Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing

Alle Meije Wink1,2 and Jos B. T. M. Roerdink1,2, Senior Member, IEEE
1 Institute for Mathematics and Computing Science
2Institute for Behavioral and Cognitive Neurosciences
University of Groningen, The Netherlands
E-mail: \{wink, roe\}@cs.rug.nl

Abstract—We present a general wavelet-based denoising scheme for functional magnetic resonance imaging (fMRI) data and compare it to Gaussian smoothing, the traditional denoising method used in fMRI analysis. One-dimensional WaveLab thresholding routines were adapted to two-dimensional images, and applied to 2D wavelet coefficients. To test the effect of these methods on the signal-to-noise ratio (SNR), we compared the SNR of 2D fMRI images before and after denoising, using both Gaussian smoothing and wavelet-based methods. We simulated a fMRI series with a time signal in an active spot, and tested the methods on noisy copies of it. The denoising methods were evaluated in two ways: by the average temporal SNR inside the original activated spot, and by the shape of the spot detected by thresholding the temporal SNR maps. Denoising methods that introduce much smoothness are better suited for low SNRs, but for images of reasonable quality they are not preferable, because they introduce heavy deformations. Wavelet-based denoising methods that introduce less smoothing preserve the sharpness of the images and retain the original shapes of active regions. We also performed statistical parametric mapping (SPM) on the denoised simulated time series, as well as on a real fMRI data set. False discovery rate control was used to correct for multiple comparisons. The results show that the methods that produce smooth images introduce more false positives. The less smoothing wavelet-based methods, although generating more false negatives, produce a smaller total number of errors than Gaussian smoothing or wavelet-based methods with a large smoothing effect.

Index Terms—Functional neuroimaging, wavelet-based denoising, Gaussian smoothing, statistical parametric mapping, false discovery rate control.

I. INTRODUCTION

Functional neuroimages often need preprocessing before being subjected to statistical analysis. A common preprocessing step is denoising, which is usually done via Gaussian smoothing. Smoothing suppresses noise, but it also changes the intensity variation of the underlying image. This suppresses, or even removes, detailed features of the original image. In this paper, we study wavelet-based denoising as a possible alternative to Gaussian smoothing. Wavelet-based denoising has the advantage over low-pass filtering that relevant detail information is retained, while small details, due to noise, are discarded. The performance of both approaches is compared with respect to (i) the improvement of the signal-to-noise ratio (SNR), (ii) the preservation of the shapes of active regions during the denoising process, and (iii) the improvement in the statistical analysis via statistical parametric mapping (SPM).

The focus of this paper is on functional magnetic resonance imaging (fMRI) time series. In an fMRI experiment, a person lying inside an MRI scanner is asked to perform a certain task while a series of scans of the brain are made. Brain regions involved in this task show increased concentrations of oxygenated blood, inducing local signal changes [1]. These signal changes are referred to as the blood oxygenation level dependent (BOLD) contrast, and detecting and characterising these changes is the main goal of fMRI time series analysis.
sets and can be kept outside the discussion. Secondly, performing the statistical test in the wavelet domain requires an inverse wavelet transform afterwards, which spreads out the activation in the final statistical map. Whether or not another threshold is needed on this map before display is questionable. Separating the denoising and the statistical analysis has another advantage. The data sets used in this study only require a simple statistical test, but most recent fMRI experiments often require much more complex procedures. It is not likely that all these tests can be done in the wavelet domain. However, if the denoised images are transformed back to the original domain, this problem does not occur.

Another difference between the current study and previous publications on this subject is that we include tests on simulated time series of which the SNRs and noise characteristics are known. Our definition of the BOLD signal allows a very precise characterisation of the noise in all test cases, so that the effect of each method on the SNR can be accurately determined.

Thirdly, we simulate brain activity in the time series by superimposing a time signal on a selected area. From the difference between the shape of the original active spot and the shape of the spot detected by statistical parametric mapping, we can make quantitative analyses of the denoising methods in terms of false positive and false negative error rates.

The remainder of this paper is organised as follows. Section II reviews a number of procedures to correct for multiple hypothesis testing. Section III first describes the noise in MR images, and introduces BOLD noise as the noise in the difference of two MR images. In section IV, we present the wavelet-based denoising methods available in WaveLab [7]. Adjustments have been made to these methods, to (i) make them suitable for processing 2D images and (ii) to support noise with unknown autocorrelations. These denoising methods, as well as various degrees of Gaussian smoothing, are tested on 2D images in section V. In sections VI and VII, the wavelet-based and Gaussian methods are tested on an artificial time series, and compared in terms of their effects on the temporal SNR of the map. Finally, we compare the effects of these methods in a statistical experiment in which a subject is asked to perform a task while this problem does not occur.

A statistical parametric map of N voxels consists of the p-values p_i, $1 \leq i \leq N$. Given a distribution of outcomes, a p-value is the probability of getting an outcome at least as extreme as the one observed when the null hypothesis H_0 is correct. The SPM method allows for many statistical tests (t-tests, analysis of (co-)variance, regression analysis). In this paper, we will only discuss the one-sample t-test. The temporal noise in fMRI data sets is assumed to be Gaussian distributed, $N(\mu, \sigma^2)$. The null hypothesis H_0 states that $\mu = 0$. We test for increased activation, which means that we perform a one-sided test: $H_1: \mu > 0$. We do not know the real σ^2 of the temporal noise distribution, so it must be estimated via the sample variance s^2, which can be computed using the residual time signals in e. Using this estimate, we can test for increased activation via the t-test. BOLD contrasts are constructed as linear combinations of rows of b (each of which is an image of N voxels), and their values are t-distributed. The relation between p-values and t-values is as follows. If a t-value in the BOLD contrast is in the upper α% of the distribution, it is below α. In other words: a small p-value provides strong evidence against the null hypothesis. Active voxels are those with p-values below a significance level α. For one test, α is the probability of erroneously rejecting H_0.

Testing multiple independent hypotheses with the same significance level α leads to false positives. For one test, a level of 0.05 is acceptable, but for N simultaneous tests, approximately 0.05 N detected activations will be false positives. Simultaneous tests deal with the ‘omnibus’ null hypothesis [10], which states that there is no activation in any of the individual tests. Testing the omnibus null hypothesis at level α can be used to decide if there is activity in the image, but not where it is. The omnibus null hypothesis is said to have weak type I error control.

