CHAPTER II

Composition of the central stalk of the Na+-pumping V-ATPase from *Caloramator fervidus*

II-1. Introduction

In spite of the overall structural similarity of V-ATPases and F-ATPases, significant differences are observed especially in the stalk region (see Chapter I, Section I-3.2.). Most prominently, the stator structure that prevents idle rotation of F_1 relative to F_0 consists of a single peripheral stalk formed by the b subunit, while electron microscopy images of V-ATPases reveal a more complex stator structure involving two or three peripheral stalks that seem to contact the central stalk (Boekema et al., 1999; Domgall et al., 2002; Wilkens et al., 2004). Furthermore, the length of the central stalk is considerably longer in V-ATPases than in F-ATPases. The differences in the stalk regions of V-ATPases and F-ATPases are also reflected in the subunit composition of the complexes. While the homology between the subunits that make up the headpiece and the membrane bound parts is evident from the available amino acid sequences, no such relation is apparent for the other subunits. Moreover, while the stalk region of the bacterial F-ATPase consists of only three subunits, γ, ε and b, up to eight subunits have been considered to be part of the stalk region in V-ATPases (Forgac, 2000), none of which has been convincingly positioned in the structure of the complexes. The Na$^+$-pumping V-ATPase of the anaerobic thermophile *Caloramator fervidus* is one of a few described bacterial V-ATPases (Höner zu Bentrup et al., 1997). The temperature-driven disassembly of the complex resulting in V_1 subcomplexes containing different numbers of subunits was demonstrated in Ubbink-Kok et al. (2000). Here, we present the purification of these subcomplexes and their analysis by electron microscopy. It follows that the central stalk of the V-ATPase of *C. fervidus* consists of two different subunits.

II-2. Materials and methods

II-2.1. Growth conditions and membrane preparation

Caloramator fervidus ATCC 43024 was grown anaerobically at 60 °C in trypton-yeast extract-glucose medium, pH 7 (Patel et al., 1987) containing 2 mM Na$_2$S following a three-step procedure. In the first step, 10 ml of medium in a 100 ml serum bottle was inoculated with a glycerol stock of cells kept at ~80 °C and the culture was grown until an absorbancy, measured at 660 nm of 0.5 was attained. Subsequently, the culture was diluted tenfold in a one liter serum bottle and, again, grown

until an absorbancy of 0.5 was reached. The cultures were not stirred and anaerobic conditions were monitored through the presence of resazurin in the medium at a concentration of 100 mg/l. The one-liter culture was used in the third and final step to inoculate 12.5 l of medium in a 15 l fermentor. The pH in the fermentor was kept constant by titration with an anaerobic KOH solution and the culture was stirred intermittently. Cells were harvested at an absorbancy of 1-1.2 in the late exponential growth phase, washed once and resuspended in 50 mM N-2-morpholinepropane-sulfonic acid (MOPS, pH 7) containing 5 mM MgCl₂. No specific precautions were taken to keep the cells anaerobic after growth. Cells from a 12.5 l culture were disrupted in a French Press operated at 20,000 psi at 4 ºC in the presence of 5 mM dithiothreitol (DTT), 1 mM phenylmethylsulfonyl- fluoride (PMSF) and trace amounts of DNAase and RNAase. Unbroken cells and debris were removed by centrifugation for ten minutes at 10,000 g after which the membranes were collected by centrifugation for one hour at 200,000 g in a Beckman ultracentrifuge. The membranes were resuspended in 50 mM MOPS (pH 7), 5 mM MgCl₂ at a concentration of 20 mg/ml and stored in liquid nitrogen.

