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Abstract.

This paper presents a collocation method with an iterative linear system solver
to compute periodic solutions of a system of autonomous delay differential equa-
tions (DDEs). We exploit the equivalence of the linearized collocation system and
the discretization of the linearized periodic boundary value problem (BVP). This lin-
ear BVP is solved using a variant of the Newton-Picard method [Int. J. Bifurcation
Chaos, 7 (1997), pp. 2547-2560]. This method combines a direct method in the low-
dimensional subspace of the weakly stable and unstable modes with an iterative solver
in the high-dimensional orthogonal complement. As a side effect, we also obtain good
estimates for the dominant Floquet multipliers. We have implemented the method in
the DDE-BIFTOOL environment to test our algorithm.

AMS subject classification (2000): 65J15, 65P30, 65Q05.

Key words: delay differential equation, periodic solution, collocation, Newton-Picard,
numerical bifurcation analysis.

1 Introduction.

In this paper, we present a new method to compute periodic solutions of
a system of autonomous delay differential equations (DDEs)

(1.1) ) = fa@t),z(t —71),...,2(t — 7)),

where z(t) € R” and 7, k = 1,..., k, are constant, non-negative delays. Here f
is a two times continuously differentiable function from R™("+1) into R™.
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We search for periodic orbits z*(¢) of (1.1) with a nonzero period T*. That is,
orbits that are non-constant (i.e., not an equilibrium point) and for which

(1.2) 2t +T%) =x*(t), forallteR.

Collocation is a robust technique to solve this periodic BVP. The linearized sys-
tems in the Newton iteration are usually sparse. However, contrary to the ODE
case, it is often impossible to exploit their structure using a direct solver. There-
fore, the implementation in the bifurcation analysis package DDE-BIFTOOL
[11, 13, 12] suffers from a high computational and memory cost in the case of
large systems of DDEs.

The novelty of this paper lies in three ideas. First, we rework the linearized
collocation requirements to obtain a linear system that is suited for an iterative
solver. This procedure is based on the correspondence between the linearization
of our collocation scheme and the discretization of the linearized BVP. This is
a well-known fact for ODEs [1, 21], but we show that it is also the case for DDE
systems.

Second, we solve the linearized BVP using the Newton-Picard single-shooting
method [18, 15, 16]. This avoids the robustness problems typically associated
with shooting methods. The resulting procedure is equivalent to condensation
of the linearized collocation system. The Newton-Picard method is an efficient
method to solve nonlinear systems whose linearization can be written as

M-1 B Au r

0 e B [a) [

with M € RV*N B C € RV** N very large and k small (typically 1 or 2). The
method assumes that the eigenvalues of M are strongly clustered about 0 and
that only few eigenvalues are close to or larger than 1 in modulus. It combines
a direct linear system solver in the subspace of the weakly stable and unstable
modes of M with a fixed-point (or Picard) iteration in the high-dimensional
orthogonal complement.

Third, we improve the Newton-Picard method to increase its efficiency and
reliability. Rather than using the Newton-Picard method to solve a nonlinear
system as in our previous work, we will now use it to solve the linearized collo-
cation equations, i.e., the single Newton-Picard loop is replaced with a two-level
structure with an outer Newton iteration and an inner Newton-Picard iteration.
This allows to retain the quadratic convergence of the Newton iteration, contrary
to earlier implementations, and to save on the costs for the basis computations.

The resulting algorithm is equivalent (in exact arithmetic) to a collocation
method. Our approach combines the robustness of collocation with the efficiency
of the Newton-Picard single shooting method [18].

The plan of the paper is as follows. In Section 2 we describe our particular
variant of the Runge-Kutta collocation scheme. Section 3 discusses the lineariza-
tion of the collocation scheme and the solution of the resulting linear BVP using
single shooting, which reduces the linearized system to one of the form (1.3).
Section 4 completes the presentation of the Newton-Picard collocation method



NEWTON-PICARD COLLOCATION 607

by integrating the Newton-Picard method in the procedure. In Section 5 we
present numerical results. Finally, Section 6 summarizes the main conclusions
from this work.

2 Discretization by a Runge-Kutta collocation scheme.

2.1 The periodic boundary value problem.

Let 79 := 0 for notational convenience. As in [6, 11], we first rescale time by
a factor 1/T such that the period is one in the transformed time. Instead of
solving (1.1), we will solve the transformed equation

(2.1) () =F(x, T)t) :=Tf (z(t —70/T),...,x(t — 7/T))

throughout the paper. For simplicity of notations, we don’t introduce new sym-
bols for the transformed variables.

Define 7 := maxy, 7%, the maximal delay. The periodic orbit is uniquely deter-
mined by the BVP

(2.2a) 2'(t) = F(z,T)(t), forte]l0,1],
(2.2b) z(@+1)—=z(0) =0, for6e|—7/T,0],
(2.2¢) a(z) =0

with unknowns x and T'. It is important to note that the periodicity condi-
tion (2.2b) must enforce the equality of the starting and the final function seg-
ment of length 7/T, instead of just (1) = z(0) in the ODE case. This stems
from the fact that the state space of (2.1) is C([—7/T,0],R™). The phase condi-
tion (2.2¢) removes translational invariance. We use the integral phase condition

(2.3) ax) ::/0 () dtxo(t) dt =0

which minimizes the phase shift of x(t) with respect to some reference solution
x°(t), cf. [7]. This condition reduces the need for frequent remeshing.

