Biochemical properties and catalytic scope of a Baeyer-Villiger monooxygenase
Kamerbeek, Nanne

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
4-Hydroxyacetophenone monooxygenase from *Pseudomonas fluorescens* ACB

A NOVEL FLAVOPROTEIN CATALYZING BAEEYER-VILLIGER OXIDATION OF AROMATIC COMPOUNDS

Nanne M. Kamerbeek, Mariëlle J. H. Moonen, Jos G.M. van der Ven, Willem J. H. van Berkel, Marco W. Fraaije and Dick B. Janssen

ABSTRACT

A novel flavoprotein that catalyses the NADPH dependent oxidation of 4-hydroxyacetophenone to 4-hydroxyphenyl acetate, was purified to homogeneity from Pseudomonas fluorescens ACB. Characterization of the purified enzyme showed that 4-hydroxyacetophenone monoxygenase (HAPMO) is a homodimer of \(\approx 140 \) kDa with each subunit containing a noncovalently bound FAD molecule. HAPMO displays a tight coupling between NADPH oxidation and substrate oxygenation. Besides 4-hydroxyacetophenone a wide range of other acetophenones are readily converted via a Baeyer-Villiger rearrangement reaction into the corresponding phenyl acetates. The P. fluorescens HAPMO gene (hapE) was characterized. It encoded a 640-amino acid protein with a deduced mass of 71,884 Da. Except for an N-terminal extension of about 135 residues, the sequence of HAPMO shares significant similarity with two known types of Baeyer-Villiger monoxygenases: cyclohexanone monoxygenase (27-33% sequence identity) and steroid monoxygenase (33% sequence identity). The HAPMO sequence contains several sequence motifs indicative for the presence of two Rossman fold domains involved in FAD and NADPH binding. The functional role of a recently identified flavoprotein sequence motif (ATG) was explored by site-directed mutagenesis. Replacement of the strictly conserved glycine (G490) resulted in a dramatic effect on catalysis. From a kinetic analysis of the G490A mutant it is concluded that the observed sequence motif serves a structural function which is of importance for NADPH binding.

1. INTRODUCTION

The aerobic degradation of aromatic compounds by soil bacteria depends on the activity of oxygenases (Harayama et al., 1992). So far two classes of flavoprotein hydroxylases have been shown to act as aromatic monoxygenases: the single component aromatic hydroxylases (Suske et al., 1997) and two-component hydroxylases (Arunachalam et al., 1994; Becker et al., 1997). The single component aromatic hydroxylases share a typical dinucleotide binding fold for complexation of the FAD cofactor while lacking a NAD(P) binding fold (Eppink et al., 1997b). An extensively studied member of this widespread class of flavoenzymes is \(p \)-hydroxybenzoate hydroxylase (Entsch and van Berkel, 1995; Eppink et al., 1999). Mechanistic studies have shown that the monoxygenation reactions catalyzed by single component aromatic hydroxylases are preceded by NAD(P)H-mediated flavin reduction. The reduced flavin then reacts with dioxygen to form a reactive electrophilic hydroperoxyflavin intermediate which is able to introduce a hydroxyl group into an activated aromatic ring (Entsch et al., 1976). The two-component hydroxylases typically consist of a relatively small flavin reductase which generates reduced flavin at the expense of NAD(P)H. After intermolecular transfer, the reduced flavin is used by the large oxygenating component to catalyze substrate hydroxylation (Galan et al., 2000; Xun and Sandvik, 2000). Although the genes of several of these two-component hydroxylases have been identified, mechanistic data on this type of monoxygenases are scarce.

Except for the above mentioned monoxygenation reactions another way of flavoenzyme-mediated oxygenation of aromatic compounds has been suggested in the literature. For several bacteria it was found that their ability to degrade aromatic compounds depends on an enzyme-mediated Baeyer-Villiger reaction in which an oxygen atom is inserted between the aromatic ring
and a ketone side chain (Scheme 1). These Baeyer-Villiger reactions have been detected during studies on the microbial degradation of several ring-substituted acetophenones (Cripps, 1975; Havel and Reineke, 1993; Higson and Focht, 1990) and 4-ethylphenol (Darby et al., 1987; Jones et al., 1994). Recently, a Baeyer-Villiger monooxygenase from Pseudomonas putida JD1, involved in 4-ethylphenol metabolism, was purified and partially characterized (Tanner and Hopper, 2000). However, enzymes involved in these atypical metabolic pathways have never been cloned.

Scheme 1. Baeyer-Villiger reaction observed during microbial degradation of aromatic compounds.

All Baeyer-Villiger monooxygenases identified so far were shown to be flavoproteins (Willetts, 1997). As for the single component hydroxylases, also for these enzymes a peroxygenated flavin has been proposed as the oxygenating species (Ryerson et al., 1982). However, in the Baeyer-Villiger reaction this reactive flavin intermediate is supposed to act as a nucleophile indicating that in these monooxygenases a peroxyflavin anion is involved in substrate attack (Massey, 1994; Sheng et al., 1999).

Pseudomonas fluorescens ACB is able to use 4-hydroxyacetophenone as sole carbon and energy source (Higson and Focht, 1990). Since it was suggested that the microbial degradation of this phenolic compound is initiated by a Baeyer-Villiger reaction (Scheme 1), we started a study to identify this atypical aromatic monooxygenase. We here report on the purification, gene cloning, sequence analysis and characterization of 4-hydroxyacetophenone monooxygenase (HAPMO). It is shown that the enzyme is a FAD-dependent Baeyer-Villiger monooxygenase that is active with a wide range of aromatic ketones. A preliminary report on the purification of HAPMO from P. fluorescens ACB has been presented elsewhere (Moonen et al., 1999).

2. MATERIALS AND METHODS

2.1 Chemicals

Restriction enzymes, 7-deaza-dGTP, and isopropyl β-D-thiogalactopyranoside were obtained from Roche. NADH, NADPH, dithiothreitol (DTT), glucose oxidase (grade II) and catalase were from Boehringer. Tris, FAD, FMN and riboflavin were from Sigma. Q-Sepharose Fast Flow, phenyl-Sepharose Fast Flow, Superdex 200 Prep Grade, Superdex PG200 HR 10/30 and molecular weight markers were from Pharmacia. Bio-Gel P-6DG and Macro-Prep Ceramic Hydroxyapatite (Type I, particle size 20 µm) were from Bio-Rad. Acrylamide, bisacrylamide and Coomassie
brilliant blue G250 were from Serva. Aromatic ketones were purchased from Acros, Aldrich, Fluorochem and Lancaster. Stock ketone solutions were prepared in dimethyl formamide. \(\text{H}_2^{18}\text{O} \) (97 atom % \(^{18}\text{O} \)) was obtained from Campro (Elst, The Netherlands). All other chemicals were of commercially available analytical grade.

