Functional capacity evaluation in patients with chronic low back pain
Reneman, Michiel
5

The reliability of determining effort level of lifting and carrying in a functional capacity evaluation


Abstract

Objectives: To establish inter- and intra-rater reliability of observations in a functional capacity evaluation.

Background: Functional capacity evaluations are used to assess a person’s functional capacity as it relates to work. Lifting and carrying are important aspects of a functional capacity evaluation. An evaluator determines the client’s levels of effort through standardized observations. Questions remain with regards to the reliability of these observations.

Methods: Four healthy subjects were videotaped while performing two lifts and four carries with progressive loads. The videotape was scrambled randomly and viewed twice by 3 physical therapists and 2 occupational therapists. The evaluators determined the amount of effort it required (light, medium, heavy, and maximum). The inter- and intra-rater reliability of the observations was expressed by means of percentage agreement.

Results: Inter-rater reliability ranged from 87 to 96%, intra-rater reliability ranged from 93 to 97%.

Conclusion: The results indicate that by means of standardized observations, therapists can reliably determine effort level during lifting and carrying in healthy subjects, and thus affirm the findings of previous studies with similar design.
Introduction

Functional capacity evaluations (FCEs) are used to assess a person’s functional capacity as it relates to work. FCEs are based on the Dictionary of Occupational Titles (DOT)^1,2,3, a publication of the United States Department of Labor. The DOT classifies work into five levels of physical demand: sedentary, light, medium, heavy and very heavy. It also identifies 20 job factors, two of which are lifting and carrying. A wide variety of devices and protocols are developed to measure a person’s lifting and carrying capacities. The validity of these tests depends critically on the subject’s effort during the evaluation^4,5. The determination of whether a person has given maximal effort during the testing procedure appears to be difficult. The reliability of determining effort levels with the use of computerized lifting protocols has been questioned. Hazard et al^4 compared several indices of subject effort, among which were isokinetic force/distance curve variations, peak force variations and heart rates. They conclude: ‘A trained observer is better to distinguish maximal from submaximal efforts than the most accurate physiologic index assessed in this study’ and ‘... the skilled evaluator remains a critical factor in validating lifting tests’^4.

Even though FCEs are being used routinely in the United States of America and also in many other countries worldwide^6-7, only three published studies were found with regards to the reliability of observations^8-10. In these studies the observers reached substantial levels of inter- and intra-rater agreement, as expressed in Cohen’s Kappa scores, ranging from .62 to .88. Smith^10, however, studied the determination of safety (yes/no) in a floor-to-waist lift only. The inter-rater reliability study of Isernhagen et al^8 was judged between raters and an expert observer. It is not known what the qualifications of this expert observer are in order to be used as a golden standard in a scientific study. Whereas Smith and Isernhagen used video-observations, Lechner et al^9 used two observers who simultaneously rated the subjects as they performed the tasks during a regular FCE. The observers were asked to determine whether or not the patient had reached a maximum ability. A major strength of this study design is that it closely resembles daily practice, adding to the clinical relevance of the outcome. A limitation inherent to this design is the possibility that the observers’ determinations could be influenced by information other than visual observations (i.e. verbal and non-verbal communications with the patient).

The purpose of this study was to study the reliability of standardized observations. It duplicates in part the above-mentioned studies, however there are also differences. This study does not use a golden standard, all lifts and carries are studied, and the determinations are based on visual observations only. Additionally, observers are asked to determine four levels of effort, rather than two (maximal/submaximal).
Methods

Subjects
Two men and two women participated on a voluntary basis in this study. Their age ranged between 20 and 30 years. The subjects were healthy, had no current or previous complaints of back or neck pain, and had normal cardiovascular resting values. All subjects provided informed consent for participation in this study.

Materials
Standardized materials used in the Isernhagen Work Systems FCE were used in this study: a commercially available plastic receptacle (dimensions: depth × width × height = 30 × 40 × 26 cm) with handles on each side, a wall mounted system with in height adjustable shelves and metal weights of 2 and 4 kg. A toolbox like wooden receptacle (dimensions: 30 × 30 × 46 cm) was used for one-handed carries.

Procedures
After a general introduction of the procedures, signing the informed consent, and measuring resting blood pressures and heart rate, the subjects were briefly instructed on how to perform the lift or carry. The tester performed the lift or carry once to further explain the procedure. The subject then began to lift or carry the lightest load and progressed step by step to his or her endpoint. The loads were predetermined: men handled loads from 10 kg to 50 kg (5 increments of 10 kg), women handled loads from 6 to 30 kg (5 increments of 6 kg). The subjects were instructed to stop whenever they felt unsafe to proceed. Testing was ended either when the subject felt unsafe, or when the predetermined maximum weight was reached, whichever came first. For the purpose of this study the tester was not to interfere with the testing procedure on the basis of observations.