One way to deal with this is Bonferroni correction, where the significance level α is replaced by α/N. This guarantees that the proportion of false positives does not exceed α in any subset of the simultaneous tests. Bonferroni is therefore said to have strong type I error control [11], meaning that rejecting H_0 in a certain region in the brain is evidence for activation in that very region. Bonferroni correction not only affects the number of type I errors: reducing the probability of rejecting the omnibus null hypothesis also affects the number of true positives. This introduces false negatives, or type II errors (see Table I). For fMRI signals, which are spatially correlated, Bonferroni correction may be too conservative.

In most neuroimage analysis programs that use the SPM method for the statistical part of the analysis, images are smoothed with Gaussian filters [12]. The motivation for this is twofold: (i) it increases the signal-to-noise ratio (SNR), and (ii) it controls the smoothness of the noise in the images when viewed as a lattice representation of a continuous, stationary Gaussian random field.
In order to use GRF theory, smoothing may be necessary to bring the data more into agreement with the model assumptions. Once the smoothness of an image is known or controlled via filtering, threshold values for statistical maps can be computed using the Euler characteristic of Gaussian random fields to correct for multiple testing [13], [14]. The method has strong type I error control. This approach has two drawbacks. Firstly, even after filtering, the noise in the smoothed images often still differs from a GRF. Noise and signal are smoothed together, so smoothing makes it even more difficult to separate signal from noise. The underlying image is not likely to represent a continuous GRF, so the corrected threshold is likely to be biased. This will influence all corrected \(p \)-values. This problem is even more severe when the smoothing kernel has another full width at half maximum (FWHM) than the intrinsic FWHM of the underlying images. Secondly, the smoothing process suppresses and removes details in the images. This hampers the detection of detailed regions during subsequent analysis.

The false discovery rate (FDR) is another alternative for multiple test correction, that is also applied in functional neuroimaging [11]. It does not require spatial smoothness. The FDR is defined as the expected proportion of false positives among the rejected null hypotheses [15]:

\[
\text{FDR} = E \left(\frac{\# \text{type I errors}}{\# H_0 \text{ rejected}} \right) = E \left(\frac{\# \text{false positives}}{\# \text{detections}} \right)
\]

\(E \) denoting expectation, and is identical to 0 when \(\# \text{detections} = 0 \). The following algorithm results in an FDR approximately equal to \(q \), with \(0 \leq q \leq 1 \). Given \(N \) voxels with \(p \)-values \(p_1, \ldots, p_N \) and an FDR controlling parameter \(q \), an FDR-controlling threshold selection procedure is given by:

1: define
\[
\eta(N) = \begin{cases}
1, & \text{when the } p \text{-values are uncorrelated} \\
\sum_{i=1}^{N} 1/i, & \text{otherwise}
\end{cases}
\]

2: order the \(p \)-values so that \(p_i \leq p_{i+1} \) for every \(0 < i < N \);
3: let \(r \) be the largest \(i \) for which \(p_i \leq q/N\eta(N) \);
4: reject the null hypotheses of the voxels with \(p_i \leq p_r \).

This method has weak type I error control. Notice that, when \(\eta(N) = 1 \), the graph of \(q_i/N \) vs. \(i \) is a straight line from \((1, q/N)\) to \((N, q)\), and that \(q/N \) and \(q \) correspond to the Bonferroni-corrected threshold and the ‘omnibus’ threshold, respectively. If \(\eta(N) = \sum_{i=1}^{N} 1/i \), the method is much more conservative [11], so the \(\eta(N) = 1 \) option is preferable if it is allowed.

This correction method has a number of advantages over Bonferroni correction and correction based on GRF theory. It is less conservative than Bonferroni correction and it does not require smoothing, in contrast to GRF theory. The most important advantage is its adaptivity: the threshold is selected on the basis of the distribution of \(p \)-values, so after hypothesis testing. Therefore, it can be applied to any set of \(p \)-values resulting from a statistical test. It is independent of the type of test and the number of hypotheses, so that comparisons between studies with equal FDRs are possible.

The value \(\eta = 1 \) is not only valid for uncorrelated \(p \)-values, but also for sets of \(p \)-values that are positive regression dependent within subsets (PRDS). Genovese et al. [11] explain the PRDS property briefly, and they argue that statistical parametric maps have this property. In section VII we discuss the distribution of the \(p \)-values under the null hypothesis and their spatial correlation in greater detail. A uniform distribution of \(p \)-values under the null hypothesis proves the validity of the statistical test. The spatial correlation of the residual noise is tested because a time series with Gaussian noise that is positively correlated among voxels, is PRDS [11].

The computation of \(p \)-values in fMRI research is usually done with standard tests, such as the \(t \)-test or \(F \)-test. The use of these tests is justified by assuming the BOLD noise to be Gaussian under the null hypothesis. In the MR literature, however, the noise in MR images is assumed to be Rician distributed [16], [2], [17]. Rician noise differs from Gaussian noise in that it is multiplicative instead of additive, i.e., it depends on the signal intensity, and the probability density function (pdf) of the noise is very asymmetric for low signal intensities.

The difference between two images with Rician distributed noise has a symmetric distribution (see Fig. 2). In such difference images, the distribution of noise is very close to Gaussian noise, as can be seen in table II. This table shows, for each listed image size, the mean \(p \)-values of the Kolmogorov-Smirnov (KS) test statistic on 32 images of that size, for (i) the difference between two images with Rician noise and signal intensity one, (b) the difference between two images with Rician noise and signal intensity five, and (c) an image containing \(N(0, 1) \) noise. The null hypothesis of the KS test is that the noise is normally distributed, and it is rejected if the \(p \)-value of the KS test statistic is below 0.05. For very low signal intensities, a deviation from Gaussianity is noticeable only in very large images. We conclude that it is safe to use techniques based on the assumption of Gaussian noise for BOLD images. For a more detailed analysis, we refer to [18].

