C29</td>
<td>H29'</td>
<td>105.0(18)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H29'</td>
<td>C29</td>
<td>H29'</td>
<td>109.1(18)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

loop_
__geom_torsion_atom_site_label_1
__geom_torsion_atom_site_label_2
__geom_torsion_atom_site_label_3
__geom_torsion_atom_site_label_4
__geom_torsion
__geom_torsion_site_symmetry_1
__geom_torsion_site_symmetry_2
__geom_torsion_site_symmetry_3
__geom_torsion_site_symmetry_4
__geom_torsion_publ_flag
C25 S1 C24 C15 12.77(12) no
C25 S1 C24 C23 -169.70(9) no
C24 S1 C25 C26 7.83(10) no
C7 S2 C6 C1 33.38(10) no
C7 S2 C6 C5 -147.90(10) no
C6 S2 C7 C8 141.86(10) no
C6 S2 C7 C12 -36.91(11) no
O1 N1 C3 C4 171.19(12) no
O1 N1 C3 C2 -10.22(17) no
O2 N1 C3 C2 -9.77(17) no
O2 N1 C3 C2 168.81(11) no
C28 N2 C10 C11 -38.86(17) no
C29 N2 C10 C9 3.94(18) no
C28 N2 C10 C9 144.56(12) no

loop_
<table>
<thead>
<tr>
<th>C29</th>
<th>N2</th>
<th>C10</th>
<th>C11</th>
<th>-179.47 (12)</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>no</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6</td>
<td>C1</td>
<td>C13</td>
<td>C12</td>
<td>-47.10 (13)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C6</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>-5.45 (16)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C13</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>173.70 (10)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C2</td>
<td>C1</td>
<td>C6</td>
<td>S2</td>
<td>-176.72 (8)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C2</td>
<td>C1</td>
<td>C6</td>
<td>C5</td>
<td>4.58 (16)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C13</td>
<td>C1</td>
<td>C6</td>
<td>S2</td>
<td>4.12 (14)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C13</td>
<td>C1</td>
<td>C6</td>
<td>C5</td>
<td>-174.58 (10)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C2</td>
<td>C1</td>
<td>C13</td>
<td>C12</td>
<td>133.77 (10)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C2</td>
<td>C1</td>
<td>C13</td>
<td>C14</td>
<td>-47.75 (15)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C6</td>
<td>C1</td>
<td>C13</td>
<td>C14</td>
<td>131.38 (11)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>N1</td>
<td>-175.69 (10)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>
<td>2.85 (18)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C2</td>
<td>C3</td>
<td>C4</td>
<td>C5</td>
<td>0.89 (19)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>N1</td>
<td>C3</td>
<td>C4</td>
<td>C5</td>
<td>179.41 (11)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C3</td>
<td>C4</td>
<td>C5</td>
<td>C6</td>
<td>-1.84 (18)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C4</td>
<td>C5</td>
<td>C6</td>
<td>S2</td>
<td>-179.60 (10)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C4</td>
<td>C5</td>
<td>C6</td>
<td>C1</td>
<td>-0.91 (18)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C8</td>
<td>C7</td>
<td>C12</td>
<td>C11</td>
<td>-1.11 (17)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C12</td>
<td>C7</td>
<td>C8</td>
<td>C9</td>
<td>-2.00 (18)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C8</td>
<td>C7</td>
<td>C12</td>
<td>C13</td>
<td>-176.91 (10)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>S2</td>
<td>C7</td>
<td>C8</td>
<td>C9</td>
<td>179.21 (9)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>S2</td>
<td>C7</td>
<td>C12</td>
<td>C11</td>
<td>177.65 (9)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C7</td>
<td>C8</td>
<td>C9</td>
<td>C10</td>
<td>2.84 (18)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C8</td>
<td>C9</td>
<td>C10</td>
<td>C11</td>
<td>-0.53 (18)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C12</td>
<td>C13</td>
<td>C1</td>
<td>-132.40 (11)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>C12</td>
<td>C13</td>
<td>C1</td>
<td>43.21 (13)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C7</td>
<td>C12</td>
<td>C13</td>
<td>C14</td>
<td>-135.18 (12)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C11</td>
<td>C12</td>
<td>C13</td>
<td>C14</td>
<td>49.21 (16)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C1</td>
<td>C13</td>
<td>C14</td>
<td>C26</td>
<td>175.32 (10)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C1</td>
<td>C13</td>
<td>C14</td>
<td>C15</td>
<td>0.71 (16)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C12</td>
<td>C13</td>
<td>C14</td>
<td>C15</td>
<td>178.99 (10)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C12</td>
<td>C13</td>
<td>C14</td>
<td>C26</td>
<td>-6.40 (18)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C26</td>
<td>C14</td>
<td>C15</td>
<td>C16</td>
<td>126.91 (11)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C13</td>
<td>C14</td>
<td>C15</td>
<td>C16</td>
<td>-57.85 (16)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C13</td>
<td>C14</td>
<td>C15</td>
<td>C24</td>
<td>122.37 (12)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C13</td>
<td>C14</td>
<td>C26</td>
<td>C25</td>
<td>-103.00 (13)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C13</td>
<td>C14</td>
<td>C26</td>
<td>C27</td>
<td>132.60 (12)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C26</td>
<td>C14</td>