2.2 Bacterial strains and culture conditions

P. fluorescens ACB was kindly provided by D.D. Focht (Univ. of California, Riverside, USA). *P. fluorescens* ACB was isolated from activated sewage sludge by enrichment and serial transfer with 4-hydroxyacetophenone as growth substrate (Higson and Focht, 1990). *P. fluorescens* ACB was grown in 0.8% Nutrient Broth (Difco) at 30 °C or in minimal medium based on Kröckel and Focht (Krockel and Focht, 1987), containing per liter demineralized water: 3.5 g Na_2HPO_4, 1.4 g KH_2PO_4, 0.5 g (NH_4)_2SO_4, 0.2 g MgSO_4·7H_2O, 10 mg yeast extract and 5 ml of a trace elements solution. The trace elements solution contained per liter: 780 mg Ca(NO_3)_2·4H_2O, 200 mg FeSO_4·7H_2O, 10 mg ZnSO_4·7H_2O, 10 mg H_3BO_3, 11.8 mg CoSO_4·7H_2O, 4 mg MnSO_4·H_2O, 3 mg Na_2MoO_4·2H_2O, 2 mg NiCl_2·6H_2O, 10 mg CuSO_4·5H_2O and 2 mg Na_2WO_4·2H_2O (adjusted to pH 2 with H_2SO_4). The final pH of the medium was 7.0. Cells were grown on 10 mM 4-hydroxyacetophenone at 30 °C in 2 l erlenmeyer flasks agitated at 270 rpm on an orbital shaker to provide suitable aeration. Large-scale growth, with 4-hydroxyacetophenone as the sole carbon and energy source, was performed batchwise in a 200-l fermentor (Bioengineering AG) at 30 °C. During growth, the medium was stirred at 150 rpm and flushed with 30 liters of air/min and the pH was kept constant at pH 7.0 with NaOH. The fermentor was inoculated with 2 l of cell culture, and growth was induced by the addition of 5 mM 4-hydroxyacetophenone, followed by two portions of 10 mM 4-hydroxyacetophenone at 8-h intervals. The cells were harvested after 24 h and the cell paste (≈ 235 g wet weight) was frozen and stored at -80 °C. Under these conditions, no significant loss of HAPMO activity occurred over a period of six months.

Escherichia coli strains HB101, TOP10F’ and BL21(DE3) pLysS were grown in Luria-Bertani medium supplemented with the appropriate antibiotic at 20 °C, 30 °C or 37 °C.

2.3 Enzyme purification from *P. fluorescens* ACB

HAPMO was purified from *P. fluorescens* ACB to apparent homogeneity in two chromatographic steps. All purification steps were performed at 4 °C. Cells (200 g wet weight) were suspended in 21 mM potassium phosphate, pH 7.1, and disrupted through a precooled Manton Gaulin press. The clarified cell extract was treated with 0.25 % (w/v) protamine sulfate and the supernatant obtained after centrifugation was loaded onto a Q-Sepharose column (5 × 25 cm), equilibrated in 21 mM potassium phosphate, pH 7.1. After washing with two volumes of starting buffer, the HAPMO activity was eluted with a linear gradient of 0 – 0.7 M KCl in starting buffer. Active fractions were concentrated by ultrafiltration (Amicon YM-30 membrane) and diluted with three volumes of 10 mM potassium phosphate, pH 7.1. The enzyme solution was then adjusted to 1 M ammonium sulfate and loaded onto a phenyl Sepharose column (2.5 × 40 cm), equilibrated in 50
mM potassium phosphate, pH 7.1, containing 1 M ammonium sulfate. After washing with starting buffer, the HAPMO activity was eluted with a linear descending gradient of 1 – 0 M ammonium sulfate in 50 mM potassium phosphate, pH 7.1. Active fractions were concentrated by ultrafiltration, dialyzed in 50 mM potassium phosphate, pH 7.1, and stored at -80 °C.

The 4-hydroxyphenyl acetate hydrolase was purified from *P. fluorescens* ACB in three chromatographic steps. Cell extract was loaded on a DEAE-Sepharose column (6 × 2.5 cm) equilibrated in 21 mM phosphate, pH 7.1. Esterase activity was eluted with a linear gradient of 0 – 0.7 M KCl in starting buffer. Active fractions were pooled, dialysed against 1 mM phosphate, pH 7.1, and loaded on a hydroxyapatite column (7 x 3 cm) equilibrated in 1 mM phosphate, pH 7.1. Esterase activity was eluted with a linear gradient of 1 – 100 mM phosphate, pH 7.1. Active fractions were pooled, concentrated and loaded on a Sephacryl S-200 column (34 x 1 cm) running in 21 mM potassium phosphate, pH 7.1. The fractions with the highest esterase activity were pooled, resulting in an enzyme preparation which was more than 75 % pure. For N-terminal sequencing, the esterase was isolated from a SDS-polyacrylamide gel.

2.4 Preparation of the genomic library

All DNA isolation and cloning procedures were carried out essentially as described by Sambrook et al. (Sambrook et al., 1989). A genomic library of *P. fluorescens* ACB was constructed in the cosmid vector pLAFR3 according to the strategy described by Staskawicz et al. (Staskawicz et al., 1987). CsCl gradient centrifugation was used to purify pLAFR3 isolated from *E. coli* HB101. Constructed vector arms and inserts were ligated and subsequently packaged in vitro with a DNA-packaging kit (Boehringer). *E. coli* HB101 cells were infected with the packaging mix and transducts were selected on Luria-Bertani plates supplemented with tetracycline. From 10 transducts the plasmids were isolated and checked for insert by restriction analysis. All contained insert with an estimated average size of 17 kb. A total number of 2400 colonies was transferred to 96-well microtiter plates containing Luria-Bertani and tetracycline. After overnight growth, glycerol was added and the library was stored at -80 °C until use.

2.5 ‘Touch down’ PCR on total DNA

All PCR amplifications were performed as described by Innis and Gelfand (Innis and Gelfand, 1990). The 50-µl reaction mixtures contained PCR buffer (Roche), 200 µM of each dNTP, 20-30 pmol of primer, 1 to 5 units of *Taq* or *Pwo* polymerase and 10-100 ng template.