The BOLD effect involves spatial autocorrelation due to the spatial extent of neuronal events, but this autocorrelation is not exactly known [19], [20]. We tested two types of spatial correlation: white noise, and 1/f noise, which has a 1/f power spectrum. The motivation for the latter type of noise is that, due to the MR frequency encoding, a unit pulse gets the shape of a peak with exponential slopes [21]. Section V describes how we simulated MR noise.
TABLE II
p-values produced by the KS test for the difference between images with Rician distributed noise (R), with signal amplitudes (A) of 1 and 5, and for images of the same width with \(N(0,1) \)-noise (N).

<table>
<thead>
<tr>
<th>size</th>
<th>p-value R(A=1)</th>
<th>p-value R(A=5)</th>
<th>p-value N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 \times 2</td>
<td>0.6573</td>
<td>0.5607</td>
<td>0.4569</td>
</tr>
<tr>
<td>4 \times 4</td>
<td>0.5761</td>
<td>0.5565</td>
<td>0.4249</td>
</tr>
<tr>
<td>8 \times 8</td>
<td>0.5511</td>
<td>0.5493</td>
<td>0.4894</td>
</tr>
<tr>
<td>16 \times 16</td>
<td>0.5801</td>
<td>0.5564</td>
<td>0.5854</td>
</tr>
<tr>
<td>32 \times 32</td>
<td>0.5833</td>
<td>0.5378</td>
<td>0.5946</td>
</tr>
<tr>
<td>64 \times 64</td>
<td>0.5629</td>
<td>0.4869</td>
<td>0.4816</td>
</tr>
<tr>
<td>128 \times 128</td>
<td>0.5270</td>
<td>0.5426</td>
<td>0.5147</td>
</tr>
<tr>
<td>256 \times 256</td>
<td>0.4390</td>
<td>0.5554</td>
<td>0.5225</td>
</tr>
<tr>
<td>512 \times 512</td>
<td>0.3210</td>
<td>0.5219</td>
<td>0.4006</td>
</tr>
<tr>
<td>1024 \times 1024</td>
<td>0.0587</td>
<td>0.5236</td>
<td>0.5037</td>
</tr>
</tbody>
</table>

IV. WAVELET-BASED DENOISING

Wavelet bases are bases of nested function spaces, which can be used to analyse signals at multiple scales. Wavelet coefficients carry both time and frequency information, as the basis functions vary in position and scale. The fast wavelet transform (FWT) efficiently converts a signal to its wavelet representation [22]. In a one-level scheme, both time and frequency information, as the basis functions vary along with the scale. They come in many flavours, such as symmetric and causal.

Fig. 4. (a) Ordering of the approximation and detail coefficients of a two-level 1D wavelet transform. (b) Symmetric orthogonal cubic spline scaling function (top) and corresponding wavelet (bottom).

If a 1D threshold selection scheme were used in a 2D FWT, for example by applying a 1D thresholding scheme in both spatial dimensions, assumptions used by the WaveLab routines would be violated, because the threshold for detail coefficients would in some cases be determined from both approximation and detail coefficients, and in some cases from detail coefficients only (see Fig. 4a). So it is necessary to respect the ordering of coefficients in a 2D FWT. The WaveLab thresholding schemes are based on the assumption of white Gaussian noise. If the autocorrelation of the noise is unknown, a level-dependent threshold should be used [34]. To meet these requirements, we have made 2D versions of the denoising routines in which all channels with detail coefficients (see Fig. 4a) can be thresholded individually. Each direction channel at each resolution (each square

A. Wavelet bases

As it is difficult to mathematically characterise functional brain signals, a basis with general properties is preferable. Of the common wavelet bases, like Daubechies wavelets [24], symmetlets, coiflets [25], and splines, spline bases have been shown to possess the best approximation properties, such as the smallest \(L_2 \) error [26]. Because of their smoothness, splines are well localised in both the frequency and time domains. Earlier studies about the use of wavelets in fMRI analysis [4], [27] favour the use of symmetric wavelets and scaling functions, because they do not introduce phase distortions. Orthogonal bases are recommended, because they transform white noise into white noise [28]. Unser et al. have proposed an FWT that uses fractional spline wavelets [29], [30]. Fractional splines are splines of a real-valued degree, which can be used to produce wavelet bases. They come in many flavours, such as symmetric and causal, orthogonal and biorthogonal.

In view of the above, symmetric, orthonormal cubic spline wavelets (see Fig. 4b) are the best choice for this study. Symmetric, orthogonal, smooth wavelet basis functions cannot have compact support but exponential decay [31]. For this reason, we use a frequency domain implementation via the FWD to compute the FWR.

B. Denoising images by wavelet domain thresholding

The WaveLab package by Donoho et al. [7] contains a number of schemes for wavelet-based denoising, including HybridThresh, InvShrink, MinMaxThresh, MultiMAD, SUREThresh, VisuShrink, and WaveJS [32], [33]. These routines are based on thresholding detail coefficients in the wavelet domain. An important characteristic of these schemes is the amount of smoothness they introduce in the denoised image [6].

InvShrink uses the VisuThresh threshold, which is \(\sqrt{2 \log N} \) for a vector \(d_i \) of detail coefficients of length \(N \). The signal is scaled before thresholding so that it has unit standard deviation. In multilevel transforms, the height of threshold is doubled for each subsequent level. MultiMAD also uses VisuThresh, and rescales the \(d_i \) of each level so that its median absolute coefficient value is \(0.6745 \), which is the median absolute deviation (MAD) of an \(N(0,1) \) distribution. MinMaxThresh uses a minimax threshold [33], which minimises the maximum risk. SUREThresh uses Stein’s Unbiased Risk Estimate [32]. VisuShrink uses VisuThresh with shrinkage of small coefficients, called soft thresholding, as the default, but hard thresholding, i.e. removal of small coefficients, is also used. HybridThresh uses VisuThresh for sparse vectors and SUREThresh for dense vectors. WaveJS uses a threshold based on the James-Stein estimate [32]. InvShrink and MultiMAD change the threshold for each decomposition level, while MinMaxThresh, SUREThresh, VisuShrink, HybridThresh, and WaveJS use one global threshold.
in Fig. 4a) is thresholded independently using the WaveLab routines. This setting works for each FWT of stationary noise with an unknown autocorrelation: there is a difference in variance between detail channels at different resolutions, but within each channel there is constant variance [34].

