In Silico Genome-Scale Reconstruction and Validation of the \textit{Staphylococcus aureus} Metabolic Network

Matthias Heinemann, Anne Kümmel, Reto Ruinatscha, Sven Panke

\textbf{Bioprocess Laboratory, Institute of Process Engineering, ETH Swiss Federal Institute of Technology Zurich, 8092 Zurich, Switzerland; telephone: +41-44-6320413; fax: +41-44-6321325; e-mail: panke@ipe.mavt.ethz.ch}

Received 30 March 2005; accepted 21 June 2005

Published online 9 September 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/bit.20663

\textbf{Abstract:} A genome-scale metabolic model of the Gram-positive, facultative anaerobic opportunistic pathogen \textit{Staphylococcus aureus} N315 was constructed based on current genomic data, literature, and physiological information. The model comprises 774 metabolic processes representing approximately 23\% of all protein-coding regions. The model was extensively validated against experimental observations and it correctly predicted main physiological properties of the wild-type strain, such as aerobic and anaerobic respiration and fermentation. Due to the frequent involvement of \textit{S. aureus} in hospital-acquired bacterial infections combined with its increasing antibiotic resistance, we also investigated the clinically relevant phenotype of small colony variants and found that the model predictions agreed with recent findings of proteome analyses. This indicates that the model is useful in assisting future experiments to elucidate the interrelationship of bacterial metabolism and resistance. To help directing future studies for novel chemotherapeutic targets, we conducted a large-scale in silico gene deletion study that identified 158 essential intracellular reactions. A more detailed analysis showed that the biosynthesis of glycans and lipids is rather rigid with respect to circumventing gene deletions, which should make these areas particularly interesting for antibiotic development. The combination of this stoichiometric model with transcriptomic and proteomic data should allow a new quality in the analysis of clinically relevant organisms and a more rationalized system-level search for novel drug targets. © 2005 Wiley Periodicals, Inc.

\textbf{Keywords:} \textit{Staphylococcus aureus}; genome-scale metabolic network; gene deletion; small colony variant

\textbf{INTRODUCTION}

Most staphylococci, Gram-positive natural habitants of skin and mucous membranes of humans, are opportunistic pathogens and are the most frequent cause for community-acquired and nosocomial infections (Novick, 2003). Their formidable ability to rapidly acquire antibiotic resistance often poses therapeutic problems. Especially \textit{Staphylococcus aureus}, a coagulase-positive bacterium, has become a major public health threat as a result of the increased incidence of its drug resistance from penicillin/methicillin—via quinolone—to vancomycin resistance (Witte, 1999).

Various approaches are currently pursued to understand the origin of its antibiotic resistance (Lowy, 2003). Now, that the genomic sequence of this organism (Kuroda et al., 2001) as well as extensive proteomic (Cordwell et al., 2003; Becker et al., 2003) and transcriptional data (Dunman et al., 2004; Kuroda et al., 2003) are available, it is hoped that a more holistic understanding will be achieved, consequently allowing a better identification of new drug targets.

The ultimate goal of acquiring “-omics” information is to develop a system-scale model that would allow rationally collapsing the huge amount of experimental information into a manageable (mathematical) model and thus help creating knowledge from data. This knowledge can then be used to explain a strain’s physiology or to predict physiology in various real situations, particularly such that are difficult to access experimentally (such as in vivo experiments involving infections). As such an in silico model of a microorganism can be executed in minutes, it is possible to evaluate large sets of hypotheses for principle feasibility in advance, thus reducing laborious experimental series to a minimum.

En route towards a systems level model of microorganisms, genome-scale metabolic models are typically developed as a first step. Such models now exist for species such as \textit{E. coli} (Reed et al., 2003), \textit{S. cerevisiae} (Förster et al., 2003), or \textit{H. pylori} (Schilling et al., 2002). They exploit the vast experimental work that has been done to elucidate many aspects of organisms’ metabolism, organize the information into a set of reaction equations, and thus, for example, allow appreciating the effect of deletions or additional reactions in the context of the complete (known) metabolism.

Besides representing organism-specific comprehensive metabolic compendia, stoichiometric models constitute the very basis of any in silico model describing entire cellular function (Patil et al., 2004). It was shown that already from these models—capturing only one aspect of microbial physiology—fundamental metabolic capabilities could be deduced (Price et al., 2003) and even regulatory principles.
could be identified (Stelling et al., 2002) by means of constraint-based modeling or pathway analysis (Papin et al., 2004). In combination with gene expression data or by addition of regulatory information (resulting in the addition or removal of pathways from the set of equations, for example through Boolean operators), the predictive power of such metabolic models can even be further enhanced (Akesson et al., 2004; Covert et al., 2004).