The following degenerated primers were designed on the N-terminal amino acid sequences of the purified enzymes. For HAPMO: PAMOACB1 (forward) 5’-GAAACCATGGCGNCTTTYAAYACNACNYTNCC-3’ and PAMOACB2 (reverse) 5’-GAAAAACCATGGRTCRTCRTARTCNARNGWNGG-3’, for the esterase (4-hydroxyphenyl acetate hydrolase): PESACB1 (forward) 5’-GAAACCATGGCNCTNGAYTNGARWCNGCNCARNTNCTNGG-3’ and PESACB2 (reverse) 5’-GAAAAACCATGGYTCNGCNAGYTGNCNAGNAGYTG-3’; (*Nco*I sites are underlined, the substituted nucleotide in PAMOACB1 is shown in bold). ‘Touch-down’ PCR was performed on
total DNA of strain *P. fluorescens* ACB (Don et al., 1991). After initial denaturation for 5 min at 94 °C, the cycling program was as follows: 1 min 94 °C, 1 min 60 °C (2 °C decrease after each 2 cycles to 48 °C) and elongation at 72 °C for 2 min. In addition, 25 cycles were performed at a hybridization temperature of 48 °C and elongation for 1 min at 72 °C. The fragment obtained using the PESACB1 and PAPMO2 primers, was ligated into the pCR2.1-TOPO vector and then transformed to *E. coli* TOP10F’ cells according to the recommendations of the manufacturer (Invitrogen). Plasmids containing insert were purified from overnight cultures with the High Pure™ plasmid isolation kit (Roche).

2.5 Preparation of a DIG-labeled probe

To prepare the probe to screen the genomic library, the *hapD* gene in pCR2.1 was amplified with *Taq* polymerase (Roche) using the primers PESACBf (5’-GAAACCATTGCTTTAGCTGAGCAGGCACAGCTG-3’) and PESACBr (5’-GAAAGGATCCATTTAAAGGGTTTCAGCCAAGGCTTGTAG-3’) during 30 cycles of 1 min 94 °C, 1 min 60 °C and 1 min at 72 °C. The amplified fragment was isolated from gel and DIG random-primed labeled according to the method described by the DIG system user’s guide for filter hybridization (Boehringer) yielding the DIG-labeled probe HAP2.

2.6 Screening of the genomic library

For screening, the constructed library was plated from the frozen stock on Luria-Bertani plates supplemented with 12.5 µg/mL tetracycline and incubated overnight at 37 °C. Colonies were transferred to cellulose nitrate membranes. The membranes were processed and subsequently hybridized with the DIG-labeled HAP2 probe at 68 °C. Two primers, designed on the nondegenerated part of the *hapD* sequence were used to check *E. coli* clones which gave a positive signal after blotting: PESACB3 (5’-GAAGCCGTTCCATTTCT-3’) and PESACB4 (5’-GCCAAGGCTTGTCTGTAC-3’). Cycling parameters were as follows: 1 min at 94 °C, 1 min at 57 °C and 1 min at 72 °C. As templates the pLAFR3 cosmids were isolated from the positive clones.

2.7 Cloning, expression and purification of recombinant HAPMO

The *hapE* gene was amplified with *Pwo* polymerase using the total DNA of *P. fluorescens* ACB as template. Therefore, two primers were designed: PAPMO1 (5’-CACGGCATAAGCGCCCTTCAATAACC-3’, *NdeI* site is shown underlined) and PAPMO2 (5’-CACGGGGAATCCACTACGTGTGTAATCACTAGTCCG-3’, *BamHI* site in italic type). Cycling parameters were as follows: 30 cycles of 1 min at 94 °C, 1 min at 56 °C and 1 min at 72 °C. After amplification, the gene was isolated from gel, digested with *NdeI* and *BamHI* and ligated behind the T7 promoter of the *NdeI* / *BamHI* digested expression vector pET-5a (Promega) yielding pHAPE1.

E. coli BL21(DE3)pLysS was transformed with this construct and grown in LB-medium supplemented with 100 µg/ml ampicillin and 35 µg/ml chloramphenicol at 30 °C. When the D_{600} reached 0.8, 0.4 mM isopropyl β-D-thiogalactopyranoside was added and the cells were grown for
another 12–14 hrs at 20 °C. Cells (6 g) were harvested by centrifugation, resuspended in 50 mM potassium phosphate, pH 7.0, containing 0.1 mM EDTA and 0.1 mM DTT, and sonicated to prepare cell extract. After ultracentrifugation for 60 min at 110,000 g, the supernatant was applied onto a ceramic hydroxyapatite column (2.5 × 12 cm), equilibrated with 50 mM potassium phosphate, pH 7.0, and eluted with the same buffer. Fractions containing HAPMO activity were pooled and loaded onto a Q-Sepharose column (2.5 x 18 cm) equilibrated with 50 mM potassium phosphate, pH 7.0. After washing with starting buffer, the enzyme was eluted with a linear gradient of 0 - 1 M KCl in the same buffer. HAPMO eluted at a concentration of 0.6 M KCl. Active fractions were concentrated by ultrafiltration, dialyzed in 50 mM potassium phosphate, pH 7.0, and stored at –80 °C.

2.8 PCR amplification to create truncated HAPMO variants

Two primers were designed to amplify truncated hapE genes. Primer PHAPMO3, 5’-CACGGCCATATGGCCAGCGCCGCGACTTCAAGGTGGTG-3’ annealed just upstream the part of the gene encoding the first Rossman fold sequence motif. Val136 was mutated to a methionine to create a NdeI site. Primer PHAPMO8, 5’-CACGGCCATATGGCCGAAGAAGCCGTGACCGCC-3’ was used to create a mutant lacking the part encoding the first 114 amino acids. Due to the introduction of a NdeI site, Ile115 was replaced for a methionine (NdeI sites underlined, startcodon shown in bold, substituted codons shown in italic type). PCR with Pwo polymerase, using either PHAPMO3 or PHAPMO8 in combination with PAPMO2 as the reverse primer, under the same conditions as described for hapE amplification, yielded fragments which were cloned NdeI/BamHI in the pET5-a vector yielding pHAPE2 and pHAPE3 respectively. Successful cloning was confirmed by plasmid sequencing.

2.9 Site-directed mutagenesis

The Quickchange site-directed mutagenesis kit from Stratagene was used to introduce a point mutation into HAPMO changing the glycine at position 490 into an alanine. Two primers were used, Primer 1 (5’-GTGTATATGGCACGGCATAGCTCCATGGC-3’) and primer 2 (5’-CGAGGGCATGGAACGGCGTGCCATAC-3’). The mutagenic codon is shown in italic. The PCR reaction, with pHAPE1 as template, was performed under conditions recommended by the manufacturer. Successful mutagenesis was confirmed by plasmid sequencing.