<td>C15</td>
<td>C24</td>
<td>-52.87 (14)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C15</td>
<td>C14</td>
<td>C26</td>
<td>C25</td>
<td>-52.40 (13)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C15</td>
<td>C14</td>
<td>C26</td>
<td>C27</td>
<td>72.00 (12)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C14</td>
<td>C15</td>
<td>C16</td>
<td>C21</td>
<td>170.60 (11)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C14</td>
<td>C15</td>
<td>C16</td>
<td>C17</td>
<td>-10.38 (18)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C16</td>
<td>C15</td>
<td>C24</td>
<td>C23</td>
<td>10.72 (17)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C14</td>
<td>C15</td>
<td>C24</td>
<td>S1</td>
<td>7.94 (16)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C24</td>
<td>C15</td>
<td>C16</td>
<td>C17</td>
<td>169.40 (11)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C24</td>
<td>C15</td>
<td>C16</td>
<td>C21</td>
<td>-9.62 (17)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C14</td>
<td>C15</td>
<td>C24</td>
<td>C23</td>
<td>-169.48 (11)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C16</td>
<td>C15</td>
<td>C24</td>
<td>S1</td>
<td>-171.86 (9)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C15</td>
<td>C16</td>
<td>C21</td>
<td>C20</td>
<td>-179.03 (11)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C21</td>
<td>C16</td>
<td>C17</td>
<td>C18</td>
<td>-0.35 (18)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C15</td>
<td>C16</td>
<td>C17</td>
<td>C18</td>
<td>-179.37 (12)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C17</td>
<td>C16</td>
<td>C21</td>
<td>C22</td>
<td>-176.88 (11)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C15</td>
<td>C16</td>
<td>C21</td>
<td>C22</td>
<td>2.18 (17)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C17</td>
<td>C16</td>
<td>C21</td>
<td>C20</td>
<td>1.91 (18)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C16</td>
<td>C17</td>
<td>C18</td>
<td>C19</td>
<td>-1.3 (2)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C17</td>
<td>C18</td>
<td>C19</td>
<td>C20</td>
<td>1.4 (2)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C18</td>
<td>C19</td>
<td>C20</td>
<td>C21</td>
<td>0.2 (2)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C19</td>
<td>C20</td>
<td>C21</td>
<td>C16</td>
<td>-1.9 (2)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C19</td>
<td>C20</td>
<td>C21</td>
<td>C22</td>
<td>176.87 (13)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C20</td>
<td>C21</td>
<td>C22</td>
<td>C23</td>
<td>-174.41 (13)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C16</td>
<td>C21</td>
<td>C22</td>
<td>C23</td>
<td>4.35 (19)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C21</td>
<td>C22</td>
<td>C23</td>
<td>C24</td>
<td>-3.4 (2)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>no</td>
</tr>
<tr>
<td>C9</td>
<td>H29'</td>
<td>2.88 (2)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>H29</td>
<td>2.65 (2)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>H8</td>
<td>3.029 (16)</td>
<td>.</td>
<td>3.565</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>H8</td>
<td>2.848 (16)</td>
<td>.</td>
<td>3.565</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>H26</td>
<td>2.568 (16)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>H28'</td>
<td>2.56 (2)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>H8</td>
<td>2.956 (16)</td>
<td>.</td>
<td>3.565</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>H26</td>
<td>2.712 (16)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13</td>
<td>H17</td>
<td>2.769 (17)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>H11</td>
<td>2.970 (15)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>H17</td>
<td>2.684 (18)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>H2</td>
<td>2.892 (17)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15</td>
<td>H27</td>
<td>2.682 (16)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15</td>
<td>H2</td>
<td>2.575 (16)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16</td>
<td>H2</td>
<td>3.056 (16)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td>H4</td>
<td>3.060 (16)</td>
<td>.</td>
<td>1.655</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>H4</td>
<td>2.878 (16)</td>
<td>.</td>
<td>1.655</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21</td>
<td>H4</td>
<td>3.002 (16)</td>
<td>.</td>
<td>1.655</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24</td>
<td>H27</td>
<td>2.866 (17)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24</td>
<td>H2</td>
<td>2.898 (16)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C25</td>
<td>H2</td>
<td>3.036 (17)</td>
<td>.</td>
<td>3.555</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C25</td>
<td>H11</td>
<td>2.915 (15)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C26</td>
<td>H11</td>
<td>2.779 (15)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28</td>
<td>H11</td>
<td>2.724 (15)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28</td>
<td>H23</td>
<td>2.83 (2)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C29</td>
<td>H9</td>
<td>2.495 (15)</td>
<td>.</td>