In addition, for pathogenic microorganisms, such a model might be useful in investigating the relationship between microbial metabolism and phenotypes that are clinically relevant and ultimately suggesting ways to exploit this knowledge in therapy. For example, a main thrust of current *S. aureus* research is concerned with mechanisms of antibiotic resistance and regulatory aspects of pathogenicity and virulence (Bronner et al., 2004; Novick, 2003; Witte, 1999). Several findings indicate that metabolic factors might play a significant role in antibiotic resistance and in the expression of virulence factors. For instance, the characteristic phenotype of small colony variants (SCV) is of high clinical relevance because it leads to particularly resistant pathogens. It is defined by a reduced growth rate and an altered pattern in carbohydrate utilization (Kohler et al., 2003; McNamara and Proctor, 2000) and thus illustrates the importance of the relationship between bacterial metabolism and the expression of virulence factors. Similarly, Somerville and co-workers stressed the importance of tricarboxylic acid (TCA) cycle activity and acetate metabolism in the context of virulence factor production (Somerville et al., 2002, 2003). Furthermore, resistance to vancomycin involves a reorganization of cell wall metabolism leading to a grossly thickened cell wall with reduced peptidoglycan cross-linking (Lowy, 2003). The redirected carbon flux towards cell wall synthesis observed in Mu50 and VM50 strains (Hanaki et al., 1998; Sieradzki and Tomasz, 1999) underlines that metabolic factors should also be taken into account when studying antibiotic resistance.

As a first step towards the systematic evaluation of metabolic factors in *S. aureus* research, we have developed a genome-scale metabolic model for *S. aureus*, more specifically using genomic information for the methicillin-resistant (MRSA) strain N315. We made use of annotations from different genomic databases, defined the biomass composition from biochemical literature, and added missing functions in order to complete specific pathways leading to certain biomass components and to represent physiological behavior. This model was validated by comparing its results to an as comprehensive set of experimental data as possible. This validated model in turn could then reproduce main physiological aspects, including for example the behavior of small colony variants, suggesting that indeed such models are useful in analyzing specific, clinically important properties. The reproductions could be further confirmed by recent expression data from the literature. Finally, we used the model to systematically search for essential genes in the *S. aureus* genome in order to guide future activities in the development of novel chemotherapeutics against essential gene products.

MATERIALS AND METHODS

Stoichiometric Models and Flux Balance Analysis

A stoichiometric model is derived from mass balances for each metabolite in an organism’s reaction network. At steady state, this system of mass balance equations is represented as $S \cdot v = b$, where S is the stoichiometric matrix with the stoichiometric coefficients of all the metabolites in all intracellular and transport reactions, v is the flux vector containing all reaction rates v_i, and vector b represents the fluxes of metabolites exchanged with the environment (i.e., the substrate uptake rates, by-product production rates). Exchange fluxes are zero for all internal metabolites, which cannot be transported across the cell membrane. Details of the procedure have been described (Stephanopoulos et al., 1998).

In addition to the mass balance equations, metabolic models generally also include constraint equations, which assign a direction to an in principle reversible metabolic reaction according to known thermodynamic constraints. These equations have the form $\alpha_i \leq v_i \leq \beta_i$, where α_i and β_i are the feasible lower and upper limits of the reaction rate v_i, respectively. For irreversible reactions, α_i is set to zero and for reversible reactions both values are typically set to arbitrarily large values. Besides defining the directions of all metabolic reactions, these constraints can also be used to specify a maximum flux through a given reaction (e.g., resulting from a limited amount of an enzyme), or to specify a measured substrate uptake rate, to include the knowledge of the minimum flux through a certain metabolic reaction, or to restrict the flux through certain reactions due to regulatory events occurring within the cell (i.e., repression of certain enzymes).

A solution of the system of mass balance equations is called a flux distribution and identifies the reaction rates in a cell with which metabolic reactions occur. However, despite the introduction of constraints and some pre-set fluxes (e.g., substrate uptake rates), the number of unknown fluxes is typically still greater than the number of mass balance equations, which leaves the system of mass balances underdetermined. Consequently, there exists a set of possible solutions (flux distributions) that can satisfy the model equations. To identify a particular flux distribution within the large set of possible solutions, linear programming optimization can be used to maximize a certain metabolic objective, implicitly assuming that the cell follows this specific rationale when selecting the particular metabolic routes that comprise bacterial metabolism under the given environmental conditions. This approach is referred to as flux balance analysis (FBA) (Varma et al., 1993). For our work, we have utilized maximization of biomass production as objective function. For solving the optimization problem, we employed the commercial software package LINDO (Lindo Systems, Chicago, IL) coupled to MATLAB (Mathworks, Natick, MA).