2.10 Steady-state kinetics

HAPMO activity was determined spectrophotometrically by monitoring the decrease of NADPH at 370 nm (ε370 = 2.7 mM−1 cm−1). Reaction mixtures (1 ml) typically contained 50 mM potassium phosphate pH 8.0, 0.25 mM NADPH and 50–100 nM enzyme. The reaction was started by the addition of 10 µL 0.1 M 4-hydroxyacetophenone in dimethylformamide. Specific activities were corrected for endogenous NADPH oxidase activity. One unit of HAPMO activity is defined as the amount of protein that oxidizes 1 µmol·min−1 NADPH. All kinetic measurements were performed at 30 °C using air-saturated buffers.
Steady-state kinetic parameters for acetophenone-derivatives were estimated using a concentration range from 2.0 µM – 5.0 mM and a fixed concentration of 0.25 mM NADPH. The \(K'_m \) and \(V'_\text{max} \) for NADPH were estimated using a fixed concentration of 200 µM 4-hydroxyacetophenone and a NADPH concentration range from 30 – 300 µM.

Formation of hydrogen peroxide was measured indirectly by adding a catalytic amount of catalase after completion of a HAPMO catalyzed conversion. Oxygen consumption and formation was monitored using an optical oxygen sensor “MOPS-1” (Prosense, Germany).

4-Hydroxyphenyl acetate hydrolase activity was determined spectrophotometrically by monitoring the production of \(p \)-nitrophenol at 405 nm (\(\varepsilon_{405} = 7745 \text{ M}^{-1}\cdot\text{cm}^{-1} \), as determined experimentally at pH 7.0). Reaction mixtures contained 1-100 µg protein in 1 ml of a saturated solution of \(p \)-nitrophenyl acetate in phosphate buffer (pH 7.0).

2.11 Isotope labeling experiment

For \(^{18} \text{O} \) incorporation experiments, 150 µL of \(\text{H}_2^{18}\text{O} \) was added to 327.5 µL of 1.0 mM aromatic substrate in 50 mM phosphate buffer, pH 7.0. After addition of HAPMO (2.5 µl, 200 µM) and NADPH (20 µl, 25 mM) the samples were incubated for 10 minutes and subsequently extracted with 1 ml of diethylether. GC-MS analysis of the ether extracts was performed on a Hewlett Packard HP 5890 series II gas chromatograph and a Hewlett Packard HP 5971 mass spectrometer equipped with an HP-5 column. Samples (1 µL) were injected without derivatization, and the temperature program was 1 min isothermal at 80 ºC followed by an increase to 150 ºC at 10 ºC·min\(^{-1}\) and finally 4 min at this temperature.

2.12 Analytical methods

Protein content was determined with Coomassie Brilliant Blue using BSA as the standard. SDS/PAGE was carried out with 12.5% slab gels. The Amersham Pharmacia Biotech low molecular mass calibration kit containing phosphorylase b (94 kDa), bovine serum albumine (67 kDa), ovalbumine (43 kDa), carbonic anhydrase (30 kDa), soybean trypsin inhibitor (20.1 kDa), and \(\alpha \)-lactalbumin (14.4 kDa) served as a reference. Proteins were stained with Coomassie Brilliant Blue G250. The relative molecular mass of native HAPMO was determined by FPLC gel filtration using a Superdex 200 HR 10/30 column (Pharmacia Biotech) running with 50 mM potassium phosphate buffer pH 7.0, containing 150 mM KCl. The column was calibrated with blue dextran 2000, thyroglobulin (669 kDa), ferritin (440 kDa), catalase (232 kDa), aldolase (158 kDa), lipoamide dehydrogenase (100 kDa), \(p \)-hydroxybenzoate hydroxylase (88 kDa), bovine serum albumin (67 kDa), ovalbumin (43 kDa), chymotrypsinogen A (25 kDa), myoglobin (17.8 kDa) and cytochrome c (12.3 kDa).

The flavin prosthetic group of HAPMO was isolated and identified by reverse-phase HPLC according to the procedure described for 4-hydroxybenzoate 1-hydroxylase (Eppink et al., 1997a).

Absorption spectra were recorded at 25 ºC on an Aminco DW-2000 spectrophotometer or a PerkinElmer Lambda Bio40 spectrophotometer. Flavin fluorescence emission spectra were
4-Hydroxyacetophenone monooxygenase

recorded on an SPF-500 spectrofluorimeter essentially as described elsewhere (Eschrich et al., 1993).

DNA was cycle-sequenced with the Amersham Thermo Sequenase cycle-sequencing kit with 7-deaza-dGTP and Cy5 labeled fluorescent primers. Sequencing reaction mixtures were run on the Pharmacia ALF-Express DNA sequencer.

The N-terminal amino acid sequences of purified HAPMO and 4-hydroxyphenyl acetate hydrolase were determined by automatic Edman degradation at Eurosequence BV (Groningen, The Netherlands). The BLAST program (Altschul et al., 1997) at the National Center for Biotechnology Information (www.ncbi.nlm.nih.gov/BLAST/) was used to search for proteins showing sequence similarity. Multiple sequence alignments were made with the Clustal W program at the European Bioinformatics Institute (www.ebi.ac.uk/clustalw) (Thompson et al., 1994).

3. RESULTS

3.1 Purification of HAPMO from P. fluorescens ACB

Purification of HAPMO by anion exchange and hydrophobic chromatography resulted in a homogeneous enzyme preparation which is free of esterase activity. Table 1 summarizes a typical purification from 200 g of 4-hydroxyacetophenone grown P. fluorescens ACB cells. The enzyme was purified 25-fold with an overall yield of nearly 50%. SDS-PAGE revealed the presence of a single polypeptide chain, corresponding to an apparent molecular mass of about 70 kDa. The purified enzyme elutes from an analytical Superdex 200 gel filtration column in one symmetrical peak with an apparent molecular mass of 140 ± 5 kDa. This suggests that native HAPMO from P. fluorescens ACB occurs as a homodimer in solution.

Table 1. Purification of 4-hydroxyacetophenone monooxygenase from P. fluorescens ACB.