2.2 Runge-Kutta collocation.

Let {0 =tp < t1 < ... <ty =1} be amesh on [0,1]. This mesh is periodically
extended to the left to obtain a mesh {t_,...,t,, =1} on [t_¢, 1] 2 [-7/T, 1].
We determine £ such that t_y < —7/T < t_g41. Let P}|5 denote the set of poly-
nomials of degree d or less that map D C R into R™. We approximate a function
x € C([t—¢,1],R™) by an element u of the space of piecewise polynomials

(24)  {uelC((t—¢,1,R") : u

[titita] € Pg [tistiza] i=—0...,m— 1}-

We will represent the elements of this space in a convenient way. Let At; :=

tir1 —t; and ti+_; :zti—l—flAti as well as ;g = u(ti+§) fori=—4,...,m—1
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and j = 0,...,d. By abuse of notation, we will denote the vector that groups
the values u; ; by u. We also define the starting and final state vector and the
trajectory vector by

U—p Um—1 ’U,{li
. N N,
(2.5) wug:= Uigs |5 upi=| Uig eRY, wuy:= Uiy e R™,
%) Um Um

where N := n(¢d+1) and N, := nmd. Clearly, u = (us, u;) and uy consists of the
last N components of the vector u. Let v;, j = 0,...,d, denote the Lagrange
polynomial of degree d which is one in j/d and zero in all other points from
the set {0,1/d,...,1}. For the restriction of the spline to a single mesh interval
[ti,tit+1], we use these polynomials rescaled to this mesh interval as the basis
functions, i.e.,

d
t—1;
u(t) :ZuH_ZIQbJ ( At ) , te [tiati+1]-

Our approximation to a solution (z*,T*) to (2.2) is (u,T’), which is ob-
tained by imposing collocation requirements on (2.2a) and discretizing (2.2b)
and (2.2c). As in AUTO [5, 6] and DDE-BIFTOOL, we use the collocation
points U?Z)l ngl{ci,y = t; +c,At;} on [0, 1], with ¢, the zeros of the Legendre
polynomial of degree d. Note that for this Gauss-Legendre collocation scheme
the accuracy of the orbit is of order h?*! [8, 11, 9], which is different from
the ODE case. The integral phase condition (2.3) is computed exactly by using
a Gauss quadrature rule of degree d on each mesh interval [¢;,t;11]. Hence, the
discretization of (2.2) becomes

(2.6a) r1(u,T) = 0N, x1,
(2'6b) T2(usa uf) =up —us = Onx1,
(26C) O[(’LLO,’LLt) = 07

where (2.6a) groups the md vector-valued collocation requirements
F(u, T)(eiw) — v (cin) =0,

fori =0,...,m—1and v =1,...,d. In order to evaluate u(¢;, — 7/T), we
first choose the index i;, from the set {—/,...,m — 1} such that ¢;, , <
cip—T8/T < (S Remark that %; ,,0 = 4, since 79 = 0. Next, we evaluate

d v Tk T) - tf k
(2.7) u(ciy —m/)T) = Z%‘ <(C’ Zt/ ) = o ) Bkt
j=0

2,0,k
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Figure 2.1: The structure of the linearized collocation system for one delay (k = 1)
that is smaller than the (approximate) period 7', using a non-equidistant mesh with
m = 7 mesh intervals and piecewise polynomials of degree d = 3. Here, the ex-
tended mesh contains ¢ = 3 additional mesh intervals. (A black box represents a n X n
block.)

2.3 Linearization.
The nonlinear collocation system (2.6) has N + N; + 1 equations and the same
number of unknowns. A typical structure for the linearized system in the case

of one delay (i.e., k = 1) is depicted in Figure 2.1. Let us first specify its entries.
The first N; rows are the linearization of (2.6a), i.e.,

d K
(CLV —7/T) — tiiwi\ Of Yi(cy)
o e A

= o Biuk

1S 7 Of =, ((ciw—7)T) —ti, _
+ 1 fO)+ T ~ At ()ij ( At )uiluk+fi AT

b U0,k dxk — vk
(2.8) =—(Tf(") = (cip)), fori=0,....m—1, v=1,...,d,
where f(-) and its partial derivatives are evaluated at (2, ...,2%) = (u(¢;p), .. -,

u(cp — T,.;/T)). Let A, B and r; v denote the partial derivatives of r w.r.t. us,
uy and T respectively. Then (2.8) can be written as

(2.9a) AAug + BAuy + 11 7 AT = —rq.



610 K. VERHEYDEN AND K. LUST

The second block row, consisting of N rows,
(29b) Auf - Aus = —T2,

comes from the periodicity condition (2.6b). If the maximal delay 7 is larger
than the (approximate) period T', the two N x N identity matrices in this block
row overlap.

The last row of the linearized system is obtained from the phase condition (2.6¢),

(2.9¢) apAug + arAur + ar AT = —a,

where g, oy and ar are partial derivatives w.r.t. ug, uy, respectively T'. Remark
that ar = 0 for the integral phase condition that we use.

