University of Groningen

The significance of serum matrix metalloproteinase 3 in patients with early rheumatoid arthritis
Posthumus, Marcel Desiderius

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Chapter 6

Serum matrix metalloproteinase 3 levels in comparison to C-reactive protein in periods with and without progression of radiological damage in patients with early rheumatoid arthritis

SUMMARY

Objective. To evaluate serum matrix metalloproteinase 3 (MMP-3) levels in comparison to C-reactive protein (CRP) in periods with and without progression of radiological damage in patients with early rheumatoid arthritis (RA).

Methods. Thirty-two patients with RA and radiological progression (≥ 5 points according to the Sharp/van der Heijde method) during 6 months followed by a 6 months period without radiological progression (≤ 1 point) were selected from a prospective follow-up study of early RA patients. Serum MMP-3 levels, CRP, erythrocyte sedimentation rate (ESR), disease activity index (DAS), swollen joint count (SJC), tender joint count (TJC), Ritchie articular index (RAI) were measured monthly and results were transformed into mean values for the 6 months periods.

Results. During the period with radiological progression the mean serum MMP-3 correlated significantly with the mean CRP ($r = 0.68$, $p < 0.001$), ESR ($r = 0.54$, $p = 0.001$) and swollen joint count ($r = 0.48$, $p = 0.006$). In the period without radiological progression the mean serum MMP-3 only correlated with the mean CRP ($r = 0.44$, $p = 0.012$). Individual changes - in terms of percentage (%) - between the 2 periods showed a decrease in both mean serum MMP-3 and CRP in 19 and an increase in 3 patients, in parallel with other markers of disease activity in these patients (69% of cases). The individual change (%) in mean serum MMP-3 or CRP did not correlate with the difference in radiological progression between the 2 periods.

Conclusions. Serum MMP-3 and CRP are closely related and there seems to be no difference between serum MMP-3 and CRP with regard to the monitoring of the progression of radiological damage.

Key words: serum matrix metalloproteinase 3, stromelysin 1, early rheumatoid arthritis, radiological damage.
INTRODUCTION

Rheumatoid arthritis (RA) is characterized by chronic inflammation of synovial tissue and in most cases progressive destruction of cartilage and bone. The matrix metalloproteinases (MMPs) are thought to play a critical role in the degradation of many components of the extracellular matrix in the synovial joint. Matrix metalloproteinase 3 (MMP-3, stromelysin 1) is of interest because this proteolytic enzyme is produced abundantly in the inflamed joints and plays a prominent role in the pathogenesis of matrix degradation in RA, even though it is not the only key-enzyme. MMP-3 is capable of degrading many components of the matrix in the synovial joint including proteoglycans, gelatins, laminin, fibronectin, and collagen III, IV, IX. Moreover MMP-3 is able to activate other matrix metalloproteinases such as MMP-1, MMP-7, MMP-8, MMP9 and MMP-13. The enzyme has been localized in the fibroblast-like synoviocytes of rheumatoid synovium, in RA cartilage, at sites of cartilage erosion, in synovial fluid, and in serum. Systemic MMP-3 levels are supposed to be a reflection of local synthesis induced by pro-inflammatory cytokines. As such, serum MMP-3 can be used as a systemic marker of local joint inflammation and/or destruction. In this respect serum MMP-3 may reflect joint inflammation and destruction more directly compared to C-reactive protein (CRP) which is produced indirectly by the liver after cytokine stimulation. In addition it has been suggested that the pathophysiologic mechanisms of joint inflammation, as reflected by CRP may be partially independent of destruction, which is also determined by the prominent local cytokine, protease, and inhibitor environment. This possible uncoupling of inflammation and destruction could be one of the explanations for the wide inter-individual variation in radiological damage despite comparable inflammation as defined by, for example CRP.

We hypothesize that serum MMP-3 is closer related to progression of radiological damage in comparison with CRP. Therefore we analyzed mean serum MMP-3 levels in a 6 months period with and a consecutive 6 months period without progression of radiological damage and evaluated differences between serum MMP-3 and CRP.