<table>
<thead>
<tr>
<th>Step</th>
<th>Volume (ml)</th>
<th>Protein (mg)</th>
<th>Activity (U)</th>
<th>Specific activity (U mg⁻¹)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell extract</td>
<td>800</td>
<td>30210</td>
<td>6552</td>
<td>0.22</td>
<td>100</td>
</tr>
<tr>
<td>Q-Sepharose</td>
<td>35</td>
<td>2610</td>
<td>4959</td>
<td>1.90</td>
<td>76</td>
</tr>
<tr>
<td>Phenyl Sepharose</td>
<td>25</td>
<td>569</td>
<td>3129</td>
<td>5.50</td>
<td>48</td>
</tr>
</tbody>
</table>
3.2 Spectral properties and identification of prosthetic group

The optical spectrum of HAPMO shows maxima at 382 and 440 nm, indicative of a flavoprotein (Figure 1A). The ratio of the absorbance at 280 nm relative to that at 440 nm was 15.5. Unfolding of the enzyme revealed that the flavin cofactor is non-covalently bound. Incubation for 10 min of native HAPMO in the presence of 0.1 % SDS leads to a final spectrum which corresponds to the absorbance of free FAD (Figure 1A). The identity of the flavin prosthetic group was confirmed by HPLC and fluorescence analysis. From the absorbance difference between free and protein-bound FAD, a value of 12.4 mM⁻¹·cm⁻¹ is estimated for the molar absorption coefficient (ε₄₄₀) of HAPMO at pH 7.0. Moreover, from the absorbance at 440 nm and protein content, it is concluded that each HAPMO subunit contains one molecule of FAD. The flavin fluorescence in HAPMO is strongly quenched. Comparison with flavin standards revealed that the relative fluorescence quantum yield of protein-bound FAD is less than 1% of free FAD (pH 7.0).

3.3 Catalytic properties

HAPMO from \textit{P. fluorescens} ACB catalyzes the FAD-dependent conversion of 4-hydroxyacetophenone to 4-hydroxyphenyl acetate with consumption of stoichiometric amounts of NADPH and molecular oxygen. Almost zero activity was found with NADH. The pH and temperature optima for enzyme catalysis are 7.5 and 30 °C, respectively. The specific activity of the purified enzyme is ≈ 5.5 µmol of NADPH oxidized min⁻¹·mg⁻¹ under the conditions of the standard assay (pH 8.0). Addition of free FAD to the assay mixture did not stimulate HAPMO activity, indicating that the flavin cofactor is tightly bound. To assess whether the FAD cofactor is involved in catalysis the enzyme was titrated with NADPH under anaerobic conditions. It was found that the flavin is readily reduced by NADPH (Figure 1B). The full two-electron reduction of the FAD cofactor, as evidenced by the absorption decrease in the region of 400–500 nm, indicates that all cofactor molecules participate in the reduction reaction. Upon restoring aerobic conditions by flushing the enzyme solution with air, the FAD cofactor is reoxidized within 5 min showing the ability of molecular oxygen to reoxidize the flavin cofactor. Oxygen consumption experiments performed in the absence or presence of catalase confirmed that in the absence of substrate the enzyme can act as an NADPH oxidase, forming hydrogen peroxide. Such an uncoupling reaction has also been observed for other flavin-dependent monooxygenases (Entsch and van Berkel, 1995; Suske \textit{et al.}, 1999). To determine the rate of the observed oxidase activity, consumption of NADPH was monitored in the absence of aromatic substrate revealing a low reactivity (kₚ₀ = 0.11 s⁻¹, \(K'_{m(NADPH)} = 5.0 \mu M\)). Furthermore, analysis of the amount of hydrogen peroxide produced during conversion of 4-hydroxyacetophenone or acetophenone showed that in the presence of these aromatic substrates the uncoupling reaction does not occur as no hydrogen peroxide could be detected.
Figure 1. Spectral properties of HAPMO from *P. fluorescens* ACB. The absorption spectra of HAPMO were recorded in 50 mM potassium phosphate buffer, pH 7.0. A: Absorption spectra of native (1) and unfolded HAPMO (2) and of the G490A mutant (3). HAPMO was unfolded by incubation of the enzyme in 0.1% SDS. B: Spectral properties of oxidized and reduced HAPMO (3.0 µM). Oxidized HAPMO (1) was fully reduced by addition of 15 µM NADPH (2). Upon restoring aerobic conditions, the flavin becomes fully reoxidized (3).

3.3 Catalytic properties

HAPMO from *P. fluorescens* ACB catalyzes the FAD-dependent conversion of 4-hydroxyacetophenone to 4-hydroxyphenyl acetate with consumption of stoichiometric amounts of NADPH and molecular oxygen. Almost zero activity was found with NADH. The pH and
temperature optima for enzyme catalysis are 7.5 and 30 °C, respectively. The specific activity of the purified enzyme is \(\approx 5.5 \mu \text{mol of NADPH oxidized min}^{-1} \text{mg}^{-1} \) under the conditions of the standard assay (pH 8.0). Addition of free FAD to the assay mixture did not stimulate HAPMO activity, indicating that the flavin cofactor is tightly bound. To assess whether the FAD cofactor is involved in catalysis the enzyme was titrated with NADPH under anaerobic conditions. It was found that the flavin is readily reduced by NADPH (Figure 1B). The full two-electron reduction of the FAD cofactor, as evidenced by the absorption decrease in the region of 400–500 nm, indicates that all cofactor molecules participate in the reduction reaction. Upon restoring aerobic conditions by flushing the enzyme solution with air, the FAD cofactor is reoxidized within 5 min showing the ability of molecular oxygen to reoxidize the flavin cofactor. Oxygen consumption experiments performed in the absence or presence of catalase confirmed that in the absence of substrate the enzyme can act as an NADPH oxidase, forming hydrogen peroxide. Such an uncoupling reaction has also been observed for other flavin-dependent monooxygenases (Entsch and van Berkel, 1995; Suske et al., 1999). To determine the rate of the observed oxidase activity, consumption of NADPH was monitored in the absence of aromatic substrate revealing a low reactivity (\(k'_{\text{cat}} = 0.11 \text{ s}^{-1} \), \(K'_{\text{m(NADPH)}} = 5.0 \mu \text{M} \)). Furthermore, analysis of the amount of hydrogen peroxide produced during conversion of 4-hydroxyacetophenone or acetophenone showed that in the presence of these aromatic substrates the uncoupling reaction does not occur as no hydrogen peroxide could be detected.