Consider the main block [A B] of size Ny X (N + N;) of the Jacobian matrix. If
there were no delays (i.e., k = 0) then N = n and [A B] would only consist of the
rightmost, regularly shaped, staircase band of m subblocks of size nd x n(d+ 1)
each. Each delay 75, gives rise to an extra band. The shape of those bands is
irregular unless an equidistant mesh is used.

Let us briefly compare our collocation variant to DDE-BIFTOOL’s scheme
[11, 13, 12]. In DDE-BIFTOOL, the 1-periodicity of the solution is explicitly
used in the derivation of the collocation requirements. That is, every occur-
rence of u(t) is replaced by u(t mod 1) or, equivalently, #; , 5 in (2.8) is replaced
by ;% mod m. The resulting linearized system can be obtained by eliminating
U_g, U_g41/ds- - -, U_1/q from (2.9a) using the corresponding rows of (2.9b). Thus
the bands in the main block, corresponding to the delays, are “folded” and be-
come circular bands [12, Figure 2]. Clearly, it is difficult to exploit this structure
in a direct solver. However, the same holds for (2.9). In the next sections, we
work towards an efficient iterative solver for (2.9).

3 Solving a condensed linearized system.

In this section, we will manipulate the linearized collocation equations and
condense the system to the form (1.3), suited for the Newton-Picard method.
First, in Section 3.1, we consider the linearized system from a different viewpoint.
Next, the monodromy matrix is defined in Section 3.2. In Section 3.3 we discuss
the condensation of the linearized collocation system. We will show that this
corresponds to a single shooting method for the linearization of the periodic
BVP (2.2).

3.1 Discretization and linearization commute.

It is well-known that the order of discretization and linearization can be in-
terchanged for the Gauss-Legendre scheme for an ODE BVP (see, e.g., [1, 21]).
This is also the case for a DDE. The linearization of the periodic BVP (2.2)
about a given trajectory (z =wu,T), is the linear BVP in the unknowns (Az, AT)
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given by
— (Az)'(t ) Falu, T)Az(t) + Fr(u, T) () AT
—(F(u, T)(t) —u'(t), fortel0,1],
(3.1b) Az(0+1) — Az(0) = —(u(@+1) —u(h)), for6e[-7/T,0],
(3.1c) oz Az + ar AT = —a(u).

(3.1a)

Here, F, and Fr are the Fréchet derivatives of F.

Discretizing this linearized BVP using the Runge-Kutta collocation method
from Section 2.2 also results in the linearized collocation system (2.9). That is,
the solution procedure developed in Section 2 is equivalent to computing an
approximate solution to the BVP (2.2) in the function space (2.4) by a Newton
process for the BVP (2.2) where an approximate solution to the linearized system
in each Newton iteration is computed by using our collocation scheme. This
strategy is called quasi-linearization [1].

Remark that the “commutativity of discretization and linearization” holds for
all discretization schemes that approximate x by an element u from a given
vector space by using requirements that are linear in u(-) and F(u,T)(-).

3.2 The monodromy matriz.

By definition, the action of the monodromy operator is time integration of the
variational equations (i.e., (3.1a) with AT = 0 and zero right hand side) about an
(approximate) trajectory over At = 1 [14, 4]. Tt follows from the previous section
that a discretization of these variational equations can be obtained from (2.9a)
by setting AT = 0 and r1 = Oy, x1. That is, computing

(3.2) Au; = MyAug; where M; := —B™ 1A € RNexXV

for a given Aus is a numerical time integrator for the variational equations.
Let us define the matrix IKL = [OKX(L K) Ik], ie. IK v selects the last K
components of v € RE. From comparing (3.2) and (2 5), it is clear that the
monodromy matrix M can be defined as follows:

(3.3a) M :=Inn,M; if N <Ny,

and

(3.3b) M = [ IN—nNeN } if N > N;.
M

The dominant eigenvalues of M are usually good approximations to the dom-
inant Floquet multipliers which determine the stability of the periodic solution
and the occurrence of bifurcation points.
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By (3.3), the matrix-vector product with the monodromy matrix Mv can be
easily obtained after computing v; := M;v. The latter can be computed by
solving Bvy = —Awv with a block version of forward substitution. Hence, the
matrix-vector product Mv can be computed easily without constructing the
(often large) dense matrix M. This favors the the use of iterative eigenvalue
solvers like the Arnoldi method and orthogonal subspace iteration [2] to obtain
the dominant Floquet multipliers. More importantly, it is the key element of the
iterative solver for (2.9) presented in Section 4.

3.3 Condensation of the linearized system.

Let us briefly turn to AUTO and the ODE case. The linearized collocation
system in AUTO is a special case of (2.9) with N = n and with only the
rightmost band of m subblocks [6, Figure 1.3]. This structure is exploited in
AUTO by first eliminating all unknowns except Aug, Au,, and AT in a two-
phase elimination process which is similar to forward integration. The resulting
system in Aug, Au,, and AT is very close to the linearized system in a single
shooting method. A system of the form (1.3) (with M the monodromy matrix)
can be obtained by eliminating Aw,, using the periodicity constraint. Though
this linear system solver is potentially unstable (especially for unstable periodic
orbits), this does not seem to harm the convergence of the Newton iteration
much.