II-2.2. Purification of V-ATPase

The V-ATPase complex from C. fervidus was purified as described previously (Ubbink-Kok et al., 2000) with modifications. The procedure was scaled up to use 300 mg of membrane protein as the starting material. The membranes were resuspended in a final volume of 30 ml of buffer A (50 mM MOPS, pH 7, 5 mM MgCl₂, 2 mM DTT) containing 50 mM KCl and 3% glycerol. The Triton X-100 solubilized proteins were loaded on a DEAE column, washed with 90 ml of the same buffer containing 1% Triton X-100 and 60 ml of buffer containing 0.1% of the detergent. Subsequently, the column was eluted with a gradient of 50–300 mM KCl in buffer A containing 0.1% Triton X-100. The fractions were assayed for ATPase activity (Ubbink-Kok et al., 2000) and active fractions were pooled and concentrated by ultrafiltration to a final volume of 3 ml, using Vivaspin-20 (100 000 D cut-off; Depex). The concentrated sample was loaded on a HiLoad 26/60 Sephacryl S-400 size exclusion column equilibrated in buffer A containing 50 mM KCl and 0.05% Triton X-100. The column was run in a cold room at 0.25 ml/min and fractions of 1.0 ml were collected and assayed for ATPase activity. Fractions with ATPase activity were pooled and stored in liquid nitrogen. Protein concentration was measured according to Bradford using bovine serum albumin as a standard.

II-2.3. Isolation of V₁ fragments and sample preparation

A total of 4 mg of purified ATPase complex was concentrated to 0.24 ml using ultrafiltration. The concentrated enzyme was heated for 2.5 h at 68°C in a closed 1.5 ml reaction tube. A precipitate, which was formed during incubation, was removed by centrifugation for 10 min in a tabletop centrifuge operated at maximum speed and at room temperature. The supernatant was removed, diluted to 1 ml with buffer A containing 50 mM KCl and loaded on a 1 ml bed volume anion exchange column (Resource Q) equilibrated in the same buffer at 4°C. The column was eluted with a 50–400 mM KCl gradient in buffer A. Each fraction was prepared for electron microscopy analysis by diluting 5-fold with 5 mM MOPS buffer and by contrasting with 2% uranyl acetate as negative stain. Fractions were assayed for ATPase activity and analyzed by native PAGE followed by activity and protein staining, as well as by denaturing SDS–PAGE.
II-2.4. Electrophoresis

Native gel electrophoresis was based on a method described by Schägger and von Jagow (1991). The gel consisted of three parts containing 3, 4 and 8% of acrylamide at a ratio of 2:2:3. The anode buffer contained 50 mM Bis–Tris-Propane, adjusted to pH 7 with concentrated HCl, and the cathode buffer contained 50 mM MES, adjusted to pH 7 using Bis–Tris-Propane and 0.1% Triton X-100. The samples were gently mixed 4:1 with sample buffer (5% Triton X-100, 50% glycerol, 0.5 M MES pH 7, 0.5% bromphenol blue). The gel was run at a constant current of 25 mA for 4 h. For ATPase activity staining, the top part of the gel (3% acrylamide) was removed, after which the gel was incubated for 20 min at 45°C in ATPase assay buffer supplemented with 50 mM NaCl and 3 mM Tris–ATP. Liberated Pi was made visible by staining the gel for 5 min with malachite green molybdate reagent before fixation in 34% citric acid.

II-2.5. Electron microscopy and processing

Images were recorded with a Philips CM10 TEM at 100 kV and x 52,000 magnification. Micrographs were digitized with a Kodak Eikonix 1412 scanner at 4.6 Å/pixel at the specimen level. Single particle projections were extracted from negatives and analyzed with IMAGIC (Harauz et al., 1988) and GRIP (W. Keegstra, unpublished) software. Images were subsequently subjected to multireference alignment, multivariate statistical analysis and hierarchical ascendant classification. Resolution of the averaged projections was determined according to van Heel, 1987.

II-3. Results

II-3.1. Isolation and characterization of partial V₁-ATPase complexes

The V-ATPase complex of *C. fervidus* consists of nine subunits (Figure II-1, lanes 1): the V₁ subunits A, B, C, D, E, F and G, and the V₀ subunits I and K (Ubbink-Kok et al., 2000). Heating the purified complex at 68°C for 2.5 h resulted in the formation of a precipitate that could be removed by centrifugation. Analysis of the supernatant revealed that the two V₀ subunits were quantitatively removed by the procedure, while the V₁ subunits seemed to be present in the same relative quantities as observed in the intact complex (Figure II-1, lanes 2). The supernatant was loaded on an anion

Figure II-1. Dissociation of the V-ATPase. SDS–PAGE of the purified V-ATPase (lanes 1) and of a sample that was obtained by heating the purified complex followed by removal of the precipitate (lanes 2). (A) Twelve percent polyacrylamide gel. (B) Part of a 10% polyacrylamide gel that was run for a longer time to allow for a better separation of the D and E subunits. The band indicated by the asterisk is an impurity that is present to a variable extent in different V-ATPase preparations.
exchange column and the column was eluted with a KCl gradient (Figure II-2). ATPase activity was observed only in the second half of the gradient (data not shown), where the absorption spectrum revealed three peaks centered around fractions 74, 87 and 96.

