Mandibular overdentures supported by two Branemark, IMZ or ITI implants

Meijer, Hendrikus; Batenburg, Rutger H.K.; Raghoebart, Gerry; Vissink, Arjan

Published in:
Journal of Clinical Periodontology

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Mandibular overdentures supported by two Brånemark, IMZ or ITI implants: a 5-year prospective study

Abstract
Objectives: The aim of this prospective comparative study was to evaluate the survival rate and the condition of the peri-implant tissues of the IMZ implant system (two-stage cylindertype), the Brånemark implant system (two-stage screwtype) and the ITI implant system (one-stage screwtype) supporting a mandibular overdenture during a 5-year follow-up period.

Material and Methods: Three groups of 30 edentulous patients were treated with two endosseous implants in the interforaminal region of the mandible. Clinical and radiographic parameters were evaluated immediately after completion of the prosthetic treatment and after 1, 2, 3, 4 and 5 years of functional loading.

Results: The five-year survival rate is 98.3% for the IMZ group, 98.3% for the Brånemark group and 100% for the ITI group. Mean scores on indices for plaque, calculus, gingiva and bleeding were very low at all evaluation periods. Mean marginal bone loss over a period of 5 years, was 1.4 mm for the IMZ group, 0.7 mm for the Brånemark group and 0.9 mm for the ITI group.

Conclusion: It is concluded that two implants placed in the interforaminal region, connected with a bar, supply a proper base for the support of a mandibular overdenture in the edentulous patient. After 5 years no clinically relevant and statistically significant radiographic changes had developed between the three implant systems.

Key words: edentulous; dental implants; mandible; overdenture

Accepted for publication 19 August 2003

Edentulous patients often experience problems with their mandibular full dentures. Lack of stability and retention, together with a decreased chewing ability are the main complaints of these patients (Van Waas 1990). A currently frequently applied treatment possibility is the use of endosseous implants to which an overdenture can be attached. One of the first studies concerning overdentures supported by endosseous implants was published by Van Steenbergh et al. (1987). Various studies have revealed an implant survival rate of approximately 96% (Batenburg et al. 1998). At present, the results of prospective studies concerning overdentures retained by endosseous implants with a follow-up period of at least 10 years have become available. Buser et al. (1999) reported a 10-year survival rate of 96.2% for implants mainly placed in the anterior region of the mandible. Mericske-Stern et al. (2001) reported a 91.4% 10-year survival rate, and this group comprised not only mandibular overdentures, but also fixed partial dentures and single crowns. Ferrigno et al. (2002) reported a 10-year survival rate of 95.9% of a group treated with overdentures or fixed full-arch bridges. Major prospective studies evaluating one implant system with a follow-up period of at least 5 years specifically about overdentures retained by endosseous implants are Mericske-Stern et al. (1994) with the ITI dental implant system, Jemt et al. (1996) with the Brånemark implants system, Naert et al. (1998) with the Brånemark implants system and Behneke et al. (2002) with the ITI dental implant system. Comparison of implant systems is optimal in a prospective study with predefined inclusion and exclusion criteria (Antczak-Bouckoms 1988, Barnes 1990). Only few studies have been published with two or more different
endosseous implant systems in one prospective study on mandibular overdentures with a follow-up of at least 5 years. Meijer et al. (2000) presented a survival rate of 93% for the IMZ implant system and 86% for the Brånemark implant system after 5 years. In another study by Meijer et al. (2001), the 6-year results were presented for the IMZ implant system and the Brånemark implant systems, being 97.5% and 97.1%, respectively. Five-year results of a prospective study comparing a one-stage implant system with a two-stage implant system has never been published. The aim of this prospective comparative study was to evaluate the survival rate and the condition of the peri-implant tissues of the IMZ implant system (two-stage cylindertype), the Brånemark implant system (two-stage screwtype) and the ITI implant system (one-stage screwtype) supporting a mandibular overdenture during a 5-year follow-up period.

Materials and Methods

Patient selection and treatment

For this study, patients with severely resorbed mandibles were selected. All patients had persistent problems with conventional complete dentures due to reduced stability and insufficient retention of their mandibular denture. The patients were informed about the treatment options and possible risks. Informed consent was obtained from all participants. The study was approved by the hospital medical ethical committee. Inclusion criteria for the clinical trial were an edentulous period of at least 2 years and severe resorption of the mandible, being class V–VI according to the Cawood & Howell (1988) classification. Patients with a history of radiotherapy in the head and neck region or a history of preprosthetic surgery or previous implant placement were excluded. Allocation to one of the treatment options was done by means of 90 envelopes, which contained a note with the implant system. Thirty patients (IMZ group) were treated with the two-stage 4 mm diameter IMZ cylinder implant with TPS coating (Friatec, Mannheim, Germany), 30 patients (Brå group) with the two-stage 3.75 mm diameter Brånemark screw implant with a machined surface (Nobel Biocare, Gothenburg, Sweden) and 30 patients (ITI group) with the one-stage 4.1 mm diameter ITI solid screw implant with TPS coating (Straumann, Waldenburg, Switzerland). All patients were treated under local anaesthesia with an implant in the right and left canine region of the mandible. Three months after implant placement, a standard prosthetic procedure was carried out. A new maxillary complete denture and an overdenture supported by a round bar and clip attachment were fabricated. All patients were treated in the same department by one experienced oral-maxillofacial surgeon and one experienced prosthodontist. Two weeks after the abutment connection (for the two-stage implant systems) or 2 weeks after implant placement (for the one-stage implant system), an oral hygiene instruction was given. Two weeks thereafter this was checked and, if necessary, an additional instruction was given. At each evaluation visit for the study, patients were also recalled by the oral hygienist for removal of plaque and calculus and additional instruction. If necessary, patients were recalled every 6 months.