V. DENOISING 2D IMAGES

The BOLD contrast is defined as the difference between an MR image of a brain with increased local activity and an image of the same brain under resting conditions [35]. We used the BrainWeb Simulator [36] to obtain a noise-free T2*-weighted MR image template. The parameters of the simulator were as follows. Modality: T2; voxel size: 1 x 1 x 1 mm³; Noise: 0 %; intensity non-uniformity: 0 %. The Brain Extraction Tool [37] was used to remove non-brain voxels, by setting their intensities to 0. One slice (slice no. 108) of this image was selected, and used as a noise-free MR brain template. Rician noise was added to this template as follows. Let \(\hat{n}(x) \) denote the template slice, and \(\sigma_n \) its standard deviation. Two images \(n_1(x) \) and \(n_2(x) \) containing i.i.d. \(N(0, \sigma_n^2) \)-distributed noise with a known standard deviation \(\sigma_n \) were made, and the noisy MR image \(\hat{n} \) was computed as \(\hat{n}(x) = \sqrt{(n_1(x) + n_2(x))^2 + n_2(x)^2} \). The Rician-distributed noise in \(\hat{n} \) computed as \(r(x) = \hat{n}(x) - n(x) \), has a standard deviation \(\sigma_r \) with approximately \(\sigma_r = \sigma_n \sqrt{2 - \pi/2} [2] \). This approximation was used to create noisy MR images with a known signal-to-noise ratio (SNR). The SNR of the noisy images was computed as:

\[
\text{SNR}_{\hat{n}} = 10 \log_{10} \frac{\sigma_m}{\sigma_r},
\]

Gaussian noise with a 1/f power spectrum was produced by transforming both \(n_1 \) and \(n_2 \) to the frequency domain and multiplying their frequency spectra with a \(1/\sqrt{f} \) mask, yielding power spectra with a 1/f fall-off. Both the real and imaginary parts of the spectra were multiplied, so the phase spectra did not change. Multiplication in the frequency domain is equivalent to convolution in the spatial domain. Because this is a linear operation, the noise distribution in the 1/f versions of the \(n_1 \) and \(n_2 \) images remains Gaussian. These transformed versions of \(n_1 \) and \(n_2 \) were used to obtain Rician distributed noise with a 1/f power spectrum.

The BOLD image was constructed from two of these noisy MR images as follows:

1. create two noisy MR images \(\hat{n}_1 \) and \(\hat{n}_2 \) using the above procedure;
2. define an ‘active region’ inside the template brain and create a noise-free BOLD image \(f_0 \) as:
 \[
f_0(x) = \begin{cases}
 1, & \text{if } x \text{ is inside the active region} \\
 0, & \text{otherwise}
 \end{cases}
\]
3. add activity to \(\hat{n}_2 \) by adding \(c f_0 \), where \(c = 5 \% \) of the maximum intensity of the MR template.
4. compute a BOLD image \(f_1 \) as \(f_1(x) = \hat{n}_2(x) - \hat{n}_1(x) \).

The top row shows the noise-free BOLD image, and BOLD images with white noise and 1/f noise, respectively with an SNR of 15 dB. Because there is hardly any signal in the noise-free BOLD image \(f_0 \) (see Fig. 5d), the BOLD images have a much lower SNR than the MR images used to construct them. MR images with an SNR of \{5, 10, 15, 20, 25, 30, 35\} dB yield BOLD images with an SNR of \{15.2, 10.2, -5.2, -0.2, 4.8, 9.8, 14.8\} dB, respectively.

For these input images, we compared wavelet-based denoising and various degrees of Gaussian smoothing. Each of the wavelet-based schemes started with a 2D FWT of \(f_1 \), computed as shown in Fig. 4b. Symmetric orthonormal cubic spline basis functions and a decomposition level of 4 were used for all tests. After denoising with one of the methods listed in subsection IV-B, a 2D IFFT yielded the denoised image \(f_2 \). Denoting the standard deviation of an arbitrary image \(f \) by \(\sigma_f \), the following procedure was carried out for each of the tested methods:

1. the noise \(\epsilon_1(x) \) present in \(f_1(x) \) before denoising was computed as \(\epsilon_1(x) = f_1(x) - f_0(x) \)
2. the SNR before denoising, denoted \(\text{SNR}_1 \), was computed as:
 \[
 \text{SNR}_1 = 10 \log_{10} \frac{\sigma_f}{\sigma_{\epsilon_1}}
 \]
3. the residual noise \(\epsilon_2(x) \) after denoising was obtained as \(\epsilon_2(x) = f_2(x) - f_0(x) \)
4. the SNR of the denoised image, denoted \(\text{SNR}_2 \), was computed as:
 \[
 \text{SNR}_2 = 10 \log_{10} \frac{\sigma_f}{\sigma_{\epsilon_2}}
 \]

Figure 7 shows \(\text{SNR}_2 \) plotted against the input SNR of the MR images.

![Fig. 5. Image without noise and the active spot magnified and shown in white (a). Noisy MR images with increased intensities inside the active spot, containing white (b) and 1/f (c) Rician noise of 15 dB, respectively. The noise-free BOLD image (d) and BOLD images created from noisy MR images with white (e) and 1/f (f) noise of 15 dB, respectively.](image)

![Fig. 6. Images from the 2D denoising test, each with a cross section (solid line) of a line in the image (dotted line) plotted inside: (a) Original \(f_0 \), (b) noisy \(f_1 \), (c) denoised \(f_2 \) with Gaussian smoothing, FWHM = 3 pixels, (d) denoised \(f_2 \) with VisuThresh (s).](image)

Of the Gaussian smoothing methods, the wider kernels perform better for low input SNRs, and smaller kernels perform better for higher input SNRs. The maximum input SNR where Gaussian smoothing still shows SNR improvement decreases as the filter width increases. Figs. 7a+c show that even for Gaussian smoothing with an FWHM of one pixel, the maximum output SNR is about 7 dB.