We will now derive a similar procedure to reduce (2.9) to a similar system.
Reordering (2.9a), premultiplying with B! and using (3.2), one obtains

(3.4) Auy = MiAug — B_lrl,TAT — B .

Computing Au; from (3.4), given Au, and AT, is equivalent to numerical time
integration of (3.1a) (using a sequence of implicit Runge-Kutta steps with step
sizes At;) with initial condition Au,. To compute Auy (the final state of the
integration) from (3.4), we need to distinguish between two cases. If N < Ny,
we premultiply (3.4) with I x, to obtain

A’Lbf = MAu, — I:N’NthlrLTAT — fN,NtBil’f‘l.

Substituting this expression in (2.9b), we obtain the equation

(3.5) (M — I)Aug + zp AT = —r,
with
(36) Te i=T9 — I~1\/71\/tB_1’I“17 2T = —INN7NtB_17“17T.

If N > N¢, the procedure is more involved. Now

[ O(nv— O(nv—
oy = [ e Jaw = [ g Jar- [ 00 ]
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After substitution in (2.9b), we again obtain (3.5), but now

._ O(v—ny)x1 [ Ov=nx1
(3.7) Te =172 [ B-1p, , 27 = Bing |

Remark that in both cases zp is not the partial derivative of z w.r.t. the (ap-
proximate) period T, since B depends on T also.
Substituting (3.4) in (2.9¢), we obtain the condensed phase condition

(3.8) al Aug + ar AT = —a,
with

af = [01><(N—n) ool + oy My,
(3.9) ar == ar — B ' 7,

Qe = o0 — ozthlrl.

Note that the products with B=! in (3.6), (3.7) and (3.9) can be computed by
a block version of forward substitution, similarly to the computation of Mwv in
Section 3.2.

Hence, solving the linearized collocation system (2.9) is equivalent (in exact
arithmetic) to solving the condensed system (3.5, 3.8) and then computing Awuy,
from (3.4). System (3.5, 3.8) is now in a form suited for the Newton-Picard
method. It is important to note that though the structure is identical, (3.5, 3.8)
is not the linearized single shooting system for the nonlinear BVP (2.2).

4 The Newton-Picard method.

For DDEs, the monodromy matrix M has typically only a few eigenvalues
close to or outside the unit circle. Moreover, as shown above, matrix-vector
products with M can be computed without first constructing M. Therefore, the
Newton-Picard method is a good option to solve (2.9). There are however a few
new elements compared to the implementations discussed in [15, 16, 18]. First,
the linearization of (2.6) does not result immediately in a system of the form
(1.3), but the condensation process explained above is needed. This requires
changes to the implementation. Second, as indicated in Section 1, we will also
make further improvements to the Newton-Picard method. In previous work,
the linearized system at each Newton iteration was solved only approximately
using a combination of a direct and an iterative method. One such iteration step
for the nonlinear system is called a Newton-Picard step. In this process, we lost
quadratic convergence for the nonlinear iteration. In this paper, we use a two-
level iteration: at each Newton step, we solve the linearized system with enough
precision to retain the quadratic convergence by applying several Newton-Picard
steps to the condensed system (3.5, 3.8). By doing so, we hope to lower the cost of
the basis computation needed in the method. We will now work out this process
in more detail.
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4.1 The basic Newton-Picard step.
System (3.5, 3.8) can be solved with the iteration
1. Aul” =0, ATO = 0.
2. Loop for v =1,2,...

2.1. Compute an approximate solution to

M—1 2z ][ 6ul” o
(4.1) W | =7 w
Ay, ar 5T aNP

with

TI(\IVIQ =r.+ (M — I)Aug’kl) + 2p AT,

al(\}jlz = Q. + auAug”_l) +apAT—D.

2.2. Update Augy) = Aug”_l) + 5u§”), AT®) = ATw=1) 4 57W),

The system (4.1) will be solved with enough accuracy such that the norm
of the residual of (3.5, 3.8) decreases with a user-determined factor at every
iteration (100 in our experiments).

To compute an approximate solution of (4.1), we proceed as follows. Let p
be a user-determined threshold with 0 < p < 1. Its optimal value depends
on the spectrum of M, but values between 0.5 and 0.8 have usually proven
to be adequate in our tests. Let V,, € RV*P be an orthogonal matrix whose
columns span the generalized eigenspace corresponding to all Floquet multipliers
W1, .., p with modulus larger than or equal to p. This is an invariant subspace
of M. The threshold p should be such that p is a small number, typically p < 10.
The matrix V}, is computed using orthogonal subspace iteration [19]. The matrix-
vector products with M that are required for this method are again computed
as in Section 3.2. Let V, € RVX(W=P) be an orthogonal matrix whose columns
are a basis for the (high-dimensional) orthogonal complement of the column
space of V,. This space is not an invariant subspace of M since M is in general
a nonnormal matrix. Furthermore, let

P=VVl Q:=VV =Ix - VWV

be the orthogonal projectors onto the column space of V,, and its orthogonal
complement respectively. Note that we need to avoid the explicit computation of
Vg and the projectors P and (). For the sake of simplicity we drop the superscripts

of 5u§”) and 67, Consider the decomposition
(4.2) ous = V,0p+6dq with 6q := Qdu,

of dus. After substituting (4.2) in (4.1) and premultiplying the first IV equations
with [V, V,]T, one step of block-Gauss elimination reduces the system to the
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(p+1) x (p+ 1)-system

43) VIMV, — I, V[ (2 + Méqr) } { 5p ] [+ Mog,)
ayVy ar + ag 6qr oT 041(\;}), + alsq,

and

(4.4) 0q = 0qy + 0qroT.