For in silico modeling experiments, also a growth medium has to be defined. Unless otherwise stated, we employed a
minimal in silico medium consisting of glucose as carbon/energy source, water, metal ions, nitrogen, phosphate and sulfur sources, and nicotinate. These components were allowed to enter and leave the cell unrestrained. Exchange fluxes for compounds present in the in silico medium were constrained to positive values (i.e., limited to influx). For metabolites that are capable of leaving the cell (i.e., acetate, lactate, carbon dioxide, etc.), the exchange fluxes were constrained to negative values (i.e., limited to efflux).

DEVELOPMENT OF STOICHIOMETRIC METABOLIC MODEL

Stoichiometric metabolic models can be constructed using data from different sources. In this work, the development of the model comprised three distinct steps: (i) exploitation of genomic databases to construct a first system of mass balances for the catabolic reactions that lead to the formation of metabolites (monomers for nucleic acids, proteins, cell envelope components, and the pool of solutes inside the cell) and anabolism; (ii) definition of reactions for polymer and biomass formation and maintenance requirements; (iii) completion of the model with data from the biochemical literature and from other database sources, resulting in the addition of functions not available from the genomic databases but obviously required by biomass composition or physiological needs.

For the first step (i), specifically information for the strain N315 was employed, while for the steps two (ii) and three (iii), due to the scarcity of experimental data specifically for N315, data were also taken from other S. aureus strains with the underlying assumption that the genome-based metabolic capabilities of the various strains are conserved.

Exploitation of Genome Annotations

The KEGG database (http://www.genome.jp/kegg/) was taken as starting point for model building, since in this database the gene annotation of every sequenced strain is linked to its functions. From this database, the respective data for S. aureus N315 were downloaded and corrected for obvious errors (such as the infrequent occurrence of different names for the same metabolite). As commonly done with metabolic models, we did not account for the distinction between α- and β-sugars (Reed et al., 2003). In this first model reconstruction step, information about reversibility or irreversibility of reactions was also taken from the KEGG database using its reaction network maps that represent several metabolic subsystems. Where identical reactions were included in several maps but with different directions, the reversible case was chosen for our model.

To further complement the KEGG reaction network, we used the TIGR database (http://www.tigr.org). Being based on the same sequence data, this database runs a different annotation methodology. There is a large overlap between these two databases. Metabolic functions additionally identified by the TIGR annotation (on the basis of completely assigned EC numbers) were added to our model.

To link the reconstructed intracellular metabolism with the external environment, analogously to the reactions of the intracellular metabolism, the information on transporters were taken from the KEGG as well as from the TIGR database and supplemented with the corresponding reactions from the Transport Classification Database TC-DB (http://tcdb.ucsd.edu).

Due to the advent of the genomic sciences and the accompanying development of powerful bioinformatics tools and databases, a large part of the metabolic model can be reconstructed from gene annotations. However, today’s data quality and the limited inter-database compatibility are not sufficient to establish a metabolic model by exclusively using genomic annotation databases such as KEGG or TIGR. Large portions of the network, whose presence is demanded from the biochemical literature or by simple logic are frequently absent from the sequence annotations (Iliopoulos et al., 2000). Therefore, a substantial part of the model building is the manual reconstruction of reactions from literature, especially in genome regions where limited homology on amino acid sequence level makes gene function assignment difficult. Two examples of this are given in the Results section.

Definition of Biomass Constituting Equations and Energy Requirements

For any genome-scale metabolic model, a set of biomass constituting reactions has to be formulated. This set consists of reactions converting specific metabolites (monomers) into polymers (including a formal reaction considering the pool solutes) and a final reaction converting these polymers into biomass. In our model, the five polymer categories DNA, RNA, proteins, lipids, and cell wall plus the pool of solutes were used. According to their experimentally determined weight fractions in the cellular biomass, these polymers were then joined together into a final biomass constituting reaction. ATP consumption for synthesis of RNA, DNA, and proteins also had to be taken into account. As there is no specific information available for the energy requirements for S. aureus, values for E. coli were used (Ingraham et al., 1983).

No data on biomass composition were available specifically for strain N315. Thus, literature data originating from a variety of S. aureus strains had to be employed assuming similarity between the S. aureus in general and the strain N315. However, data on the strains’ biomass composition were obtained under a variety of growth conditions using a large number of different (typically complex) media. As the biomass composition depends on medium composition and growth condition, the available data sets were not coherent. Through the vast amount of available data (see supplementary information), however, it was possible to derive a representative average biomass composition of a S. aureus strain (cf. Table I).
Pramanik and Keasling (1998), this averaged biomass composition was used for all our simulations.