The wavelet methods perform as well as Gaussian smoothing for low SNRs, and better than Gaussian smoothing for higher SNRs. All wavelet-based methods show maximum output SNRs above 10 dB. For white noise and low SNRs, there is a marked difference in output SNRs. HybridThresh, InvShrink, MultiMAD, and VisuThresh
with both hard (h) and soft (s) thresholding increase the SNR most. WaveJS, MinMaxThresh, and SUREThresh (both h and s) thresholding increase the SNR less. For higher SNRs the differences are smaller, but InvShrink, WaveJS, SUREThresh (h), and VisuThresh (s) now produce visibly lower SNRs. There is another difference between these methods: The images produced by HybridThresh, WaveJS, and VisuThresh (s) smear the active spot out much more than the other methods do. We refer to these schemes as ‘smoothing wavelet methods’. MinMaxThresh and SUREThresh (both h and s) produce sharp output images. The other methods produce images of intermediate smoothness. In general, the smoothing wavelet methods perform better for low input SNRs, but the less smoothing wavelet methods are better when the input SNR is higher. In this experiment SUREThresh (h) performs bad with a low input SNR, but with both noise types it performs best for higher input SNR.

The differences in performance is smaller for $1/f$ noise than for white noise. This holds for the wavelet methods as well as for Gaussian smoothing. For all wavelet methods except InvShrink, WaveJS, and VisuThresh(s), the output SNR is a linear function of the input SNR: unlike Gaussian smoothing, the wavelet methods improve the SNR of input images that already have a high SNR. This suggests that in terms of SNR improvement, wavelets are an attractive alternative to Gaussian smoothing. With white noise and for low SNRs, the less smoothing wavelet methods, such as MinMaxThresh and SUREThresh (h and s), produce relatively lower output SNRs than the other methods. This indicates that introducing smoothness, thereby discarding image features, is necessary to improve images with very low SNRs. Of the methods mentioned above, MultiMAD and VisuThresh(h) give good results for all tested SNRs.

VI. DENOISING A SIMULATED TIME SERIES

In most neuroimaging applications it is not possible to separate signal and noise, so the SNR is not known. Therefore, a simulation study was performed in which the SNR is known a priori. We constructed an artificial time series of 64 copies of the MR template image of the previous experiment, and superimposed noise on each image according to the procedure described in section V. A block signal $b(t)$ (see Fig. 8) was superimposed on the time signals at the voxel locations inside the active region (see Fig. 5a). The sign of the superimposed signal altered after every 4th time point. The size of the original active region was 762 pixels.

The time series consisted of 8 blocks of 8 images: 4 blocks were labelled ‘rest’, and 4 were labelled ‘task’. The ‘task’ blocks were those in which the time signal is positive (see Fig. 8). The amplitude of the time signal was set to 1% of the maximum intensity in the MR template. Starting with the image $f_0(x)$ from section V, we use F_0 to denote the original time series with the time signal $b(t)$ superimposed on it, but without the noise:

$$F_0(x,t) = \{ f_0(x) + b(t) \text{ in the active spot}, \nonumber$$

$$f_0(x) \text{ in the rest of the image} \}

The noisy time series F_1 was computed as:

$$F_1(x,t) = F_0(x,t) + \epsilon_1(x,t),$$

where F_1 and $\epsilon_1(x,t)$ denote the noisy time series and the value of the input noise, respectively. A BOLD image was computed from each individual image by subtracting the time series mean. As demonstrated in section III, the noise distribution in such difference images is approximately Gaussian. The BOLD image was denoised using the methods from the previous section, after which the time series mean was added to the denoised image.

Let F_2 denote the denoised time series. After denoising, we tested each voxel location x for the presence of the signal $b(t)$. The residual noise ϵ_2 was computed as:

$$\epsilon_2(x,t) = F_2(x,t) - f_0(x) - b(t).$$

We denote the temporal residual noise in a voxel x as a function of t by $\epsilon_2^x(t) = \epsilon_2(x,t)$. The temporal SNR in a voxel x after denoising was computed as:

$$\text{SNR}_2(x) = 10 \log_{10} \frac{\sigma_b}{\sigma_{\epsilon_2^x}},$$

where σ_b and $\sigma_{\epsilon_2^x}$ are the standard deviations of $b(t)$ and $\epsilon_2^x(t)$, respectively.

A. Effect on the temporal SNR

Figure 9 shows $\text{SNR}_2(x)$, averaged over all locations x inside the active spot, plotted against the input spatial SNR. The graphs for Gaussian denoising show the same behaviour as in the 2D image experiment, i.e. the SNR curve eventually reaches a plateau value. The wavelet-based methods improve the temporal SNR both for low and high input SNR. The same relation observed in the previous experiment between smoothness of the output image and the output SNR is visible here. The smoothing wavelet methods and wide Gaussian smoothing filters produce the highest temporal SNRs for low input SNRs, and the less smoothing wavelet methods and narrow Gaussian filters perform better for high input SNRs.
Performance of the wavelet denoising schemes, as well as Gaussian smoothing for six FWHM values. The average temporal SNR inside the original active spot in the denoised image is plotted against the spatial SNR of the noisy input image.

Hybrid InvShrink WaveJS MultiMAD MinMax SUREThresh(h) SUREThresh(s) VisuThresh(h) VisuThresh(s) FWHM = 1 FWHM = 2 FWHM = 3 FWHM = 4 FWHM = 5 FWHM = 6

Fig. 9. Performance of the wavelet denoising schemes, as well as Gaussian smoothing for six FWHM values. The average temporal SNR inside the original active spot in the denoised image is plotted against the spatial SNR of the noisy input image.

Hybrid InvShrink WaveJS MultiMAD MinMax SUREThresh(h) SUREThresh(s) VisuThresh(h) VisuThresh(s) FWHM = 1 FWHM = 2 FWHM = 3 FWHM = 4 FWHM = 5 FWHM = 6

Fig. 10. Temporal SNR maps (inverted) of the area around the active spot. The original images contained white noise with a spatial SNR of 11 dB.

Hybrid InvShrink WaveJS MultiMAD MinMax SUREThresh(h) SUREThresh(s) VisuThresh(h) VisuThresh(s) FWHM = 1 FWHM = 2 FWHM = 3 FWHM = 4 FWHM = 5 FWHM = 6

Fig. 11. Temporal SNR maps (inverted) of the area around the active spot. The original images contained 1/f noise with a spatial SNR of 14 dB.

