Transfusion requirements in orthotopic liver transplantation
Hendriks, Herman George Dirk

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Chapter 5

Recombinant factor VIIa in orthotopic liver transplantation: influence on parameters of coagulation and fibrinolysis

Karina Meijer1,2, Herman GD Hendriks3, Joost ThM de Wolf2, Ids J Klompmaker4, Ton Lisman6, Ans AM Hagenaars3, Maarten JH Slooff5, Robert J Porte5, Jan van der Meer1,2

1Division of Haemostasis, Thrombosis and Rheology, 2Department of Haematology, 3Department of Anaesthesiology, 4Department of Hepato-Gastroenterology, 5Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery; University Hospital Groningen; 6Thrombosis and Haemostasis Laboratory, Department of Haematology, University Medical Centre Utrecht; The Netherlands

Blood Coagulation and Fibrinolysis 2003;14:169-174
Abstract
The effect of recombinant factor VIIa (rFVIIa) on blood loss was evaluated in cirrhotic patients undergoing orthotopic liver transplantation (OLT). In the present study, we explored the effect of rFVIIa on coagulation and fibrinolysis during OLT. Coagulation factors, parameters of thrombin generation and parameters of fibrinolysis were measured in six patients who had received a single dose of 80 μg/kg rFVIIa and in ten controls, during and after OLT.
Baseline concentrations and course of coagulation factors were similar in patients and controls. Thrombin generation did not rise after the administration of rFVIIa, but showed a sharp increase after reperfusion in patients as compared to controls. No difference in fibrinolysis was apparent between patients and controls. No evidence of diffuse intravascular coagulation was seen. We conclude that the use of rFVIIa in OLT seems to enhance thrombin generation in a localized and time-limited matter, without causing systemic coagulation.
Introduction
Recombinant factor VIIa (rFVIIa, NovoSeven®, Novo Nordisk, Copenhagen, Denmark) has been studied as a prohaemostatic drug in a wide range of conditions. We recently conducted a pilot trial of recombinant factor VIIa in six orthotopic liver transplantation (OLT) patients [1] and further studies in this field are underway. In our pilot study, rFVIIa decreased transfusion requirements during OLT. We hypothesized that this effect could be explained from changes in coagulation and fibrinolysis parameters. The aim of this study was to describe the effect of rFVIIa on these parameters during OLT.

The effect of rFVIIa in this specific situation has not been described before. One study was performed in non-bleeding patients with liver cirrhosis and their prolonged prothrombin time (PT) could be corrected by administration of rFVIIa [2]. Most available data are from haemophilia patients with inhibitors to factor VIII or IX, in whom rFVIIa is routinely used. Several authors showed that the PT shortened considerably, with a variable shortening of the activated partial thromboplastin time (APTT) attributed to direct activation of factor X by factor VIIa [3-5]. No effect was seen on platelet count, levels of antithrombin, D-dimers or a2-antiplasmin [4,6]. Thrombin-antithrombin complex (TAT) levels increased to a maximum of twice the baseline value two hours after administration in non-bleeding, but did not increase in bleeding haemophilia patients [6]. Small increases in prothrombin activation fragment F1+2 (F1+2) were reported after administration of rFVIIa [7].

Methods

Patients
This study was reviewed and approved by the ethics committee of our hospital. Six adult patients undergoing OLT for end stage liver disease enrolled in the pilot trial on rFVIIa and were eligible for the present study. They gave their written informed consent. Controls were ten consecutive OLT patients with end stage liver disease, who did not receive rFVIIa.
Procedure
A single dose of 80 μg/kg rFVIIa was administered within 10 minutes before the start of surgery. Transfusions were administered according to predefined criteria [5]. Blood was sampled at baseline; at 30, 90 and 120 minutes after induction of anaesthesia (phase 1; timepoints 1A, 1B, 1C, 1D); at 30 and 90 minutes after removal of the liver, and 5 minutes before reperfusion (phase 2; 2A, 2B, 2C); at 5, 30 and 60 minutes after reperfusion (phase 3; 3A, 3B, 3C); at the end of surgery; at 4, 8, 18 and 24 hours after the end of surgery (phase 4; 4A, 4B, 4C, 4D); and at postoperative days 2, 3, 4 and 5 (phase 5; 5A, 5B, 5C, 5D). Controls were sampled at the same time as patients, except for the first sample, which was taken 30 min after induction of anaesthesia (but before the start of surgery) and less frequent sampling during the first 24 hours after surgery. Blood cell counts were performed at all time points.