Here 6q, = V40qy, 0gr = V40qr and 6q,, 6¢r are the solution of

(45) (VM -0V [ da oar ] =—| VTG Vi |
However, rather than solving (4.5) exactly, we compute approximations to g,
and dgr using the fixed point (or Picard) iteration

(4.6) 0q, — Q(MCSqT + 7“1(\;),), oqr — Q(MéqT + zT).

Finally, we set
dus = Vpop + dq, + 0T6qr.

The convergence of this scheme depends in a complicated way on the accuracy
of the basis V,, and the accuracy to which we solve (4.5). A discussion of this—in
a slightly different context—can be found in [15].

After computing an approximate solution to (3.5, 3.8), Au; is computed ex-
actly (up to small rounding errors) from (3.4) using a block version of for-
ward substitution. As a result of this, at the end of the Newton step, r; will
be negligible (depending on the rounding errors during the forward substitu-
tion), but ro will depend on the accuracy to which we solve (3.5, 3.8). Hence,
(us,ut) will converge quadratically to a trajectory of the DDE system, but it
will only converge quadratically to a periodic orbit if (3.5, 3.8) is solved accu-
rately enough. This will determine the stopping criterion for the Newton-Picard
iterations.

We will now first present the overall algorithm and then elaborate on the
various stopping criteria.

4.2 The algorithm.

The resulting algorithm has three levels of nested loops. At the outer level
there is a Newton iteration to solve the nonlinear system (2.6). In each Newton
iteration, the large linearized system (2.9) (see Figure 2.1) is solved approxi-
mately by solving the condensed system (3.5, 3.8) approximately for Au, and
AT and then computing Au; using (3.4). In every Newton iteration, the basis
Vp is computed (or improved) using subspace iteration.

At the second level, we have the Newton-Picard loop outlined in the previous
section. In every Newton-Picard step, the vectors dg, and dgr are computed
using the Picard iteration (4.6), the third and innermost loop level.



616

K. VERHEYDEN AND K. LUST

The algorithm in Figure 4.1 presents these loops without their stopping criteria
which are detailed in Section 4.3.

Algorithm: Newton-Picard collocation

1. Initialize the orbit, i.e., periodically extend wu(t) to a function on [t_g, 1].
2. Initialize the basis V.
3. Do until convergence (outer level: Newton iterations)

3.1.

3.2.
3.3.
3.4.
3.5.

Construct the condensed linearized system, i.e., compute z7,
Gy, a1, 7 and a, and prepare for efficiently computing
matrix-vector products Muv.

Set Augo) = Onx1, AT =0, 7“1(\111): =7, and 0‘1(\111)3 = Q..
Compute or improve the basis V], (using subspace iteration).
Set 0q, = Onx1 and dgr = Onx1-

Do until convergence, for v =1,2,...

(second level: Newton-Picard steps)

(inner level: Picard iterations)

3.5.1. Picard iterations: dg, «— Q(MéqT + TI(\IVIQ).
3.5.2. Picard iterations: dqr «— Q(Mdgr + zr).
3.5.3. Solve (4.3) directly.

3.5.4. If this Newton-Picard step is acceptable, then

Update Au = Aul Y 4 Vp0p + 0qyr + 0q7dT,
ATW) = ATV=D 1 6T
Compute rl(\lyljl) =r.+ (M — I)Augy) + ATW) 2,
al(\}jljl) = . + aZAugy) + ATWqr.
Set 6q, = Onx1 and dgr = Onx1.

3.5.5. Else

Restart this Newton-Picard step: Go to 3.5.1.

3.5.6. End if.

3.6.

End do. (second level: Newton-Picard steps)

3.7. Update Au, using (3.4) with Au, = Aul”) and AT = AT®),
4. End do. (outer level: Newton iterations)

Figure 4.1: The Newton-Picard collocation algorithm.

4.8 The convergence criteria.

The stopping criteria for the basis and Picard iterations at the innermost loop
level must guarantee convergence of the Newton-Picard procedure, while the
stopping criterion for the Newton-Picard steps will guarantee quadratic conver-
gence of the Newton iteration. The latter is stopped when the solution is deemed
accurate enough.
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4.3.1 The Newton iterations.

To test for convergence of the Newton iteration, any criterion used in a tra-
ditional Newton process is valid. Our stopping criterion checks if the relative
residuals
_

[[us |l

- Il
TS0 15 ey —m/T), )l

both decrease below a user-given tolerance RTOL.