B. Effect on the shape of the detected spots
Apart from comparing the average temporal SNRs in the active spot, we also look at spatial maps of temporal SNR values of the denoised time series. Ideally, these maps should have high values inside the active spot and low values outside it. Figures 10 - 13 show the temporal SNRs in the area containing the active spot for white noise and 1/f noise of 11 dB and 14 dB, respectively. Note that the images were inverted (reverse video mode) for enhanced display purposes.

Gaussian smoothing with small smoothing kernels and the smoothing wavelet methods show bright spots, even for a low input spatial SNR like 11 dB. Wider kernels, with FWHM > 3 pixels, produce maps with a very smooth spot, which is less bright. The smoothing wavelet methods show bright spots, while those produced by the less smoothing wavelet methods are darker, cf. Fig. 10. The smoother the output image, the more the shape and the SNR value distribution of the visible spot differs from the original active spot. Temporal SNR maps of methods that produce smooth images (both Gaussian and wavelet-based) show spots with a somewhat elliptic shape and a peaked (non-uniform) intensity distribution. The less smoothing wavelet methods retain the shape of the original spot and its uniform intensity distribution. For noise of 14 dB, InvShrink, MinMaxThresh, SUREThresh and Gaussian smoothing with FWHM = 1 return almost exactly the original spot, with a very uniform distribution of temporal SNR values. Other less smoothing wavelet methods, such as MultiMAD and VisuThresh (h), and Gaussian smoothing with...
FWHM = 2, retain the shape of the spot quite well, with most of the changes in the temporal SNR values near the contour of the spot.

C. Segmentation via SNR thresholding

Segmentation of MR images based on thresholding is a commonly used technique, and it has also been used on statistical parametric maps, see [38], [39] for examples and references. We assumed the temporal SNR maps to have bimodal histograms: one peak of low values for the background and another peak of high values for the active spot. This assumption was used to segment the maps into a ‘non-active’ area and an ‘active’ area. We used the following steps to determine a threshold.

1. Smooth the histogram with a moving average filter
2. Take the logarithm of each entry in the smoothed histogram
3. Model the log-histogram as the sum of two Gaussian peaks
4. Use the 99.9% level of the cumulative histogram of the left peak as a threshold

Filtering the histogram was implemented by applying a three-tap averaging filter ten times. Taking the logarithm was applied to amplify the second peak: the number of background pixels is generally much larger than the size of the active spot, and large values decrease more by taking their logarithm than small values. The histogram was approximated by the sum of two Gaussian peaks with the Levenberg-Marquardt curve fitting algorithm. The threshold was based on the distribution of the noise.

This is a very simple method, based on a simple assumption of the bimodality of the histogram. We demonstrate its performance in a number of cases, with SNRs ranging from low to high. If the temporal SNR is very low, the histogram of the temporal SNR map is equal to the histogram of an image just containing noise. As it is not possible to distinguish two peaks in this case, the threshold is determined incorrectly (see Fig. 14c).

In the worst case we tested (Fig. 14a), the temporal SNR map itself also has a very low SNR of -10 dB, and the histogram of the SNR map has the shape of the noise distribution, so that separation of signal and noise is not possible. The histogram in Fig. 14b yields a sensible threshold, though the noise prevents a better detection (see Fig. 14e). Figure 14c-d show that temporal SNR maps with an SNR of at least 0 dB can be segmented well with this technique.

In the experiment, we looked at two measures: the number of false positive classifications, i.e. points outside the original active spot labelled ‘active’, and false negative classifications i.e. points inside the original active spot labelled ‘non-active’.

TABLE III

<table>
<thead>
<tr>
<th>Method</th>
<th>spatial SNR</th>
<th>method</th>
<th>spatial SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>InvShrink</td>
<td>8</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>JAMES</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>MultiMAD</td>
<td>135</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MinMax</td>
<td>135</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SURE(h)</td>
<td>135</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SURE(s)</td>
<td>135</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Visu(h)</td>
<td>135</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Visu(s)</td>
<td>135</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE IV

<table>
<thead>
<tr>
<th>Method</th>
<th>spatial SNR</th>
<th>method</th>
<th>spatial SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>InvShrink</td>
<td>8</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>JAMES</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>MultiMAD</td>
<td>135</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MinMax</td>
<td>135</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SURE(h)</td>
<td>135</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SURE(s)</td>
<td>135</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Visu(h)</td>
<td>135</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Visu(s)</td>
<td>135</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Tables III and IV show the false positive and false negative classifications, respectively. Images with spatial SNRs of 8 dB do not yield SNR maps that can be analysed in this way, because the SNRs of the BOLD images, as well as the SNRs of the temporal SNR maps, are too low (see the list of BOLD SNRs in section V and Fig. 14a-b). They either yield many false positives or many false negatives. In general, the denoising methods that introduce much smoothness yield more false positive classifications for higher SNRs, while the less smoothing methods yield many false negatives for the lowest SNR. Of the wavelet-based methods, InvShrink and SUREThresh (h) perform well for both noise types, and MultiMAD, MinMaxThresh, and VisuThresh (h) yield good results for moderate and high SNRs. The relatively high numbers of type II errors for Gaussian smoothing with large FWHM relate to the blurring effect visible in Figs. 10-13. The intensity distribution in the spot changes from uniform to peaked, which influences detections close to the boundary of the spot. InvShrink, SUREThresh (h) and Gaussian smoothing with FWHM = 1 yield good results. MultiMAD and MinMaxThresh also perform well, the other methods yield more errors.