PATIENTS AND METHODS

Thirty-two patients with RA and progression of radiological damage (≥ 5 points according to the Sharp/van der Heijde method) during a 6 months period followed by a 6 months period with no radiological progression (≤ 1 point) were selected from a cohort of patients with RA according to the 1987 American
College of Rheumatology criteria \(^{36}\) with joint symptoms existing less than one year at presentation and who had not previously received DMARDs. These patients participated in a prospective follow-up study at the Department of Rheumatology at the Groningen University Hospital. According to the protocol clinical and laboratory investigations were performed at monthly intervals and radiographs of hands and feet were obtained every 6 months of follow-up.

During follow-up patients were treated with nonsteroidal anti-inflammatory drugs and disease modifying antirheumatic drugs (DMARDs) as indicated clinically. Guidelines for the sequence of the different second-line drugs were as follows: hydroxychloroquine or sulphasalazine as first choice therapy, followed in order by intramuscular gold, D-penicillamine, azathioprine, or methotrexate. Low dose corticosteroids could be administered as adjuvant therapy.

Clinical markers of disease activity

Fifty-two peripheral joints were examined for tenderness and soft tissue swelling. The following articular indices were determined: Ritchie articular index (RAI) \(^{37}\), tender joint count (TJC), swollen joint count (SJC) and the disease activity score (DAS) according to Van der Heijde with 3 variables: RAI, number of swollen joints, and erythrocyte sedimentation rate (ESR) \(^{38}\). The maximal scores are: RAI 78, TJC 52, SJC 52 and DAS 10.0.

Laboratory analysis

Serum MMP-3 levels were determined by a MMP-3 ELISA developed at our laboratory \(^{39}\). In short, 96 well plates were precoated with F(ab)\(_2\) fragment of goat-antimouse IgG, 1\(\mu\)g/ml (Jackson Immunoresearch Labs, West Grove, PN, USA). Next a mouse monoclonal antibody against human MMP-3, clone 10D6 (R&D Systems, Abingdon, UK) was coated at 0.1 \(\mu\)g/ml. Serum samples were analyzed in two-fold serial dilutions in high performance ELISA buffer (CLB, Amsterdam, NL) and incubated during 1 hour. After washing bound MMP-3 was detected with a polyclonal rabbit-anti-human MMP-3 (AB 810, Chemicon, Temecula, CA, USA), followed by horseradish-peroxidase-labelled F(ab)\(_2\) fragment of goat-anti-rabbit IgG (Zymed, San Francisco, CA, USA). Peroxidase activity was determined using tetramethylbenzidin as substrate. MMP-3 levels were calculated at the linear range of the assay from a standard curve (3-400 ng/ml) using pro-MMP-3, purified from serum free supernatant of IL-1\(\beta\) stimulated rheumatoid arthritis synovial fibroblasts \(^{40}\). The intra-assay coefficient of variation (CV) was 6.8\%, the inter-assay CV 8.8\%. With an immunoblot we demonstrated that both the monoclonal and the polyclonal antibody reacted with
active MMP-3, pro-MMP-3, as well as with MMP-3 bound to tissue inhibitor of matrix metalloproteinases (TIMPs). Furthermore it was demonstrated that rheumatoid factors do not react in this assay and do not interfere with measurement of MMP-3 (data not shown). For normal values of serum MMP-3 the 95 percentile in healthy bloodbank donors (n=80) was used (female < 20 ng/ml, male < 60 ng/ml)\(^{39}\).

CRP was measured by ELISA\(^{41}\) (lowest limit of detection: 2 mg/l), ESR according to Westgren. IgM rheumatoid factor (RF) was measured by Dade/Behring BN-2 nephelometer (normal value: < 15 IU/ml).

Radiological analysis
Radiological damage in hands and feet was assessed by Sharp’s method with some modifications as described by Van der Heijde et al\(^{42,43}\). By this method joint space narrowing (JSN) and erosions (ER) are scored separately and combined to a total Sharp score (TSS) with a maximum TSS of 448 points. The radiographs were scored without knowledge of clinical and laboratory data in chronological order per patient by two observers. The inter-observer agreement was 0.90 and the intra observer agreements were 0.96 and 0.99 for the two observers respectively. Radiological progression was defined as \(\geq 5\) Sharp points and no radiological progression as \(\leq 1\) Sharp point in a 6 months period.