(4.7 and 19 :

4.3.2 The Newton-Picard iterations.

The Newton-Picard steps are used to solve (3.5, 3.8) accurately enough to
maintain quadratic convergence of the Newton iteration. To guarantee quadratic
convergence, it is sufficient that the residual of (3.5, 3.8) at the end of the
Newton-Picard steps is smaller than the higher-order terms neglected in the
Newton linearization. Therefore we base our convergence criterion on an estimate
of these terms. Remark that we do not consider the residual a.. of the condensed
phase condition (3.8) because it will be zero up to rounding errors. Indeed, this
condition is transformed to the last row of (4.3) which is solved by a direct
method. Consider the previous (“old”) Newton iteration. Let U8 denote the
value of ryp at the end of the Newton-Picard steps in the previous Newton
iteration and (Au2'd, AT°') the update in that Newton iteration. One can show
that at the end of the current Newton iteration, r. — Q8 is of second order in
(Aud AT°). Hence,

Ire =g

HAugldnz + |AToM|2

is a cheap estimate for the norm of the Hessian matrix of 7. about (u2'd, 7°!4).
From this information, at the end of each Newton-Picard step, the size of the
higher-order contributions can be estimated by

(4.8) h.o.t. = Ire = r&ill,

- x (| Aus|3 + |AT)?).
||AU21dHZ+ |ATold|2 (” U |3 + | | )

We also stop the Newton-Picard steps if we expect that the stopping criterion
of the outer Ngvion iterations is met. For this, we estimate the Newton residual
as ||rnp|ly + h.o.t.. At the end of each Newton-Picard step, we check if this
estimate has decreased below the desired value of the Newton residual, i.e., its
current value multiplied by RTOL/ max(n;,72).

Summarizing, at the end of each Newton-Picard step, we check whether

4.9) |, <ot or ||r&l, + Tot. < |relly x RTOL/ max(n, 12)-

If either condition is satisfied, we declare convergence of the Newton-Picard
steps, execute the Newton correction, check for convergence of the Newton pro-
cess and proceed with the next Newton iteration if necessary. Remark that the
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estimate (4.8) is not available in the first Newton iteration. Then, the Newton-
Picard steps are halted if HT(V)”Q <1072 x ||re2.

4.3.8 The innermost loop level.

Let us turn to the subspace iterations and Picard iterations within a certain
Newton-Picard step.

The stopping criterion of the subspace iteration (and strategies to determine p)
are detailed in [15, 16]. This criterion ensures among others that

(4.10) 1QMV, ||, = || MV, =V, (V;y MV,)], .

—which is a measure for the accuracy of the basis V,,—decreases below a certain
threshold. In our current implementation, this threshold is set to 1072 or less.

The number of Picard iterations is adapted dynamically, contrary to the im-
plementation of the Newton-Picard method in [16]. Our algorithm first executes
a fixed number of Picard iterations and checks if the current Newton-Picard step
can be accepted, see below. If not, additional Picard iterations are performed.
For the sake of clarity, we did not fully write out this criterion in the algorithm
in Figure 4.1. We now derive the mechanism behind it.

Consider the P and ) projections of 7“1(\1; ) By using (4.2) one obtains

(4.11) pricY = pr() + P(M — I)(6p + 8qy + 8qrdT) + PzpdT
and

Qri =Qrl + Q(M — 1) (6p + 8¢, + 5qr6T) + Q28T
(4.12) =QMV,6p + (QrNP + Q(M — I)éq,)
+ (Qzr + Q(M — I)dqr) 0T,

where the values 6p, §q,, dgr and 6T are obtained from the v** Newton-Picard
step. After premultiplication with VPT7 the right-hand side of (4.11) comprises
the first p equations of the small system (4.3). Since this system is solved with
Gaussian elimination, we can safely assume that ||P7“I(\IV;1)H2 ||VT7"1\§’P+1 l|2 is
zero up to the effect of rounding errors. Therefore, we only must be concerned
with QT(VH) cf. (4.12).

The first term in the right hand side of (4.12) contains QMV,,, whose size can
be decreased by performing more subspace iterations, cf. (4.10). The other terms
n (4.12) are the residuals of the Picard iterations (4.6). It is desirable that the
sizes of these three terms are balanced. Indeed, making one of those terms much
smaller than the other one costs matrix-vector products with M while it does
not improve the results. At the end of one Newton-Picard step, we compare
the sizes of the Picard residuals to [|QMV,0p||,. If both Picard residuals are
smaller, then the current Newton-Picard step is accepted. Else, some additional
Picard iterations are performed in order to bring all three terms in (4.12) to the
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same order of magnitude. In the algorithm in Figure 4.1, this is implemented by
skipping the updates of Aus, AT, rnp and anp and returning to the begin of
the current Newton-Picard step. Remark that the number of additional Picard
iterations needed can be predicted using an estimation of the convergence factor.

Note also that (4.10) is not sufficient to guarantee that the spectral radius of
VqTM Vy is smaller than 1. Hence, the Picard iterations may diverge. This could
be cured by improving the basis, but we did not yet implement this in our code.
In our experiments, we have never observed problems.

4.4 The extension to continuation.

In a continuation process, one of the bifurcation parameters, -, is allowed
to vary and a parameterizing equation (e.g. a pseudo-arclength equation [7]) is
added to the BVP (2.2). This gives rise to an extra border column and border
row in (3.5, 3.8). Analogously to [15, 16], the algorithm in Figure 4.1 can easily
be extended to obtain a continuation variant of the Newton-Picard collocation
method. The Newton-Picard method can take advantage of the continuation by
using the final basis V), from the previous periodic solution on the branch as the
starting value for the subspace iteration in the computation of the next periodic
solution.