Laboratory assays
Blood for coagulation assays in study patients and controls was collected in 0.129 M citrate, immediately separated and plasma frozen at -80°C until assayed. Blood for tissue plasminogen activator (t-PA) activity was collected in Stabilyte (Biopool, Umea, Sweden). Fibrinogen was measured according to the Clauss method, using bovine thrombin (Biopool). Factors II, V, VII, VIII, IX, X and XI were assayed by a one-stage method based on either prothrombin time (Thromboplastin IS; Dade Behring, Marburg, Germany) or APTT (Actin FS, Dade Behring), using the appropriate factor deficient plasma (factor II deficient plasma from Dade Behring; all others from Organon Teknika, Durham, North Carolina, USA). The Coamatic assay (Chromogenix AB, Molndal, Sweden) was used for antithrombin. TAT, F1+2 and plasmin-α2-antiplasmin complex (PAP) were measured by enzyme-linked immunosorbent assay (Enzygnost TAT micro, Enzygnost F1,2 micro and Enzygnost PAP micro respectively; Dade Behring) as were t-PA antigen (Asserachrom t-PA; Roche, Basel, Switzerland) and plasminogen activator inhibitor type 1 (PAI-1) antigen (Chromolize PAI-1; Biopool). The Chromolize t-PA assay was used for t-PA activity (Biopool). A latex agglutination test was used for D-dimers (Minutex; Biopool). Levels of fibrinogen, factors II, V, VII, VIII, IX, X, XI and antithrombin and platelet counts were adjusted for changes in haematocrit as compared to baseline.
Analysis
Data are presented in median values of patients and controls. As the groups are small and the aim of the study was exploratory, no statistical comparisons were made.

Results
Characteristics of the six patients and ten controls are summarized in Table 1. Transplantation in study patients was performed with preservation of the retrohepatic caval vein (piggyback technique). In controls, venovenous bypass was used in 9/10. Fresh frozen plasma was infused in 3/6 patients and 9/10 controls, median 1 unit (range 0-7 units) and 3.5 units (range 0-8 units), respectively. Fibrinogen concentrate in 1/6 patients and 4/10 controls, 0 g (0-2) and 0 g (0-4 g). Platelet concentrate was given in 2/6 patients and 2/10 controls, 0 units (0-1 units) and 0 units (0-1 units).

Table 1 Baseline characteristics of study patients and controls

<table>
<thead>
<tr>
<th></th>
<th>Study patients (n=6)</th>
<th>Controls (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>43</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>[37-61]</td>
<td>[22-48]</td>
</tr>
<tr>
<td>Female (n)</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Child-Pugh A (n)</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Child-Pugh B (n)</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Child-Pugh C (n)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Cholestatic liver disease</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Urea nitrogen (mmol/L)</td>
<td>3.6</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>[2.4-9.5]</td>
<td>[2.8-10.0]</td>
</tr>
<tr>
<td>Hemoglobin (g/dl)</td>
<td>11.8</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>[8.4-13.2]</td>
<td>[7.3-16.6]</td>
</tr>
<tr>
<td>PT (s)</td>
<td>21.8</td>
<td>16.8</td>
</tr>
<tr>
<td></td>
<td>[15.2-23.6]</td>
<td>[13.4-21.0]</td>
</tr>
<tr>
<td>APTT (s)</td>
<td>38.5</td>
<td>40.5</td>
</tr>
<tr>
<td></td>
<td>[32.8-51.9]</td>
<td>[33.9-46.4]</td>
</tr>
<tr>
<td>Fibrinogen (g/L)</td>
<td>1.7</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>[1.4-3.9]</td>
<td>[1.4-5.1]</td>
</tr>
<tr>
<td>Antithrombin (%)</td>
<td>39</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>[27-69]</td>
<td>[37-135]</td>
</tr>
<tr>
<td>Platelet count (10⁹/L)</td>
<td>78</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>[38-134]</td>
<td>[19-194]</td>
</tr>
</tbody>
</table>