Statistical analysis
Monthly determined values of clinical and laboratory variables were transformed in a mean value over a 6 months period. Individual changes between the 2 periods were expressed in terms of percentage. For example:

\[
\Delta \text{serum MMP-3} = \frac{\text{Individual mean serum MMP-3 in the non-progressive period} - \text{Individual mean serum MMP-3 in the progressive period}}{\text{Individual mean serum MMP-3 in the progressive period}} \times 100\%
\]

Spearman’s rank correlation coefficients were used for assessment of correlation, for differences between periods the paired T-test. P values of < 0.05 were considered significant.
RESULTS
Thirty-two patients with RA and radiological progression (≥ 5 points according to Sharp’s method) during a 6 months period followed by a 6 months period without radiological progression (≤ 1 point) were selected from a cohort of early RA patients. The median time between the moment of diagnosis RA and such a period was 10 months with a range of 0-31 months. The characteristics of these 32 patients with RA at the beginning of the period with radiological progression are summarized in table 1.

<table>
<thead>
<tr>
<th>TABLE 1. Characteristics of the 32 patients with RA at the beginning of the 6 months period with radiological progression.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>Gender, female/male (% female)</td>
</tr>
<tr>
<td>Time until begin progressive period ¶ months</td>
</tr>
<tr>
<td>IgM RF positive (%)</td>
</tr>
<tr>
<td>Tender joint count</td>
</tr>
<tr>
<td>Ritchie articular index</td>
</tr>
<tr>
<td>Swollen joint count</td>
</tr>
<tr>
<td>Disease activity score</td>
</tr>
<tr>
<td>CRP (mg/l)</td>
</tr>
<tr>
<td>ESR (mm/h)</td>
</tr>
<tr>
<td>MMP-3 (ng/ml)</td>
</tr>
<tr>
<td>Sharp score † T0</td>
</tr>
<tr>
<td>Sharp score † T6</td>
</tr>
<tr>
<td>Sharp score † T12</td>
</tr>
</tbody>
</table>

Values are expressed as the median and range.
¶: Time between the moment of diagnosis of rheumatoid arthritis and the beginning of the period with radiological progression.
†: T0 is the Sharp score at the beginning and T6 the Sharp score at the end of the 6-month period with radiological progression. T12 is the Sharp score after the subsequent 6 months without radiological progression.
The individual mean values of serum MMP-3, CRP, ESR and disease activity score in the period with and without radiological progression are shown in figure 1A-D.

FIGURE 1. Individual mean values for serum MMP-3 (A), CRP (B), ESR (C), DAS (disease activity score) (D) in the 6 months period with vs. the consecutive 6 months period without progression of radiological damage. Each dot represents 1 patient (n=32). All mean values decreased significantly (p < 0.05). DAS < 1.6 = remission, DAS 1.6-2.4 = low disease activity, DAS > 2.4 = moderate to high disease activity.
Individual changes - in terms of percentage – of the mean values between the two periods (figure 2) showed a decrease in both serum MMP-3 and CRP in 19 and an increase in 3 patients, in parallel with other markers of disease activity in the patients (69% of cases).

FIGURE 2. Individual changes - in terms of percentage (Δ) - of the mean values of serum MMP-3 in relation to CRP (A), ESR (B), and DAS (disease activity score (C)) between the 2 periods. Each dot represents 1 patient ($n=32$). Details concerning MMP-3:

$$\Delta \text{ serum MMP-3} = \left(\frac{\text{Individual mean serum MMP-3 in the non-progressive period}}{\text{Individual mean serum MMP-3 in the progressive period}} \right) \times 100 \%$$