VIII. Statistical tests on the simulated time series

We also performed a standard statistical analysis on the denoised time series with the SPM method [9]. The design matrix, X in...
A. Impact of spatial filtering on the distribution of temporal noise

The p-values resulting from a set of statistical tests are uniformly distributed on $[0,1]$ if the ‘omnibus’ null hypothesis is true $[40]$. The sequence of ordered p-values from that set of tests should lie on a straight line. We tested this by constructing time series similar to those previously described, but without activation: the null hypothesis was true for all voxels. We applied all denoising methods to these time series and sorted the p-values acquired in the statistical analysis. Figure 15 shows representative results of both wavelet methods and Gaussian smoothing. Some methods produce Gaussian temporal noise, others introduce a deviation from Gaussianity. The top row shows that Gaussian smoothing with FWHM $= 1$ yields uniformly distributed p-values under the null hypothesis, while for FWHM $= 3$ or higher, non-uniformly distributed p-values are obtained. The plots in the bottom row show results for three wavelet methods. For InvShrink and MinMaxThresh the distribution of p-values is uniform, but for MultiMAD it is non-uniform.

The fact that even for Gaussian smoothing the distribution of the noise may become non-Gaussian may seem puzzling, but can be explained by the fact that, for Rician noise, a higher intensity in the image leads to a larger noise amplitude. This gives a kind of spatial structure to the noise, which is observable in the (BOLD) difference images. Denoising methods that produce smoother images change this structure, thus introducing errors. Although the deviation from normality varies between methods, we chose to keep all methods in the statistical analysis, since the t-test is quite robust to deviations from normality.

B. Positive regression dependence of the p-values

Benjamini et al. $[41]$ show that the setting $\eta = 1$ can be used in the FDR-controlling procedure if the data are PRDS, and that multivariate positively correlated normally distributed data are PRDS. Genovese et al. $[11]$ argue that most fMRI data sets satisfy this condition.

To test the spatial correlation of the noise after applying a denoising method, we observed the time series (without activation) of the residual noise in the GLM, i.e. the e images in (1). We used the SPMd toolbox $[42]$ to compute a normalised residual time series \mathcal{E}. The noise in this time series was $N(0, 1)$-distributed. We tested for a positive correlation as follows. Let $E^x(t)$ denote the normalised residual time signal (the matrix e in (1)) at location x as a function of t. We assumed the autocorrelate function to be localised, and for each location x in the image, the amount of spatial correlation $a(x)$ was estimated by averaging the covariances of the voxel’s time signal with those of a number of neighbouring voxels:

$$a(x) = \frac{1}{N_v} \sum_{x'} \text{cov}(E^x, E^{x'})$$

with x', from a small neighbourhood of x of size N_v (in our case, $N_v = 11 \times 11$ voxels). Figure 16 shows this function for a number of settings. The top rows show the amount of correlation found without applying denoising. Wavelet methods introduce positive spatial correlations for lower input SNRs, and hardly any negative correlations for higher input SNRs. Gaussian smoothing introduces strong positive correlations for all SNRs.

Another way to characterise the autocorrelation function is to look at statistics of the distribution of $a(x)$. Figure 16 and Table V show that every denoising method changes the spatial correlations in the residual time series. All methods, except MultiMAD, introduce significantly more positive correlations than negative ones. Wavelet methods change the spatial correlation much less than Gaussian smoothing. We assume that without denoising, the residuals do not have significant negative correlations. In our test data (spatially white or $1/f$ Gaussian noise) we know that this is the case. Because the only significant correlations introduced by denoising are positive, the residuals are either uncorrelated, or positively correlated in space. These results indicate that the $\eta = 1$ setting is allowed in the statistical tests.

C. Results

In this experiment, we investigate the effect of denoising on the outcomes of the usual statistical analysis. In particular, we looked at two measures: the number of false positives and the number of false negatives. It is important to realize that denoising has two effects: first, the desired effect of noise reduction, and second, an unwanted but unavoidable change of the shape of the active spot. In order to take the latter effect into account, false positives/negatives were defined as points outside/inside the original active spot (see Fig. 5d) after denoising, which are marked ‘active’/‘inactive’ in the t-test with FDR control ($q = 0.05$). These numbers are shown in Tables VI and VII.
False discovery rates can be obtained from this table by computing the number of false positives, divided by the number of detections; the latter number equals the size of active spot (≈762 pixels), plus the number of false positives, minus the number of false negatives. A consequence of taking the original active spot as a reference is that the observed false discovery rates after denoising may exceed the 5% threshold imposed by the FDR controlling procedure.

These tables show that the smoothing methods produce more false positives, whereas InvShrink, MinMaxThresh, SUREThresh(h), VisuThresh(h) and Gaussian smoothing with FWHM = 1 produce very few false positives. The other wavelet methods and Gaussian smoothing with an FWHM of two voxels also perform well. For larger Gaussian filters, the number of type 1 errors increases with the filter width. The number of type 1 errors is larger for 1/f noise than for white noise. The less smoothing wavelet-based methods and Gaussian smoothing with an FWHM of one voxel produce more type II errors than the other methods. With 1/f noise, this effect is worse than with white noise. In general, the wavelet-based methods and Gaussian smoothing with an FWHM of one voxel introduce more type II errors, the other Gaussian filters introduces more type 1 errors. Figures 17-20 show statistical parametric maps built from the denoised time series with white noise and 1/f noise of 11dB and 14dB, respectively. Generally, the less smoothing methods produce spots that are closest to the original. The spots detected after InvShrink, MinMaxThresh, and SUREThresh (h) denoising and Gaussian smoothing with an FWHM of one voxel are closest to the original spot (see Figs. 17-20). Because the boundary voxels are not detected, the resulting active spot is smaller than the original (type II errors). HybridThresh, WaveJS, and VisuThresh(s) and all the Gaussian smoothing methods produce larger spots (type I errors).

VIII. Statistical Tests on a Real fMRI Data Set

To test the denoising methods on real data, we used an example fMRI data set provided by the Dartmouth Brain Imaging Center [43]. This is a recording of an experiment in which a subject was scanned for 4 minutes with a TR of 2000 ms. The subject’s condition switched every 30 s (15 scans) between ‘rest’ and ‘task’, starting with ‘rest’. During the ‘task’ periods, the subject had to perform an object manipulation task. The data set consists of 120 volumes with a resolution of 64×64×27 voxels. Each voxel has a volume of 3.75×3.75×5.50 mm³.