3.4 Substrate specificity

HAPMO catalyzes the conversion of a wide range of acetophenone derivatives. The highest catalytic efficiency is observed with compounds bearing an electron donating substituent at the para position of the aromatic ring (Table 2). The apparent kinetic parameters listed in Table 2 indicate that the preference for these compounds is not only related to the rate of substrate conversion but also to substrate affinity. Table 2 also shows that the enzyme is rather active with the substrate analogs 4-hydroxybenzaldehyde and 4-hydroxypropiophenone. Cyclohexanone and cyclopentanone, which are substrates for some known Baeyer-Villiger monooxygenases (Willetts, 1997), are not converted by HAPMO.

3.5 Isotope labeling experiments

To confirm the Baeyer-Villiger monooxygenation reaction and the formation of ester product, the enzymatic conversion was carried out with acetophenone and 4-hydroxyacetophenone as substrates in the presence of 30 % (v/v) \(\text{H}_2^{18}\text{O} \). After extraction of the reaction mixture with diethylether, samples were analyzed by gas chromatography-mass spectrometry. As a product from acetophenone conversion, phenyl acetate was identified giving a \(M^+ \) of \(m/z \) 136 and a base peak of \(m/z \) 94. The fragmentation pattern of the phenyl acetate spectrum was identical to that obtained after performing the enzymatic reaction with acetophenone in non-labeled \(\text{H}_2\text{O} \). This excludes the possibility that the inserted oxygen atom is derived from water and confirms the nature of the enzymatic Baeyer-Villiger monooxygenation reaction. Incubation with 4-hydroxyacetophenone
only showed the formation of non-labeled hydroquinone. This observation is attributed to the instability of the formed 4-hydroxyphenyl acetate.

Table 2. Steady-state kinetic parameters of 4-hydroxyacetophenone monooxygenase. All experiments were performed at 30 °C in air-saturated 50 mM potassium phosphate buffer pH 8.0. Apparent turnover rates (\(k_{\text{cat}}\)) and apparent Michaelis constants (\(K'_{\text{m}}\)) were determined at fixed concentrations of either NADPH (250 µM) or 4-hydroxyacetophenone (200 µM).

<table>
<thead>
<tr>
<th>Substrate</th>
<th>(K'_{\text{m}})</th>
<th>(k'_{\text{cat}})</th>
<th>(k'{\text{cat}}/K'{\text{m}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADPH</td>
<td>64 ± 14</td>
<td>9.3 ± 0.7</td>
<td>145</td>
</tr>
<tr>
<td>4-hydroxyacetophenone</td>
<td>39 ± 9.0</td>
<td>10.1 ± 1.1</td>
<td>259</td>
</tr>
<tr>
<td>4-aminoacetophenone</td>
<td>3.0 ± 1.0</td>
<td>12.3 ± 0.7</td>
<td>4100</td>
</tr>
<tr>
<td>4-methylacetophenone</td>
<td>161 ± 36</td>
<td>6.3 ± 0.5</td>
<td>39</td>
</tr>
<tr>
<td>4-methoxyacetophenone</td>
<td>541 ± 119</td>
<td>1.7 ± 0.2</td>
<td>3.1</td>
</tr>
<tr>
<td>4-fluoroacetophenone</td>
<td>1040 ± 301</td>
<td>0.6 ± 0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>acetophenone</td>
<td>2270 ± 873</td>
<td>4.5 ± 1.2</td>
<td>2.0</td>
</tr>
<tr>
<td>4-hydroxy-3-methylacetophenone</td>
<td>380 ± 27</td>
<td>5.4 ± 0.1</td>
<td>14</td>
</tr>
<tr>
<td>4-hydroxypropiophenone</td>
<td>12 ± 0.5</td>
<td>10.6 ± 0.4</td>
<td>883</td>
</tr>
<tr>
<td>4-hydroxybenzaldehyde</td>
<td>101 ± 16</td>
<td>7.6 ± 0.3</td>
<td>75</td>
</tr>
</tbody>
</table>

3.6 Cloning strategy

During growth of *P. fluorescens* ACB on minimal medium with 4-hydroxyacetophenone as sole source of carbon and energy, it was observed that production of HAPMO coincided with an increase in esterase activity, causing hydrolysis of the formed 4-hydroxyphenyl acetate (data not shown). As both enzymes are metabolically coupled (Higson and Focht, 1990), it was expected that the corresponding genes might be located in one operon. Therefore, both enzymes were purified and the N-terminal amino acid sequences were determined. For HAPMO, 20 residues were identified (Ser-Ala-Phe-Asn-Thr-Thr-Leu-Pro-Ser-Leu-Asp-Tyr-Asp-Asp-Thr-Leu-Arg-Glu-His) while for the esterase 21 residues (Thr-Leu-Asp-Val-Glu-Ser-Ala-Gln-Leu-Leu-Gly-Gln-Leu-Ala-Glu-Arg-Gly-Ala-Lys-Pro-Phe) were identified.

Four degenerated primers based on the N-terminal amino acid sequences were designed; one forward primer and one reverse primer for each terminus. “Touch-down” PCR on total DNA of *P. fluorescens* ACB with the four logical primer combinations resulted in a fragment of 1035 bp,
designated HAP1, when the primers PESACB1 and PAPMO2 were used. Taken the orientation of the primers into account it could be concluded that the esterase gene had been amplified. Analysis of the nucleotide sequence, after cloning HAP1 in the pCR2.1 TOPO vector, revealed an ORF of which the deduced amino acid sequence indeed showed high similarity with that of various lipases and esterases. Furthermore, the calculated molecular weight of ≈ 33 kDa and the N-terminal amino acid residues confirmed that the ORF encoded the esterase. Downstream of the esterase gene, a partial ORF was identified that encodes a peptide fully consistent with the determined N-terminal peptide sequence of HAPMO. These findings prompted us to use the esterase gene, designated \textit{hapD}, as a probe to screen a genomic library.

3.7 Genomic library screening and sequence of the \textit{hapE} gene

A genomic library of \textit{P. fluorescens} ACB was constructed using the cosmid vector pLAFR3 as described under “Materials and Methods”. The \textit{hapD} gene was amplified from pCR2.1, DIG-labeled and used as a probe. Screening of 1440 clones yielded two positive clones. PCR analysis confirmed that the \textit{hapD} sequence was present on both plasmids and therefore the flanking regions of the esterase gene were sequenced. Sequencing of a 14-kb fragment of revealed that the gene encoding HAPMO is the fifth ORF of an operon encoding genes involved in the degradation of 4-hydroxyacetophenone (data not shown). We therefore designated it \textit{hapE}. The sequence has been deposited in the Genbank. The \textit{hapE} gene encodes a protein of 640 amino acids with a deduced molecular mass of 71,884 Da, which is in line with the subunit molecular mass determined for the native enzyme.