A decrease in mean serum MMP-3 is represented by a Δ serum MMP-3 of $< 100 \%$, an increase by a Δ serum MMP-3 of $> 100 \%$. Spearman correlation showed that Δ serum MMP-3 correlated significantly with Δ ESR ($r = 0.47$, $p < 0.01$) and Δ DAS ($r = 0.43$, $p < 0.01$). The correlation between Δ serum MMP-3 and Δ CRP was borderline significant ($r = 0.33$, $p = 0.06$). A separate analysis excluding the data of the “CRP non-responders” showed a correlation coefficient of 0.40 with a p value of 0.03.
There was a discrepancy between change in mean serum MMP-3 and CRP in 6 patients (19% of cases). In 5 of these patients serum MMP-3 levels ranged from 22-39 ng/ml and in 2 patients CRP levels ranged from 2-8 mg/l. Small changes in measured serum MMP-3 levels resulted in great changes, in terms of percentage. In the remaining 4 patients (12% of cases) serum MMP-3 decreased but no CRP response could be registered because CRP levels were within the normal range (< 2 mg/l) in both periods. Spearman correlation showed that Δ serum MMP-3 correlated significantly with Δ ESR (r = 0.47, p < 0.01) and Δ DAS (r = 0.43, p < 0.01). The correlation between Δ serum MMP-3 and Δ CRP was borderline significant (r = 0.33, p = 0.06). A separate analysis excluding the data of the “CRP non-responders” (n=4) showed a correlation coefficient of 0.40 and p = 0.03.

The median change in serum MMP-3 was 61.8% (range: 4-204%), the median change in CRP 54.7% (range: 13-228%).

The individual change - in terms of percentage - in mean serum MMP-3 or CRP did not correlated with the difference in radiological progression (figure 3) between the 2 periods (Δ serum MMP-3 vs. Δ Sharp: r = -0.14, p = 0.45 and Δ CRP vs. Δ Sharp: r = -0.12, p = 0.50).

FIGURE 3. Individual changes - in terms of percentage (Δ) – of the mean values of serum MMP-3 (A) and CRP (B) in relation to the difference in the Sharp score between the 2 periods. Each dot represents 1 patient (n=32). The individual change (mainly decrease, defined as < 100%) in mean MMP-3 or CRP did not correlated with the difference in radiological progression between the two periods (Δ serum MMP-3 vs. Δ Sharp: r = -0.14, p = 0.45 and Δ CRP vs. Δ Sharp: r = -0.12, p = 0.50).
In the period without radiological progression disease activity was moderate-high (DAS > 2.4) in 9 patients, low (DAS 1.6 – 2.4) in 16 patients and 7 patients were in remission (DAS < 1.6), (figure 1D). Patients with an increase in serum MMP-3, CRP or ESR in the period without radiological progression (n=3) had DAS scores of > 1.6.

DISCUSSION

In RA markers of disease activity and destruction are important, not only for prognostic but also for therapeutical reasons. Acute phase proteins, such as CRP are indirectly produced by the liver after stimulation by cytokines produced at the inflammatory site. Serum MMP-3 is locally produced and activated in the inflamed joint and systemic levels are supposed to be a direct reflection of local synthesis. As such serum MMP-3 could be used as a systemic marker of local inflammation and destruction.

In RA serum MMP-3 is closely correlated to other markers of disease activity like swollen joint count, CRP, and ESR. Cross-sectional and long-term follow-up studies also show correlation between serum MMP-3 and radiological detectable damage.

Recent studies suggest that the pathophysiologic mechanisms of joint inflammation, as reflected by CRP and destruction may be partially independent. Because of the key role of MMP-3 in matrix degradation and the relation between serum MMP-3 levels and radiological damage, we evaluated the serum MMP-3 levels in periods with and without progression of radiological damage in patients with early RA. We hypothesized that serum MMP-3 is closer related to progression of radiological damage in comparison with CRP.

In rheumatoid arthritis a distinction must be made between process variables such as CRP and outcome measures like radiological progression. The course of the disease is generally monitored by serial measurements of one or more process variables. As radiological outcome is essentially the result of what has happened during the course of the disease, theoretically the area under the curve of serially measured process variables meets the requirements of a proper outcome measure. For equally spaced observations, as is the case in this study, the area under the curve is essentially the same as the mean of all measurements. Such a transformation of data enables the comparison of process variables with outcome measures.