The subjects performed six material handling tasks: lifting low, lifting high, short carry, long carry two-handed, long carry right-handed and long carry left-handed.
- Lifting low: the receptacle was lifted from a 80 cm table, the subject turned 90 degrees towards the left, lowered the receptacle to the floor, briefly touching the floor, lifted toward an upright position, turned back 90 degrees and returned the receptacle to its original position. This was repeated 5 times within 90 seconds. Repetition 3, 4 and 5 were taped on video.
- Lifting high: the receptacle was lifted from a 80 cm table, the subject made one step backward, elevated the receptacle, rested it on the highest shelf positioned at a height so that the hands were at crown height (top of head), then returned the receptacle to its original position. This was repeated 5 times within 90 seconds. Repetition 3, 4 and 5 were taped on video.
- Short carry: the subject lifted the receptacle from the table (80 cm), turns 90 degrees, walked 1.2 meters (4 feet), turned 90 degrees, put it on anther table (80 cm), then returned the receptacle to its original position. This was repeated 5 times within 90 seconds. Repetition 3, 4 and 5 were taped on video.
• Long carry two-handed: The receptacle was lifted from the table (80 cm), turned approximately 180 degrees, carried the load over 16 meters, and returned it to its original position within 90 seconds. Taped in full on video.

• Long carry one-handed (right and left): The ‘tool-box’ was lifted with one hand from its position on the floor, carried over 16 meters, and returned within 90 seconds to its original position. Taped in full on video.

All procedures were copied into six clusters onto another videotape (low lifts in the first cluster, high lifts in the second, etc). Within each cluster, the magnitude of the load and the subjects were scrambled randomly. This means, for example, that the first frame could be subject 3 lifting a heavy weight, the second frame subject 1 lifting a light weight, the third frame subject 4 lifting maximally, and so on.

Observers
Three physical therapists (PT’s) and two occupational therapists (OT’s) performed the ratings. Two PT’s and one OT had completed a formal FCE training course. The other PT and OT were trained by one of the trained PT’s. All therapists had actively participated in two 2-hour consensus meetings. The first meeting was held three months prior to the first observation, and the second meeting just before the first observation. Four observers had performed between 1 and 5 FCEs, while one observer had performed approximately 100 FCEs. All therapists had at least 1 year of experience in occupational rehabilitation.

Table 1 Observational criteria to determine effort level [6, with permission]

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Maximal</th>
<th>Heavy</th>
<th>Moderate</th>
<th>Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscle Recruitment</td>
<td>Bulging of accessory</td>
<td>Pronounced recruitment of accessory</td>
<td>Recruitment of accessory</td>
<td>Prime movers only; no accessory muscles and accessory muscles</td>
</tr>
<tr>
<td></td>
<td>muscles and trunk/neck</td>
<td>recruitment of accessory</td>
<td>muscles and trunk/neck</td>
<td>muscles and trunk/neck</td>
</tr>
<tr>
<td></td>
<td>stabilizers</td>
<td>recruitment of accessory</td>
<td>stabilizers</td>
<td>stabilizers</td>
</tr>
<tr>
<td>Base of support</td>
<td>Very solid base</td>
<td>Wider base</td>
<td>Stable base</td>
<td>Natural stance</td>
</tr>
<tr>
<td>Posture</td>
<td>Marked counter balance</td>
<td>Increasing counter balance</td>
<td>Beginning of counter balance</td>
<td>Upright posture</td>
</tr>
<tr>
<td>Control and movement pattern</td>
<td>Uses momentum in controlled manner. Unable to control if weight is added</td>
<td>Begins to use momentum</td>
<td>Smooth movements</td>
<td>Easy movement patterns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Difficult but not maximal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Observations
In theory, 120 different procedures could be taped (4 subjects × 6 procedures × 5 weight increments = 120). The subjects, however, chose not to perform a total of 16 procedures due to their own judgment of having reached a safety endpoint. For example, a subject considered the weight too much for his/her subjective feeling of safety. Thus, the tape consisted of 104 different procedures, which took 45 minutes to view. The first observation was performed in a single event where all five raters were present and simultaneously rated the video. The observers were blinded to each others ratings. The second rating was performed individually and took place one week to two months after the first rating. The observers were asked to determine the effort level (light, medium, heavy, maximum) using the observational criteria listed in table 1.