3.8 Protein sequence comparison

Alignment with the known Baeyer-Villiger monooxygenases showed that HAPMO possesses 33 % and 27 % sequence identity with steroid monooxygenase from \textit{Rhodococcus rhodochrous} and cyclohexanone monooxygenase from \textit{Acinetobacter} sp. NCIB 9871, respectively. Sequence identities with the two newly identified cyclohexanone monooxygenases from a \textit{Brevibacterium} isolate were 31 % for Bre1 and 26 % for Bre2 (Figure 2). Intriguingly, HAPMO has an extension of about 135 residues at the N-terminus which is not found in the other Baeyer-Villiger monooxygenase sequences. Furthermore, relatively high degrees of sequence identity were found for ORFs from \textit{P. fluorescens} (38%), \textit{Streptomyces coelicolor} (33%), \textit{Mycobacterium tuberculosis} (33%), and a \textit{Rhizobium} sp. (32%). This suggests that Baeyer-Villiger monooxygenases are widespread throughout the eubacteria. Lower degrees of sequence identity (20-25 %) were found with the eukaryotic flavin-containing monooxygenases (FMOs). The most conserved regions, located at the N-terminal half of the homologous sequences, contain two typical GXGXX(G/A) Rossman fold fingerprints (Figure 2). These two sequence motifs are indicative of the presence of two $\beta\alpha\beta$ dinucleotide binding folds (Wierenga \textit{et al}., 1986) binding the adenylate parts of the FAD and NAD(P)H cofactors.
4-Hydroxyacetophenone monooxygenase

Figure 2. Multiple sequence alignment of HAPMO from *P. fluorescens* ACB with other Baeyer-Villiger monooxygenases. The N-terminal truncated HAPMO sequence is aligned with cyclohexanone monooxygenase from *Acinetobacter* sp. NCIB 9871 (Acin, BAA86293) (Chen et al., 1988), steroid monooxygenase from *Rhodococcus rhodochrous* (Rhod, BAA24454) (Morii et al., 1999) and two cyclohexanone monooxygenases from a *Brevibacterium* isolate (Brzostowicz et al., 2000). The regions indicative for FAD and NADPH binding are marked with asterisks and circles, respectively (Vallon, 2000).
3.9 Expression and purification of recombinant HAPMO

For expression in *E. coli*, the *hapE* gene was placed under control of a T7 promoter in the expression vector pET5-a. When expression of HAPMO was induced in cells grown at 30 °C, part of the enzyme was produced as inclusion bodies as evidenced by SDS-PAGE analysis of whole cells. By lowering the temperature to 20 °C, formation of inclusion bodies could be prevented while yielding reasonable expression of soluble and active enzyme. Recombinant HAPMO was purified from *E. coli* BL21(DE3)pLysS harboring pHAPE1 in a two-column procedure (Figure 3). From 1-L culture, 30 mg enzyme could be purified with a yield of 70%. The A280/A440 ratio of purified recombinant HAPMO was 15.6 which is similar to the value found for the enzyme isolated from *P. fluorescens* ACB. Moreover, the hydrodynamic properties and catalytic features of the recombinant enzyme are identical when compared with HAPMO purified from the wild-type strain.

![Figure 3. SDS-PAGE of purification steps of recombinant 4-hydroxyacetophenone monooxygenase from *E. coli* BL21(DE3)pLysS](image)

3.10 Truncation of HAPMO

Because the N-terminal region of HAPMO does not show any similarity with known protein sequences it was anticipated that this part of the protein might not be essential for catalysis. To test this hypothesis, two mutant constructs were created pHAPE2 and pHAPE3, lacking the coding region for the first 135 and 114 N-terminal amino acid residues, respectively. However, SDS/PAGE analysis of cell extracts and whole cells, transformed with these constructs, showed that there was no visible expression of the truncated proteins at an induction temperature of 20 °C. Raising the
induction temperature to 30 °C resulted in the formation of inclusion bodies. Activity was not detected at either induction temperatures. Apparently, the N-terminal part of HAPMO is of importance for the structural integrity of the enzyme.

3.11 Properties of the G490A mutant

Recently, an ATG sequence motif was described to be common for FAD and NAD(P)H binding proteins (Stehr et al., 1998; Vallon, 2000). Since this sequence motif is also found in HAPMO (Figure 2) and its function is still unclear, we decided to mutate the strictly conserved glycine 490 into an alanine. The mutant was overexpressed and purified according to the protocol for wild-type HAPMO. Gel filtration showed that the mutant enzyme was purified as a dimer. The ratio of the absorbance at 280 nm relative to that at 440 nm was 17.5, indicating that the enzyme is saturated with FAD. However, the shape of the flavin spectrum of the Gly490Ala mutant differs significantly from that of the wild-type enzyme (Figure 1A). The oxidase activity of this mutant is significantly higher than that of the wild-type enzyme ($k'_{\text{cat}} = 0.4 \text{ s}^{-1}$) but the Michaelis constant for NADPH is rather high ($K'_{\text{m(NADPH)}} = 700 \mu\text{M}$). In contrast to the wild-type enzyme, addition of 4-hydroxyacetophenone did not stimulate the rate of NADPH oxidation. However, GC-MS analysis revealed that the Gly490Ala mutant is still able to catalyse the Baeyer-Villiger oxidation of the aromatic substrate.

4. DISCUSSION

This paper describes the purification, characterization and cloning of HAPMO, a novel FAD-dependent Baeyer-Villiger monooxygenase which is induced when P. fluorescens ACB is grown on 4-hydroxyacetophenone. HAPMO catalyzes the first step in the degradation of 4-hydroxyacetophenone by inserting an oxygen atom in between the aromatic ring and the ketone side chain, yielding 4-hydroxyphenyl acetate. In addition to the conversion of 4-hydroxyacetophenone, HAPMO catalyzes the oxygenation of a wide range of other aromatic ketones into the corresponding esters; by this, the enzyme is able to form a range of acylated phenols and catechols. As acylcatechols are valuable synthons for the fine chemical industry, HAPMO might develop as a useful biocatalytic tool. Furthermore, HAPMO resembles a recently isolated Baeyer-Villiger monooxygenase from P. putida JD1, displaying a similar substrate specificity and subunit molecular mass (Tanner and Hopper, 2000). From this enzyme, only the N-terminal amino acid sequence and two internal peptide sequences were determined which reveal a significant (80 %) sequence identity with HAPMO. This indicates that Baeyer-Villiger monooxygenases acting on aromatic compounds frequently occur in nature.