<td>3.455</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>O1</td>
<td>2.415 (17)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>C14</td>
<td>2.892 (17)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>C15</td>
<td>2.575 (16)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>C16</td>
<td>3.056 (16)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>C24</td>
<td>2.898 (16)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>C25</td>
<td>3.036 (17)</td>
<td>.</td>
<td>3.455</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>H25'</td>
<td>2.52 (2)</td>
<td>.</td>
<td>3.455</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>O2</td>
<td>2.421 (17)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>C19</td>
<td>3.060 (16)</td>
<td>.</td>
<td>1.455</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>C20</td>
<td>2.878 (16)</td>
<td>.</td>
<td>1.455</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>C21</td>
<td>3.002 (16)</td>
<td>.</td>
<td>1.455</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>H28</td>
<td>2.56 (3)</td>
<td>.</td>
<td>2.665</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H5</td>
<td>O2</td>
<td>2.497 (19)</td>
<td>.</td>
<td>4.455</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H8</td>
<td>C10</td>
<td>3.029 (16)</td>
<td>.</td>
<td>3.465</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H8</td>
<td>C11</td>
<td>2.848 (16)</td>
<td>.</td>
<td>3.465</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H8</td>
<td>C12</td>
<td>2.956 (16)</td>
<td>.</td>
<td>3.465</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H8</td>
<td>H26</td>
<td>2.49 (2)</td>
<td>.</td>
<td>3.465</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H9</td>
<td>C29</td>
<td>2.495 (15)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H9</td>
<td>H29'</td>
<td>2.16 (3)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H9</td>
<td>H29'</td>
<td>2.44 (3)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H11</td>
<td>C14</td>
<td>2.970 (15)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H11</td>
<td>C25</td>
<td>2.915 (15)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H11</td>
<td>C26</td>
<td>2.779 (15)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H11</td>
<td>C28</td>
<td>2.724 (15)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H11</td>
<td>H25</td>
<td>2.34 (2)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H11</td>
<td>H26</td>
<td>2.26 (2)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H11</td>
<td>H28'</td>
<td>2.11 (3)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H11</td>
<td>S1</td>
<td>3.131 (15)</td>
<td>.</td>
<td>3.455</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H11</td>
<td>H23</td>
<td>2.58 (3)</td>
<td>.</td>
<td>3.455</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H17</td>
<td>C1</td>
<td>2.846 (16)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H17</td>
<td>C6</td>
<td>3.044 (16)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H17</td>
<td>C13</td>
<td>2.769 (17)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H17</td>
<td>C14</td>
<td>2.684 (18)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H20</td>
<td>H22</td>
<td>2.44 (3)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H20</td>
<td>S2</td>
<td>3.07 (2)</td>
<td>.</td>
<td>4.745</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H22</td>
<td>H20</td>
<td>2.44 (3)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H23</td>
<td>N2</td>
<td>2.77 (2)</td>
<td>.</td>
<td>3.555</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H23</td>
<td>C11</td>
<td>3.08 (2)</td>
<td>.</td>
<td>3.555</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H23</td>
<td>C28</td>
<td>2.83 (2)</td>
<td>.</td>
<td>3.555</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H23</td>
<td>H11</td>
<td>2.58 (3)</td>
<td>.</td>
<td>3.555</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H23</td>
<td>H28'</td>
<td>2.53 (3)</td>
<td>.</td>
<td>3.555</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H25</td>
<td>H11</td>
<td>2.34 (2)</td>
<td>.</td>
<td>.</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
H25' H27' 2.48 (3) . . no
H25' H2 2.52 (2) . 3_555 no
H26 C11 2.568 (16) . . no
H26 C12 2.712 (16) . . no
H26 H11 2.26 (2) . . no
H26 H8 2.49 (2) . 3_565 no
H27 S1 3.168 (17) . . no
H27 C1 3.057 (16) . 1_655 no
H27 C2 3.069 (16) . 1_655 no
H27 C15 2.682 (16) . . no
H27 C24 2.866 (17) . . no
H27' H25' 2.48 (3) . . no
H27* C6 3.092 (16) . 1_655 no
H28 H29 2.38 (3) . . no
H28 H4 2.56 (3) . 2_664 no
H28* C11 2.56 (2) . . no
H28' H11 2.11 (3) . . no
H28' O1 2.68 (2) . 3_555 no
H28* H23 2.53 (3) . 3_455 no
H28* S2 3.10 (2) . 3_565 no
H29 H28 2.38 (3) . . no
H29 O2 2.87 (2) . 2_664 no
H29* C9 2.65 (2) . . no
H29* H9 2.16 (3) . . no
H29* C9 2.88 (2) . . no
H29* H9 2.44 (3) . . no

loop_
 _geom_hbond_atom_site_label_D
 _geom_hbond_atom_site_label_H
 _geom_hbond_atom_site_label_A
 _geom_hbond_distance_DH
 _geom_hbond_distance_HA
 _geom_hbond_distance_DA
 _geom_hbond_angle_DHA
 _geom_hbond_site_symmetry_A
 _geom_hbond_publ_flag
#
D H A D - H H...A D...A D - H...A symm(A)
#
C5 H5 O2 0.96(2) 2.497(19) 3.4272(16) 162.5(15) 4_655 yes

End of Crystallographic Information File