Statistical analysis
Inter-rater reliability was calculated by comparing the amount of agreement between all paired observers (1-2, 1-3, 1-4, 1-5, 2-3, etc.). Intra-rater reliability was calculated similarly by comparing the scores of the first with the second observation within each observer (1-1, 2-2, etc.). Statistical analyses were performed using a computer program designed to compute agreement on nominal data11,12.

Results
The results of the two rating sessions are presented in table 2. The inter-rater reliability of the first rating session is presented as ‘Inter I’, the results of the second session as ‘Inter II’. All but one of the determinations equaled or exceeded 90% agreement.

Table 2 The inter- and intrarater reliability of determining effort level expressed in percentage agreement (%)

<table>
<thead>
<tr>
<th></th>
<th>Inter Session 1</th>
<th>Inter Session 2</th>
<th>Intra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifting low</td>
<td>96</td>
<td>90</td>
<td>94</td>
</tr>
<tr>
<td>Lifting high</td>
<td>93</td>
<td>91</td>
<td>93</td>
</tr>
<tr>
<td>Carry short</td>
<td>95</td>
<td>92</td>
<td>96</td>
</tr>
<tr>
<td>Carry long</td>
<td>93</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>Carry left</td>
<td>95</td>
<td>93</td>
<td>97</td>
</tr>
<tr>
<td>Carry right</td>
<td>94</td>
<td>87</td>
<td>93</td>
</tr>
</tbody>
</table>
Discussion

This study was designed to investigate the inter- and intrarater reliability of determining effort level of healthy people during lifting and carrying by means of standardized visual observations only. When taken into account the predetermined standard of 90% agreement, all but one of the determinations exceeded this level. The results of this study tend to affirm the findings of similar design mentioned in the introduction. Generalization of the results, however, should be made with great care due to the limitations of this study.

Levels of agreement when using nominal data are often expressed by means of a Cohen’s Kappa coefficient. During statistical analysis of the results, however, it occurred that even though the percentage of agreement between or within raters were mostly in excess of 90%, the levels of agreement expressed in a Cohen’s Kappa coefficient could be (extremely) low. For example, the inter-rater reliability of short carry appears to be as high as 93%, while expressed in Cohen’s Kappa a score of -.02 was computed. Further data analysis revealed the following explanation for this phenomenon. In a relatively small amount of total observations a difference in a single observation has high impact on the total score. Consistent with guidelines in literature it was, therefore, decided not to use Cohen’s Kappa as a measure for agreement in this study. A major advantage of the use of Cohen’s Kappa is the ruling out of agreement by chance only (theoretically 25% in this study). Agreement expressed in percentages does not have the same statistical power compared to a Cohen’s Kappa and is known to overestimate the reliability. The results should be interpreted accordingly.

FCEs are often used to determine the functional capacity of people diagnosed with chronic non-specific pain to the locomotive system. The subjects used in this study were healthy young adults. A sample size of four is too limited in order to generalize to an open population. Additionally, because we used healthy individuals, the influence of pain behaviors on the observers’ determinations is assumed to be non-existent. Generalization of the results of this study to a patient population should on these grounds also be performed with great care. Pain behaviors appear to be an important source of variance challenging reliability of FCEs, but are to our knowledge not assessed systematically in any of the well-known FCEs.

Appreciating the abovementioned limitations, the results of this study are consistent with reports of Smith, Isernhagen et al and Lechner et al. Even though each study has its shortcomings, a considerable base of evidence is converging towards the point that the reliability of observations during an FCE seems to be sufficient for its purpose (clinical practice, prework screening). There continues to be, however, gaps in knowledge that need to be filled in order to elevate the knowledge level regarding the reliability of observations during the testing of lifting and carrying capacity. Future studies need to incorporate more subjects in order to rule out
potential bias due to different lifting strategies. It should also use clients as subjects. There should be a considerable variance in effort levels in order to use stronger statistical measures. The validity of the observations should also be assessed. Although this and other studies may have demonstrated the ability of therapists to reliably observe effort levels, it has yet to be determined whether the used (operational) definitions of maximal effort truly represent maximum effort in healthy subjects and in patients. Next to the observations of behaviors concurring with (increased) physical effort, the possibility of systematically assessing pain behaviors during functional capacity evaluations needs to be explored.

References