Native gel electrophoresis of the fractions showed the presence of at least two different V₁ complexes. The complex corresponding to the peak centered on fraction 74 had a slightly lower mobility than the complexes in the peaks around fractions 87 and 96 (Fig. II-2, inset bottom, right). In between the peaks around fractions 74 and 87, both complexes were visible in the same fractions as demonstrated for fraction 84. In a parallel experiment the native gel was stained for ATPase activity, which allows for a comparison of the specific activity of the complexes (Figure II-2, inset top, left). Clearly, the complex with the lower mobility (74) had a much lower specific activity than that observed for the complex with the higher mobility (96). The complexes with the two different mobilities seem to correspond to Complexes II and III observed previously (Ubbink-Kok et al., 2000).

Figure II-2. Separation of V₁ subcomplexes. Elution profile of the Resource Q anion exchange column loaded with the sample containing the V₁ subunits obtained by heating and spinning of the purified complex. The dotted line indicates the KCl gradient and the solid line the absorbance at 280 nm. Inset, bottom right: native gel electrophoresis of the indicated fractions showing two V1 complexes. The gel was stained with Coomassie Blue. Inset, top left: specific ATPase activity of the indicated fractions. Top row, Coomassie Blue staining; bottom row, activity staining.

The elution profile of the column suggested the presence of three different V₁-ATPase complexes. SDS–PAGE of fraction 74 revealed the presence of four V₁ subunits: A, B, C and E (Figure II-3). The complex in fraction 87 consisted of one subunit less, containing subunits A, B and E. In addition, fraction 87 contained a small amount of subunit G. However, the elution profile of subunit G revealed the highest intensity around fraction 81, suggesting that the subunit was not part of the complex responsible for the ATPase activity in fraction 87. The complex in fraction 96 contained only subunits A and B. The band with the apparent molecular mass of 25 kDa in fractions 74 and 87 was assigned to subunit E by comparison with the ATPase complex (Figure II-3B). Because of the low protein content of the fractions, the presence of a low amount of subunit D could not be excluded. Subunit D (and F) were not recovered elsewhere in the column fractions. The protein bands indicated by an asterisk in Figure II-3A represent impurities that appeared in all fractions. The lower molecular weight band was only observed after silver staining. The complexes
in fractions 74 and 87 seem to differ with the previously described Complexes II and III (Ubbink-Kok et al., 2000) in that they miss the two small subunits F and G.

Figure II-3. Subunit composition of V₁-ATPase subcomplexes. (A) SDS–PAGE (12% polyacrylamide gel) of fractions 74, 87 and 96 of the Resource Q column (Figure 2). Bands indicated with an asterisk represent impurities. (B) Part of a 10% polyacrylamide gel that was run for a longer time to allow for a better separation of the D and E subunits

II-3.2. Electron microscopy and image analysis

Inspection of electron microscopy images of the complexes in fractions 74, 87 and 96 showed particles that were attached to the carbon support film in mainly two preferential orientations: top- and side-view projections. A total of 33,000 top- and 17,000 side-view projections were extracted and classified after multi-reference alignments. A classification of the complete set of side-view projections showed class-sum images with a resolution of 16–18 Å. The features of the headpiece in side-view projection indicated similar orientations of the V₁ subcomplexes on the grid as observed for the native complex (bilobed and trilobed views; Ubbink-Kok et al., 2000). The variation is readily seen from the position of knob-like extensions, on the left or right side of the projections (Fig. II-4). These extensions are composed of N-terminal inserts in the A subunit polypeptide chain (Domgall et al., 2002). More importantly, the averaged images could be divided into three groups with different central stalk regions: (i) projections containing a long central stalk (Figure II-4A–H); (ii) projections with a smaller stalk (Figure II-4I–L); and (iii) projections without any extending density in the stalk region (Figure II-4M–P). For each of the subsets from fractions 74, 87 and 96, the relative numbers of V₁ projections belonging to the three groups were determined by classification (Table II-1). Approximately half of the images obtained from fraction 74, containing the subcomplex with subunits A, B, C and E, showed the long central stalk, while the images with the short stalk and no stalk were represented by 25% each. The majority of the subcomplex with subunits A, B and E (fraction 87) showed the short central stalk and very few long stalks. Finally, the majority of the subcomplexes in fraction 96 consisting of only subunits A and B belonged to the group with no central stalk. When the electron microscopy samples of the same column fraction were prepared after leaving the fractions on ice for a longer period of time, the distribution of the images over the three groups shifted in the order of ‘long stalk’ to ‘short stalk’ to ‘no stalk’, strongly suggesting that originally the extinction peaks around fractions 74, 87 and 96 correspond to the ‘long stalk’, ‘short stalk’ and ‘no stalk’ images, respectively (Table II-1).