The 3D volumes, each consisting of 27 axial planes of 64×64 voxels, were transformed plane-by-plane to the wavelet domain. The decomposition level was set to 4. Denoising was done by both the wavelet-based methods and Gaussian smoothing. For the latter we used smoothing kernels of 5×5×5.5 mm³, 10×10×5.5, and mm³, 15×15×5.5 mm³. We compared the activation images, using the activation map of the original data without preprocessing (see Fig. 21) as a reference: the shape of the active region detected after denoising should not differ too much from that detected from the original time series. The data underwent the same statistical analysis as the simulated time series. Figure 22 shows the voxels in a selected plane whose t-statistic was above the FDR threshold, for all denoising methods, overlaid on the first image of the original time series.
TABLE VII

<table>
<thead>
<tr>
<th>Method</th>
<th>spatial SNR</th>
<th>spatial SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 11 14 17 20 23</td>
<td>8 11 14 17 20 23</td>
</tr>
<tr>
<td>InvShrink</td>
<td>0 108 139 122 115</td>
<td>0 108 139 122 115</td>
</tr>
<tr>
<td>JAMES</td>
<td>0 119 91 83 81</td>
<td>0 119 91 83 81</td>
</tr>
<tr>
<td>MultiMAD</td>
<td>0 163 151 136 125</td>
<td>0 163 151 136 125</td>
</tr>
<tr>
<td>MinMax</td>
<td>0 179 157 137 123</td>
<td>0 179 157 137 123</td>
</tr>
<tr>
<td>SURE(h)</td>
<td>0 198 164 140 125</td>
<td>0 198 164 140 125</td>
</tr>
<tr>
<td>SURE(s)</td>
<td>0 231 114 113 112</td>
<td>0 231 114 113 112</td>
</tr>
<tr>
<td>Visu(h)</td>
<td>0 163 151 136 125</td>
<td>0 163 151 136 125</td>
</tr>
<tr>
<td>Visu(s)</td>
<td>0 185 129 113 115</td>
<td>0 185 129 113 115</td>
</tr>
</tbody>
</table>

Fig. 17. Statistical parametric maps of the area surrounding the active spot.
The original images contained white noise with a spatial SNR of 11dB.

Fig. 18. Statistical parametric maps of the area surrounding the active spot.
The original images contained 1/f noise with a spatial SNR of 11dB.

Fig. 19. Statistical parametric maps of the area surrounding the active spot.
The original images contained white noise with a spatial SNR of 14dB.

As in the case of the simulated time series, the active spot takes an elliptic shape for Gaussian smoothing with large FWHMs. The spots detected from the data sets denoised with MinMaxThresh and SUREThresh look very similar, and those found with WaveJS, InvShrink, and VisuThresh(h) are also similar. HybridThresh, MultiMAD and VisuThresh(s) yield rather different maps. After smoothing with a Gaussian kernel with an FWHM of 5 × 5 × 5 mm³, the detected spot resembles the ones found after InvShrink and VisuThresh with hard thresholding. The other smoothing kernels yield heavily deformed maps and show active spots very different from the one in the reference image.

IX. CONCLUSIONS

We have compared wavelet denoising and Gaussian smoothing in the context of functional MRI in three settings: (i) 2D images and (ii) time series of 2D images, both contaminated by white or 1/f noise with a known SNR, and (iii) a real fMRI data set with an unknown noise type and SNR. The noise in BOLD images was described as the difference of two MR images containing Rician noise, and shown to have a Gaussian-like distribution. The denoising methods were compared with respect to SNR improvement, effect on the shape of activated regions, and the effect on the quality of statistical parametric maps. In contrast to most previous wavelet-based denoising schemes, we have chosen to do the subsequent statistical analysis in the spatial domain. This allowed us to directly compare the results of Gaussian and wavelet-based methods.
A discriminative characteristic of all tested denoising methods is the amount of smoothing they introduce. This characteristic plays a significant role in the applicability of the methods. When the input SNR is very low, denoising schemes that produce smoother images are preferred, and the gain in SNR is highest. However, when the images have moderate to high SNRs, these denoising schemes change the shapes of objects in the images. The more smoothing is introduced, the heavier the deformation, and in this case less smoothing wavelet-based denoising methods are preferred. Gaussian smoothing may be the best choice for SNRs which are too low even for smoothing wavelet-based methods, but the resulting SNR may still not be high enough for a reliable analysis.

The experiment with artificial time series showed that all denoising schemes have an effect on the shape of the activation spot. Gaussian smoothing and the more smoothing wavelet-based methods introduce severe deformations and blur the edges of the active spot. We used spatial maps of the temporal SNR as a diagnostic to compare the denoising methods. Segmentations based on the temporal SNR maps showed that heavy smoothing obscures the border regions of the active spot, introducing false negatives, while for low SNRs the less smoothing methods lead to false positives. In the intermediate SNR range, wavelet methods generally show smaller numbers of errors than Gaussian smoothing. The same was observed in the statistical analysis. Via plots of the distribution of p-values under the null hypothesis, we have shown that after the less smoothing wavelet-based denoising methods and after modest Gaussian smoothing, fMRI data do not violate the assumption of normally distributed temporal noise. All tested denoising method preserved the PRDS property of fMRI data, which allowed us to use the favourable \(p = 0.05 \) for the FDR controlling procedure.

For the real fMRI data set, only the smallest Gaussian smoothing kernel yielded reliable results. The wide smoothing kernels yield much larger detected areas (meaning more type I errors), in contrast to those obtained via less smoothing wavelet denoising methods.

Summarising all of these results, wavelet denoising methods that introduce relatively little smoothness are generally preferable over Gaussian smoothing for denoising fMRI time series. In particular, InvShrink, MinMaxThresh or SUREThresh (h) are safe choices. For low SNRs, the methods MultiMAD and SUREThresh (s) are best applied.

We expect to find similar results for PET data, although there are differences with fMRI regarding noise models and the SNR. We did not use temporal denoising of the time series in this study, but wavelet denoising may prove a good alternative to smoothing in time as well. This will be the subject of future work.

X. Acknowledgements

This research is part of the project ‘Wavelets and their applications’, funded by the Dutch National Science Foundation (NWO), project no. 613.006.570. We thank the Dartmouth Brain Imaging Center for providing the example fMRI data set. The authors would like to thank Thomas E. Nichols for his helpful comments on FDR and PRDS.

References