5 Examples.

We illustrate the convergence and efficiency of the continuation variant of the
algorithm in Figure 4.1 by computing periodic solutions of two models.

Model A. In [20], two coupled identical neurons with time-delayed connections
are modeled by the system of n = 2 DDEs

V'(t) = —Xo(t) + Bo tanh(v(t — 7)) + B1 .2 tanh(w(t — 72)),
w'(t) = —dw(t) + B tanh(w(t — 75)) + B2,1 tanh(v(t — 71)).

We fixed the parameters A = 0.5, yp = —1, f12 =1, 1 = 0.2, » = 0.2 and
7, = 1.5 [8, 13]. By continuation, a branch of periodic solutions with bifurca-
tion parameter (3> ; was obtained. We computed an unstable periodic solution,
denoted by A, with £ ; ~ 2.35001 and T' ~ 66.3164. The period of A is large
because the branch approaches a heteroclinic orbit. The orbit of A is shown in
Figure 5.1 (left).

Model B. In [3], the mammalian platelet production is modeled by the scalar
DDE

'(t) = —va(t) + g(x(t — 7)) — g(2(t — Ty — 75))e 7
with g(z) 1= go¢*z/(¢* + 2). Like [17], we fixed v = 12, go = 27000, ¢ = 0.04,
Tm = 9 and 7, = 10 and varied A. By continuation, we computed a stable periodic
solution with period T = 18.20 at A ~ 2.135, further denoted by B. The orbit is
shown in Figure 5.1 (right).
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Figure 5.1: Left: the orbit of periodic solution A with v (dashed line) and w (dash—
dotted line). Right: The orbit z(¢) of periodic solution B.

The periodic solutions were computed with a tolerance of RTOL = 10719 for
the relative size of the residuals, i.e., (4.7). We used a basis threshold p = 0.5,
piecewise polynomials of degree d = 3 and the same mesh adaption strategy as
DDE-BIFTOOL [11, 9]. Table 5.1 lists the mesh characteristics m, N;, £ and N.
Note that as T and 75 change during the iterations, ¢ may change and thus
the dimension of u, and uy. However, this did not happen while computing
these three periodic solutions. For periodic solution B, we needed a lot of mesh
intervals to capture characteristics of the orbit such as the steep gradients and
the little peek at ¢ &~ 0.5 in Figure 5.1 (right).

Table 5.1: The values of the mesh characteristics m, N¢, £ and N.

m Nt 6 N
A 144 864 3 20
B 1024 3072 1160 3481

Table 5.2 gives the dominant Floquet multipliers. For each example, we list
both the eigenvalues obtained by the subspace iteration in the last Newton
iteration—i.e., before the final Newton correction—as well as refined eigenvalues
obtained by performing extra subspace iterations after computing the periodic
solution until |QMV,|, < 1075. The underlined digits correspond to those
of the Floquet multipliers computed by DDE-BIFTOOL. The latter builds the
monodromy matrix explicitly and uses QR to compute all its eigenvalues. Clearly,
for these examples, the approximations of the dominant Floquet multipliers ob-
tained as a by-product of the Newton-Picard collocation method are accurate
enough to assess the stability. However, for a more precise location of bifurcation
points, it is better to use refined eigenvalues.
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Table 5.2: Left: The moduli of the dominant Floquet multipliers. For each periodic
solution, the first row shows the Floquet multipliers as obtained in the last Newton
step, while the second row shows these multipliers after performing additional subspace
iterations at the end until ||QMV,||, < 107°. The digits of these refined Floquet
multipliers that correspond to the plain DDE-BIFTOOL result are underlined. Right:
p, after the last subspace iteration.

[p1] | 2] p

A 5.694530 1.000113 2
5.694558  1.000108

B 1.008251 1
0.999999

We compared the convergence of the Newton iteration for the Newton-Picard
collocation method and the method in DDE-BIFTOOL. The relative size of the
residuals versus the Newton iteration for both methods is depicted in Figure 5.2.
The residual 79 of the periodicity condition is zero before the first Newton iter-
ation, since the initial orbit in the algorithm in Figure 4.1 is periodic. Remark
that ro vanishes after the last Newton iteration in case of periodic solution A
(see Figure 5.2, left) due to numerical underflow. For B on the other hand,
the relative size of ro in the last step is of the order of 10710, the convergence
threshold, while the relative size of ry is much smaller. This is not unexpected.
In the last Newton iteration, the Newton-Picard steps are stopped as soon as the
convergence threshold for the Newton process is reached, rather than continued
until the residual ryp is small enough to guarantee quadratic convergence of the
Newton iteration.
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© [
3107 310"
[%] [
0 <
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& +. rel.sizer, 4 + . rel.sizer, i
— - DDE-BIFTOOL — - DDE-BIFTOOL
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0 1 2 3 0 1 2 3
Newton-Picard step Newton iteration

Figure 5.2: The relative size of the residuals vs. the Newton iteration for periodic
solutions A (left) and B (right). For the Newton-Picard collocation method: the relative
size of r1 (X, solid line) and 72 (4, dotted line) in (2.9a) and (2.9b), respectively. For
DDE-BIFTOOL: the relative size of its collocation residual (x, dashed line).
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Figure 5.3: For periodic solutions A (left) and B (right): ||rc||, (O, dotted line), ||rxp ||,
(O, dotted line), |@r~p]|, (4, dashed line) and an estimation of the higher-order terms
(©) vs. the Newton-Picard step.