Nearly all class-sums obtained from the analysis of 33,000 top views showed a hexagonal-shaped projection, in which three larger A subunits alternate with three smaller B subunits (Fig. II-4Q–X). Deviations from the expected 3-fold symmetry appear to be caused mostly by slight tilting. The strongest difference among the top views concerns the central region, which is weakly (Fig. II-4Q–U) or strongly stain-filled (Fig. II-4V and W). The images of Fig. II-4Q–U dominated in the
projection obtained from fractions 74 and 87, whereas those of Fig. II-4V and W were almost exclusively observed in fraction 96. Fig. II-4X shows a breakdown fragment in which one B subunit is lacking. This fragment was not found in fractions 74 and 87, but nearly 14% of the top views of fraction 96 belonged to this type of fragment.

II-3.3. Difference mapping

Difference mapping was performed to clarify the precise positions of specific stalk elements within the subcomplexes. Difference maps were constructed of class-sum images representing similar headpiece views from the complete \(V_1V_0 \) complex, the ‘long stalk’, the ‘short stalk’ and ‘no stalk’ groups. Comparisons of side-view projections of the ‘long stalk’ \(V_1 \) subcomplexes and side-view projections of the complete complex indicated that the tip of the stalk is in close contact with the center of \(V_0 \) (Figure II-5A–F, arrows). The difference images also indicated the loss of the peripheral stator stalks and of densities at the top region of \(V_1 \) upon fractionation. Comparison of \(V_1 \) subcomplexes from the ‘long stalk’ and ‘short stalk’ groups (Fig. II-5G–O) indicated the loss of a spherical density in the lower part of the central stalk with a maximal width of 65 Å (Fig. II-5I, L and O). This density would correspond to subunit C. The difference map of the \(V_1 \) subcomplexes from the ‘short stalk’ and the ‘no stalk’ groups revealed the position of a conical-shaped density (Fig. II-5P–R) corresponding to subunit E. It has a maximal length and width of 85 and 50 Å, respectively. Comparisons of the two main groups of top views (Fig. II-5S–X) showed only a strong density located in the center (Fig. II-5U and X). This density can be interpreted as being subunit E, but seen from the top.

II-4. Discussion

Three subcomplexes of the V-ATPase of *C. fervidus* were isolated after temperature-driven dissociation (Fig. II-2), which all contained the major \(V_1 \) subunits A and B, but differed in the presence of the two subunits C and E with masses on SDS–PAGE of 37 and 26 kDa, respectively (Fig. II-3). The different subunit composition of the \(V_1 \) subcomplexes corresponded with images in the electron microscopy analysis that differed in the stalk region (Fig. II-4). Averaged projections of the subcomplex that in addition to the A and B subunits contained subunit E revealed an extended

Numbers were derived by classifying sets of single particle projections from electron microscopy specimens prepared at 1.5 h after purification (preparation I) and 5 h after purification (preparation II).
Figure II-4. Averaging of single particle projections. A gallery of selected classes from a-periodic averaging of 17,000 side-view projections (A–P) and 33,000 top-view projections (Q–X). On average, each class-sum comprised about 400 projections. The bar is 100 Å.