PT, prothrombin time; APTT, activated partial thromboplastin time

Values in median [range], unless otherwise denoted
Coagulation factors

Data from study patients and controls on factors II, VII, VIII and X are shown in Fig. 1 (data on other factors not shown). Before the start of transplantation, plasma levels of fibrinogen, factors II, V, VII, IX, X, and XI as well as antithrombin levels were decreased, while factor VIII levels were increased. During surgery, all factors showed a steady decline from the anhepatic phase until after reperfusion, with the exception of factor VII, which was largely influenced by the administration of rFVIIa. Postoperatively, all coagulation factors recovered.

Figure 1 Course of coagulation factor levels in study patients and controls. Values in median; phases of orthotopic liver transplantation divided by dotted lines. f, factor
Values at the end of the study period exceeded the preoperative values. The same course was seen in study patients and controls. Preoperative baseline levels of fibrinogen and factors II and VII were somewhat higher in controls than in study patients. Simultaneously with the peak value of fVII (time points 1C-1D), factors V, VIII, X, IX and XI increased. This increase was not observed for fibrinogen, factor II and antithrombin. Patterns were similar in individual patients (data not shown). In controls, no peak values were seen in phase 1. Thrombin time in all study patients was slightly longer than that of normal plasma (18.6-24.1 s at time point 1A vs. 18.2 s), and did not change after administration of rFVIIa (20.4-23.2 s at time point 1C).

Thrombin generation

In study patients, both TAT and F1+2 showed a gradual increase during phases 1 and 2, with a sharp increase after reperfusion (time points 2C-3A) (Fig. 2). In contrast to TAT, F1+2 remained above baseline values during the postoperative days. In controls, maximum levels of F1+2 and TAT were lower. Values increased gradually during transplantation, without peak levels after reperfusion.

Figure 2 *Parameters of thrombin generation in study patients and controls. Values in median; phases of orthotopic liver transplantation divided by dotted lines. TAT, thrombin-antithrombin complex*
Fibrinolysis

In study patients, no increase in parameters of fibrinolysis was seen in phase 1 (Fig. 3). PAP and D-dimers increased during phase 2. While PAP levels fell after reperfusion, levels of D-dimers increased further to a maximum in the middle of phase 3. During the postoperative days, both PAP and D-dimers increased again slightly. In controls (Fig. 3), D-dimers increased similarly during surgery but to lower maximum values. PAP levels were not measured in controls.

Figure 3 *Parameters of fibrinolysis in study patients and controls. Values in median; phases of orthotopic liver transplantation divided by dotted lines. PAP, plasminogen-a2-antiplasmin*

![Graph of D-dimers and PAP levels](image)

During phases 1 and 2, t-PA antigen levels were rising, comparable in study patients and controls (Fig. 4). At 5 min after reperfusion (3A, data available only in controls), the maximum value of t-PA antigen was measured. From 3B on, values leveled off in study patients, while controls showed a new increase until the first preoperative day. In controls, the course of t-PA activity was comparable to t-PA antigen: a steady increase from the beginning of phase 2 until immediately after reperfusion (time point 3A). PAI-1 antigen levels in study patients and controls were similar: both groups showed stable, low levels with a sharp increase at the end of the reperfusion phase.
Figure 4 Parameters of activation of the fibrinolytic system in study patients and controls
Values in median, and interquartile ranges for tissue plasminogen activator (t-PA) activity levels; phases of orthotopic liver transplantation divided by dotted lines. PAI-1, plasminogen activator inhibitor type 1.