Figure 5.3 illustrates the convergence of the Newton-Picard steps. The number-
ing of the horizontal axis, the Newton-Picard steps, is restarted at every Newton
iteration. All values are reported at the end of the step, where “step 0”7 actu-
ally denotes the values at the start of the first step. To gain more insight in the
convergence behavior, we have computed r,. after each Newton-Picard update us-
ing (3.6-3.7), though this value is only required at the start of each Newton iter-
ation. We also show rnxp (the residual of (3.5, 3.8)) and its Q projection. Clearly,
rNp = I'c at the start of each Newton iteration and ||rne||, = ||QrNe||, after the
the first Newton-Picard step. Furthermore, we also show the estimate (4.8) for
the higher order terms used to stop the Newton-Picard steps when they have con-
verged sufficiently to guarantee quadratic convergence of the Newton iterations.
The figures show that this estimate is rather crude. However, as is confirmed
by Figure 5.2, it is good enough to preserve the quadratic convergence of the
Newton iterations as is discussed in Section 4.3. Remark that the improvement
in the last Newton-Picard step for example A is much larger than expected.
Doing multiple Newton-Picard steps at each Newton iteration was clearly useful
in these cases.

The computational cost of our algorithm mainly depends on the number of
matrix-vector products with the monodromy matrix M. This number depends
on the spectrum of M and is almost independent of the mesh size [18, 16]. For
the computation of periodic solutions A and B, 25 and 83 matrix-vector products
with M were required, respectively.

Finally, we also compared the computation time of our Matlab implemen-
tation of the Newton-Picard collocation method with the DDE-BIFTOOL im-
plementation. Our algorithm suffers a lot more from Matlab-related overhead
than DDE-BIFTOOL, since the latter can make more use of Matlab built-in
commands. Nevertheless, timing results can give a rough idea about the appli-
cability of a method. Table 5.3 lists the average CPU time over a few runs on
a 1.7 GHz Pentium 4 computer. The second and third column of this table con-
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Table 5.3: CPU time in seconds for DDE-BIFTOOL (“D.-B.”) and the Newton-Picard
collocation method (“NP-c”) for the computation of a periodic solution (“P”) and the
computation of both a periodic solution and the Floquet multipliers (“P+F").

D-B. P NP-cP D.-B. P+F NP-c¢ P+F
A 23.8 13.1 23.84 49= 28.7 13.14+03= 134
B 610.5 126.4  610.54689.1 =1299.6 126.448.9=135.3

tain the time needed to compute a periodic solution, while the two rightmost
columns give the total time to obtain an accurate periodic solution and accurate
Floquet multipliers. For DDE-BIFTOOL (column 4), this is the sum of the time
needed to compute the periodic solution and the time to compute the Floquet
multipliers by constructing the monodromy matrix M explicitly and computing
all its eigenvalues using QR. For the Newton-Picard collocation method (col-
umn 5), the second term in the sum is the time needed for the additional sub-
space iterations to improve the final basis. Those iterations were continued until
|QMV,|l, < 1075 In all these cases, our Newton-Picard collocation algorithm
outperforms DDE-BIFTOOL. The difference is most significant for periodic so-
lution B, where a fine discretization was needed. Indeed, the computation time
in DDE-BIFTOOL is of order m?® contrary to O(m) in our algorithm. Therefore,
our method has clear advantages for larger values of m.

This argument also holds for the computation of the (dominant) Floquet mul-
tipliers, when DDE-BIFTOOL currently uses an algorithm with O(max (¢, m?))
complexity. Therefore our algorithm would also be interesting if 7/7 is large.

6 Conclusions.

In this paper we have developed a Runge-Kutta collocation method with an
iterative linear system solver to compute periodic solutions of a system of au-
tonomous DDEs efficiently and robustly. Two ideas lie at the core of this devel-
opment.

First, we have shown that the linearized collocation system can be solved
robustly by using a condensed linear system. The resulting collocation procedure
is equivalent to Newton iterations at the continuous level combined with single
shooting for the resulting linear BVPs. This approach combines the advantages
of collocation and single shooting methods without most of the disadvantages of
either method. Remark that this approach can be generalized from collocation
to many other discretization schemes.

Second, we have shown that the iterative Newton-Picard method is well suited
to solve the condensed linear systems, especially when a fine discretization is used
or for large systems of DDEs. We have adapted the method to the particular
form of the nonlinear system and made various other improvements, the most
important one the use of multiple Newton-Picard steps per Newton iteration. In
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this manner, each linear system is solved with sufficient accuracy to maintain
quadratic convergence of the Newton iterations, contrary to previous implemen-
tations. Other applications of the Newton-Picard method (e.g., for parabolic
PDESs) can also benefit from these improvements.

Remark that the Newton-Picard method is particularly attractive for bifur-
cation analysis because it produces good estimates for the dominant Floquet
multipliers as a by-product. Moreover, we expect that the Newton-Picard collo-
cation method can be extended (like its single shooting variant [10]) to compute
bifurcation points and continue branches of bifurcation points.
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