Several Baeyer-Villiger monooxygenases acting on non-aromatic compounds have been identified in bacteria and fungi. All these enzymes were shown to contain a flavin cofactor (Donoghue et al., 1976; Itagaki, 1986; Miyamoto et al., 1995; Ougham et al., 1983; van der Werf, 2000a). On the basis of the available biochemical data, Baeyer-Villiger monooxygenases have been
divided into two subclasses (Willetts, 1997). Type I Baeyer-Villiger monoxygenases contain FAD as cofactor, are NADPH dependent and appear as monomers, homodimers or homotetramers. In contrast, type II Baeyer-Villiger monoxygenases contain FMN as cofactor, show NADH dependency and consist of two different subunits organized in a αβ conformation. So far, only two type I Baeyer-Villiger monoxygenase have been cloned and characterized. These are steroid monoxygenase from *Rhodococcus rhodochrous* (Morii et al., 1999) and cyclohexanone monoxygenases from *Acinetobacter* NCIB 9871 (Chen et al., 1988) and a *Brevibacterium* isolate (Brzostowicz et al., 2000). Within their N-termini, the Rossman fold fingerprint motif GxGxxG is found, which is thought to be involved in binding the ADP part of FAD (Wierenga et al., 1983).

HAPMO from *P. fluorescens* ACB is strictly dependent on NADPH and was found to be a homodimer with each 72-kDa subunit containing a non-covalently bound FAD. This and the significant sequence homology with cyclohexanone monoxygenase and steroid monoxygenase clearly classifies HAPMO as a type I Baeyer-Villiger monoxygenase. Besides the substrate specificity, there are some striking structural features which distinguishes HAPMO from the other type I Baeyer-Villiger monoxygenases. First, due to an N-terminal extension of ≈ 135 amino acids, the HAPMO subunit is much larger than that of related enzymes. As a consequence, the Rossman fold sequence motif indicative of FAD binding is not localized within the first 30 N-terminal amino acid residues but is situated 148 residues from the N-terminus (Figure 2). In cyclohexanone monoxygenase, this fingerprint sequence starts at residue 12 and in steroid monoxygenase at residue 27. We constructed truncated forms of HAPMO to explore the functionality of the N-terminal extension. However, the truncated HAPMO variants could not be expressed in a soluble form, suggesting that the N-terminal domain of HAPMO is important for the protein structural integrity. Another unique feature of HAPMO concerns the absence of a conserved aspartate near the N-terminal GxGxxG motif proposed to be typical for type I Baeyer-Villiger monoxygenases (Willetts, 1997). In the HAPMO sequence, a lysine (Lys143) is present at this position (Figure 2). From the sequence analysis, we infer that this variance is probably not unique for type I Baeyer-Villiger monoxygenases as a similar feature is found in several of the HAPMO-related open reading frames.

Several sequence motifs have been described for proteins that bind both FAD and NADPH (Eggink et al., 1990; Eppink et al., 1997b; Vallon, 2000). Besides the classical Rossman fold sequence motif (GXGXXG/A), a recently described ATG motif was shown to be indicative for FAD and NAD(P) binding domains (Vallon, 2000). Furthermore, two other short sequence motifs (GG and GD) have been identified to be indicative for a Rossman fold domain involved in FAD binding (Eggink et al., 1990; Vallon, 2000). Upon alignment of the type I Baeyer-Villiger monoxygenase sequences, most of these sequence motifs could be identified displaying the following arrangement: GXGXXG—GG—ATG—GXGXXG—ATG (Figure 2). In the HAPMO sequence, the only variations within these sequence motifs involve the first ATG motif (T→V) and the second GXGXXG motif (last G→A). The variation in the first ATG motif has also been observed in other flavoproteins whereas the alanine substitution in the second GXGXXG motif suggests that it is part of the NADPH binding domain (Bork and Grunwald, 1990; Morandi et al.,
4-Hydroxyacetophenone monooxygenase

This is in line with mutagenesis studies on a sequence related flavin containing monooxygenase from yeast where a conserved lysine near the second Rossman fold fingerprint was shown to be involved in binding of NADPH (Suh et al., 1999). At this position a strictly conserved arginine is found in the known type I Baeyer-Villiger monooxygenase sequences (Arg339 in HAPMO, see Figure 2) which, in analogy, probably interacts with the 2’-phosphate moiety of NADPH. The second ATG motif was only recently recognized. While Stehr et al. (Stehr et al., 1998) have proposed a functional role of this hydrophobic sequence motif in substrate binding, analysis by Vallon (Vallon, 2000) suggested a primary role in NADPH binding. We have assessed the functional role of this sequence motif by replacing the strictly conserved glycine residue. Analysis of the Gly490Ala mutant revealed a dramatic effect on binding and oxidation of NADPH. The NADPH oxidase activity was increased to some extent while the Michaelis constant for NADPH increased by two orders of magnitude. The mutant was still able to convert 4-hydroxyacetophenone indicating that Gly490 is not crucial for substrate recognition. Furthermore, spectral analysis indicated a perturbation of the flavin microenvironment. These results suggest that in HAPMO, the second ATG motif serves a structural function which is of importance for NADPH binding as proposed by Vallon (Vallon, 2000).

The arrangement of sequence motifs in type I Baeyer-Villiger monooxygenases resembles the sequence organization of the pyridine nucleotide-dependent disulfide reductases (Vallon, 2000) (e.g. glutathione reductase and lipoamide dehydrogenase) and the β subunit of glutamate synthase (Morandi et al., 2000). However, the Baeyer-Villiger monooxygenase sequences are lacking the GD motif involved in binding the FMN part of FAD (Eggink et al., 1990). The absence of this sequence motif or any other significant sequence similarity in the C-terminal half might well reflect the unique catalytic properties of Baeyer-Villiger monooxygenases and mechanistically related N-hydroxylating enzymes (Sheng et al., 1999; van Berkel et al., 1999).

Expression of HAPMO, under control of the T7 promotor (Studier and Moffatt, 1986), in E. coli BL21(DE3)pLysS resulted in relatively large amounts of soluble and active enzyme. This allows us to address in the near future the catalytic mechanism and structure-function relationship of this novel aromatic Baeyer-Villiger monooxygenase in further detail.

Acknowledgments

This work was supported by the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (CW-NWO), division ‘Procesvernieuwing voor een schoner milieu’ and by the European Community (Framework IV, project BIO4-CT98-0267).