Platelets
Peroperatively, platelet counts in study patients were stable. Values decreased from 80 to about 50.10^9/L postoperatively (data not shown).
Discussion
The course of coagulation factors during phases 2 and 3 did not differ between study patients and controls. They are consistent with data from the literature [8-10]. Most coagulation factors showed a peak activity parallel to the sharp increase in factor VII activity. The most pronounced increase was seen in factor X. In in vitro studies, high concentrations of factor VIIa - similar to those reached in plasma after therapeutic administration of rFVIIa - directly activated factor X on the surface of activated platelets [5, 11]. Subsequent thrombin generation was seen in the in vitro experiments. In our study, the peak levels of factor X activity at time points 1C and 1D were not associated with increased trombin generation as measured by levels of TAT and F1+2 at that stage of OLT. This makes a testing artefact more likely, caused by high levels of factor VIIa influencing the PT/APTT based assays.
Plasma levels of TAT and F1+2 did increase strongly after reperfusion in study patients in contrast with controls. This could be explained by reperfusion of a donor liver with substantial endothelial damage [12] in the presence of rFVIIa levels that, though declined as compared to phase 1, were still supraphysiological. The TAT levels we found in controls were similar to those reported previously [13, 14]. Literature data on F1+2 during OLT is not available, but the postoperative levels in our study patients are consistent with findings from others after general surgery [15]. There was no evidence that rFVIIa caused systemic activation of coagulation as the course of coagulation factor levels was similar in study patients and controls, whereas platelet counts showed no decline during surgery.
We could not demonstrate a clear effect of rFVIIa on parameters of fibrinolysis. Both study patients and controls showed increasing levels of t-PA in the anhepatic phase and PAI-1 after reperfusion. The only difference between study patients and controls were higher levels of D-dimers in study patients after reperfusion. Since the peak of D-dimers followed the peaks of TAT and F1+2, it can be speculated that more fibrin was formed and consequently the levels of D-dimers rose in study patients.
Controls had a lower Child-Pugh score (i.e. had less severe liver disease) than patients. This was of no consequence for the present study as their actual preoperative and nadir values of coagulation factors were not clearly different from study patients. It must be stressed however, that these controls results are unfit to report on effects of rVIIa on blood loss, as their less
severe liver disease could significantly decrease their transfusion requirements [16].
The generally held view is that rFVIIa initiates coagulation, limited to sites of injury. This
occurs after complexing with tissue factor or in interaction with activated platelets [11]. The
model of localized action of rFVIIa might however, not be attributable to OLT. Instead of one
localized site of haemorrhage, an extensive wound bed is expressing tissue factor. Vascular
anastomoses are made that are prone to thrombosis: thrombosis of the hepatic artery and
portal vein are recognized, serious complications of OLT [17]. In addition, extensive
endothelial injury, which is present within the hepatic sinusoids due to ischemia/reperfusion
injury [13], will lead to expression of tissue factor. All these factors can theoretically cause
extensive coagulation activation and thrombosis in the donor liver and hepatic vessels.
Patients could be protected from the development of thrombosis by fibrinolysis after
reperfusion, counteracting the large increase in thrombin generation at that point. The fact that
D-dimer levels were higher in the study patients than in controls, indicates that this
mechanism is active after the administration of rFVIIa.
In conclusion, the very high levels of exogenous FVIIa during the pre-anhepatic phase did not
lead to increased thrombin generation. After reperfusion, a sharp rise of thrombin generation
markers was seen in patients receiving rFVIIa. This was not associated with diffuse systemic
coagulation. No effect on fibrinolysis was seen. The use of rFVIIa in OLT seems to enhance
thrombin generation in a localized and time-limited matter, without causing systemic
coagulation.

Acknowledgements
PAP was assayed at the laboratory of dr. J.C.M. Meijers, Department of Vascular Medicine,
Academic Medical Centre, Amsterdam. All other assays were performed by S. Geerards,
S. Hazelaar, K. Hegge-Paping, A. Kariman-Sahebdin, J.A. Koning, J.H. Nijland, P.M.
Pelsma, W. van de Schaaf and J. Vrijburg at the Coagulation Laboratory, University Hospital
Groningen, Groningen, The Netherlands
References