Table 1. Characteristics of the groups at the baseline of the study

<table>
<thead>
<tr>
<th></th>
<th>IMZ group (n = 30)</th>
<th>Brå group (n = 30)</th>
<th>ITI group (n = 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age in years (range)</td>
<td>54.0 (38–77)</td>
<td>56.6 (35–79)</td>
<td>52.8 (38–74)</td>
</tr>
<tr>
<td>Gender; number male/female</td>
<td>9/21</td>
<td>6/24</td>
<td>12/18</td>
</tr>
<tr>
<td>Mean edentulous period lower jaw in years (SD)</td>
<td>21.0 (9.0)</td>
<td>21.8 (10.5)</td>
<td>19.6 (9.7)</td>
</tr>
<tr>
<td>Mean mandibular bone height in mm (SD)</td>
<td>15.8 (2.3)</td>
<td>15.7 (2.7)</td>
<td>15.6 (2.5)</td>
</tr>
<tr>
<td>Mean bone quality (possible score 1–4)</td>
<td>3.0</td>
<td>2.7</td>
<td>2.6</td>
</tr>
</tbody>
</table>
were very low at all evaluation periods (Table 2). Significant differences between the groups were at T_1 for the gingival index (the Brånemark group had a lower score than the other groups); at T_3 for the bleeding index (the Brånemark and the ITI group had a lower score than the IMZ group) and at T_4 for the bleeding index (the ITI group had a lower score than the other groups). The mean probing depth (Table 2) was the highest for the IMZ group, followed by the Brånemark group and then by the ITI group with the lowest mean probing depth.

The mean marginal bone loss is listed in Table 3. The mean location of the bone level, measured from the top of the implant (= reference point), at the baseline (T_0) was 1.80 mm for the IMZ system, 1.86 mm for the Brånemark system and 3.34 mm for the ITI system. Significant differences between the groups were after 1 year (more bone loss in the IMZ group than in the Brånemark group and the ITI group) and after 4 years (less bone loss in the Brånemark group than in the IMZ group and the ITI group).

Discussion

The 5-year survival rate of implants in this prospective study is 98.3% for the IMZ group, 98.3% for the Brånemark group and 100% for the ITI group. These percentages are comparable to other prospective studies that have reported survival rates of implants supporting an overdenture ranging from 94.5% to 98.8% (Mericke-Stern et al. 1994, Jemt et al. 1996, Naert et al. 1998, Behneke et al. 2002). In a comparative study Meijer et al. (2000) reported a 5-year survival rate of 93% for the IMZ implant system and 86% for the Brånemark implant system. In another comparative study of Meijer et al. (2001), the 6-year results were presented of the IMZ implant system and the Brånemark implant system, being 97.5% and 97.1%, respectively.

Mean indices for plaque, calculus, gingiva and bleeding were very low at all evaluation periods. Significant differences between the groups were at T_1 for the gingival index (the Brånemark group had a lower score than the other groups); at T_3 for the bleeding index (the Brånemark and the ITI group had a lower score than the IMZ group) and at T_4 for the bleeding index (the ITI group had a lower score than the other groups). The mean probing depth (Table 2) was the highest for the IMZ group, followed by the Brånemark group and then by the ITI group with the lowest mean probing depth.

The mean marginal bone loss is listed in Table 3. The mean location of the bone level, measured from the top of the implant (= reference point), at the baseline (T_0) was 1.80 mm for the IMZ system, 1.86 mm for the Brånemark system and 3.34 mm for the ITI system. Significant differences between the groups were after 1 year (more bone loss in the IMZ group than in the Brånemark group and the ITI group) and after 4 years (less bone loss in the Brånemark group than in the IMZ group and the ITI group).
Mean loss of marginal bone between IMZ group, the Bra˚ group and the ITI group could be caused by a different three groups. The bone loss for the IMZ system could be caused by a different implant surface around the neck of the IMZ implant. The large standard deviation for the parameter bone loss in the IMZ group indicates that some patients showed significant amounts of bone loss. These patients may be at risk for loss of implants.
From this study, it is concluded that two implants (two-stage IMZ, two-stage Brånemark or one-stage ITI) placed in the interforaminal region, connected with a bar, supply a proper base for the support of a mandibular overdenture in the (Cawood V–VI) edentulous patient. After 5 years no clinically relevant and statistically significant radiographic changes had developed between the three implant systems.

References