Figure II-5. Difference mapping between compatible projection averages of V_1V_0 and V_1 subcomplexes from Fig.4. The difference images (C, F, I, L, O, R, U, X) were obtained by subtracting the two preceding images. Arrows indicate differences in the stalk region. The bar is 100 Å.
density in the central cavity formed by the alternating A and B subunits, similar to the γ subunit in F-ATPases. The subcomplex that in addition contained subunit C revealed a spherical density attached to the E subunit at the V₀ side. Difference mapping showed that the shape and position of subunit C in the complete enzyme is the same (Fig. II-5, arrows). The subunit composition of the central stalk and stator region of V-ATPases is a matter of debate and the position of subunits is often assigned tentatively (Arata et al., 2002a; Domgall et al., 2002). In this study, subunits C and E of the *C. fervidus* enzyme are assigned to the central stalk. The assignment of subunit C to the lower stalk density is unambiguous, but the assignment of subunit E to the upper density is tentative. First, because involvement of subunit D cannot be completely excluded due to the low protein content of the isolated subcomplex fractions (Figure II-3), and, secondly, because of the following discussion. The structural genes coding for the complex of *C. fervidus* are not known and the nomenclature of the subunits is based only on a comparison with the complex from *Enterococcus hirae*. The 37 kDa C subunit, present in the lower part of the central stalk, corresponds to the 38 kDa subunit C in *E. hirae*. The *E. hirae* subunit is homologous to the VMA6 (or d subunit) of yeast (Murata et al., 2001). The assignment of *C. fervidus* subunit E to the other V-ATPases is more cumbersome because, other than in the *E. hirae* complex, subunits E and D have almost the same molecular mass on SDS–PAGE (26 and 25.5 kDa, respectively). The assignment of the *C. fervidus* subunits is based on a difference in staining intensity bands after SDS–PAGE between E and D. The 26 kDa subunit of *C. fervidus*, like the 24 kDa subunit E of *E. hirae*, shows a higher staining intensity than the 25.5 kDa subunit of *C. fervidus* and the 27 kDa subunit D of *E. hirae*, respectively (Ubbink-Kok et al., 2000). From this we conclude that the upper stalk mass corresponds to subunit E in the *E. hirae* enzyme. Based on limited sequence identity, subunits E and D of *E. hirae* would correspond to the VMA4 (E) and VMA8 (D) subunits of the yeast enzyme, respectively. The position and elongated form of
subunit E suggests that it should be similar to the γ subunit of F-ATPase. However, no subunit of the V-ATPase complex shows significant homology to the γ subunit. Our assignment would be at variance with the suggestion that subunit VMA4 in yeast exists as an extended conformation on the outer surface of the A₃B₃ hexamer of the vacuolar H⁺-ATPase (Arata et al., 2002c). Also, the previously reported copy number of 2–3 of subunit E of the C. fervidus enzyme is difficult to interpret. This issue remains to be resolved. By exclusion, the stator structure of the C. fervidus V-ATPase is composed of subunits D, F, G and the hydrophilic part of subunit I. Subunits D, F and G were lost during the isolation of the subcomplexes, but, occasionally, low amounts of subunit D copurified with the subcomplex that contained both the E and C subunits. Possibly, subunit D is loosely associated with subunit C. The small subunits F and G correspond to the yeast subunits VMA10 and VMA7, respectively. Subunit I (subunit a in yeast) may be involved in one of the peripheral stalks (Domgal et al., 2000). In their 3D model, the a subunit extends from the membrane to the top of V1. The model shows a prominent ‘spike’ at this position and a similar feature is present in projections of bovine brain V-ATPase (Wilkens et al., 1999). This spike is less evident in the side views of C. fervidus complex (Ubbink-Kok et al., 2000; Fig. II-5A and D). Interestingly, the I subunit of C. fervidus has a substantially lower mass (61 versus 100 kDa) than its counterparts in yeast and bovine brain. Our current model of the Na⁺-pumping V-ATPase of C. fervidus is depicted in Figure II-6. The C subunit connects the E subunit, corresponding to the γ subunit in F-ATPases, to the membrane-bound V0 part. The C subunit does not have a counterpart in F-ATPases, which explains why the central stalk of V-ATPase is substantially longer than the central stalk of F-ATPase. The results emphasize the difference in the stalk regions of V-ATPases and F-ATPases. The difference may be related to the regulation of activity by in vivo disassembly of V1 and V0, which has been suggested for the V-ATPase of yeast (Kane & Parra, 2000).