In this select group of RA patients we found, in the first place a close correlation between mean serum MMP-3 and CRP in both periods. Secondly, evaluation of individual changes - in terms of percentage - between the 2 periods
showed a discrepancy between change in mean serum MMP-3 and CRP in only a minority of patients, especially in patients with low or close to normal values. In the third place, individual changes - in terms of percentage - in mean serum MMP-3 or CRP did not correlate to the differences in radiological progression between the 2 periods. In this study we did not observe a difference between serum MMP-3 and CRP in relation to the progression of radiological damage. Or in other words, in this select group of RA patients we could not find arguments for an uncoupling of inflammation as reflected by CRP and destruction as reflected by serum MMP-3.

An influence of differences in therapy was considered but could, unfortunately not be evaluated due to diversity in used DMARDs in this relative small number of RA patients.

The lack of a difference between serum MMP-3 and CRP in relation to progression of radiological damage could have several reasons. In the first place patient selection could be of influence. In our attempt to look for differences between serum MMP-3 and CRP in relation to progression of radiological damage we have chosen a radiological criterium. Patients with radiological progression (> 5 points according to Sharp’s method) during 6 months followed by a 6 months period with no radiological progression (≤ 1 point) were selected from a large follow-up cohort of RA patients. The cut-off point of > 5 Sharp points was inspired by the publications concerning minimal clinical important difference and the smallest detectable difference in the Sharp score which scores damage in hands and feet 48 With these criteria, even in the non-progressive period, 9 patients had a high-moderate disease activity score (see figure 1D) probably due to disease activity in other joints. This persistent disease activity makes it difficult to evaluate the uncoupling of disease activity assessed by CRP, joint counts, DAS and radiological damage scored by X-rays of hands and feet. In addition it is of importance to notice that there were some patients with radiological progression despite a relatively low disease activity, according to the DAS score. This emphasizes the inter-individual difference in the relation between parameters of disease activity and radiological damage.

Secondly it is conceivable that a lag time could play a role 35,49. Radiological detectable damage could lag behind disease activity as measured by CRP or serum MMP-3. It remains debatable if all the 32 patients were actually in “radiological remission”.

In the third place sample size could be of importance. With the criteria mentioned we could select 32 patients out of a cohort of 405 RA patients. This number of patients could have been too small because serum MMP-3 and CRP
are closely related, which implies a relative great sample size.

Finally, in RA MMP-3 is produced in the inflamed joints as an inactive pro-enzyme. Upon activation it is able to degrade many components of the matrix. Inactivation occurs by inhibitors such as TIMPs (tissue inhibitors of matrix metalloproteinases). It is conceivable that an imbalance between production, activation and inhibition results in joint destruction (radiological damage). In our hypothesis we assume that serum MMP-3, consisting mainly pro-MMP-3, is a direct reflection of local pro-MMP-3 production as well as of its local activation and subsequent joint destruction. In this respect serum MMP-3 could reflect joint destruction more directly compared to CRP which is produced indirectly by the liver after cytokine stimulation. The fact that we did not find a difference between serum MMP-3 and CRP with regard to radiological progression implies that not only production but rather the balance between activation and inhibition is of major importance. Unfortunately these mechanisms are difficult to evaluate.

The optimal biochemical marker for monitoring destruction has still to be defined. Therefore, although serum MMP-3 remains an interesting marker in patients with rheumatoid arthritis, it is not superior to CRP. CRP is still an excellent parameter not only for monitoring disease activity but also for monitoring progression of radiological detectable damage.

In conclusion, serum MMP-3 and CRP are closely related and there seems to be no difference between serum MMP-3 and CRP with regard to the monitoring of the progression of radiological damage.

ACKNOWLEDGEMENTS
This study was supported by a grant from “The Dutch Arthritis Association”, The Netherlands.
REFERENCES