DNA/RNA

The ratio of the nucleic acids in the DNA was derived from the G/C-content according to the genome sequence (Kuroda et al., 2001). The RNA nucleic acid composition was also determined from the genome’s G/C-content assuming that the ratios of G to C and A to U are unity.

Proteins

For the protein assembly reaction, the average amino acid composition was taken from a genomic sequence-based analysis (http://www.pasteur.fr/~tekaia/aafreq_GENE.html).

Lipids

The most prominent lipids occurring in S. aureus are phospholipids, glycolipids, and apolar lipids (Wilkinson, 1997). The phospholipids are phosphatidyl glycerol, cardiolipin, and lysyl-phosphatidyl glycerol (Hugo and Davidson, 1973; Koch et al., 1984; O’Leary and Wilkinson, 1988; White and Frerman, 1967). There are three glycolipids reported: monoglycosyldiacyl glycerol, diglycosyldiacyl glycerol, and lipoteichoic acid (Hugo and Davidson, 1973; White and Frerman, 1967). The major apolar lipid is menaquinone (White and Frerman, 1967). Furthermore, there is evidence on the presence of considerable amounts of 1,2-diacylglycerol (Koch et al., 1984).

For acylglycerol-based compounds such as phospholipids, glycolipids, and 1,2-diacylglycerol, an average fatty acid chain length of 16 was calculated from experimental data and an unsaturation of the fatty acids was neglected since it was shown that only less than 5% of the chains have a C=C-double bond (Gutberlet et al., 2000; Hugo and Davidson, 1973; O’Leary and Wilkinson, 1988; Ward and Perkins, 1968; Weerkamp et al., 1978).

Table I. Metabolites considered to be required for biomass generation in S. aureus.

<table>
<thead>
<tr>
<th>Metabolite (mmol/g biomass)</th>
<th>Protein (0.4 g protein/g CDW)</th>
<th>DNA (0.03 g DNA/g CDW)</th>
<th>RNA (0.12 g RNA/g CDW)</th>
<th>Cell wall (0.24 g cell wall/g CDW)</th>
<th>Lipids (0.07 g lipids/g CDW)</th>
<th>Pool solutes (0.14 g pool/g CDW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mmol/g protein</td>
<td>mmol/g DNA</td>
<td>mmol/g RNA</td>
<td>mmol/g cell wall</td>
<td>mmol/g lipid</td>
<td>mmol/g pool</td>
</tr>
<tr>
<td>Alanine</td>
<td>0.492</td>
<td>0.676</td>
<td>0.506</td>
<td>0.363</td>
<td>0.4588</td>
<td>0.1161</td>
</tr>
<tr>
<td>Arginine</td>
<td>0.268</td>
<td>0.33</td>
<td>0.496</td>
<td>0.1293</td>
<td>0.0288</td>
<td>0.0228</td>
</tr>
<tr>
<td>Asparagine</td>
<td>0.433</td>
<td>0.33</td>
<td>0.496</td>
<td>0.0222</td>
<td>0.265</td>
<td>0.0948</td>
</tr>
<tr>
<td>Aspartate</td>
<td>0.446</td>
<td>0.33</td>
<td>0.496</td>
<td>0.0222</td>
<td>0.0202</td>
<td>0.1161</td>
</tr>
<tr>
<td>Cysteine</td>
<td>0.048</td>
<td>0.33</td>
<td>0.496</td>
<td>0.0222</td>
<td>0.0202</td>
<td>0.0948</td>
</tr>
<tr>
<td>Glutamine</td>
<td>0.318</td>
<td>0.33</td>
<td>0.496</td>
<td>0.0222</td>
<td>0.0202</td>
<td>0.0948</td>
</tr>
<tr>
<td>Glutamate</td>
<td>0.497</td>
<td>0.33</td>
<td>0.496</td>
<td>0.0222</td>
<td>0.0202</td>
<td>0.0948</td>
</tr>
<tr>
<td>Glycine</td>
<td>0.462</td>
<td>0.33</td>
<td>0.496</td>
<td>0.0222</td>
<td>0.0202</td>
<td>0.0948</td>
</tr>
<tr>
<td>Histidine</td>
<td>0.178</td>
<td>0.33</td>
<td>0.496</td>
<td>0.0222</td>
<td>0.0202</td>
<td>0.0948</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>0.658</td>
<td>0.33</td>
<td>0.496</td>
<td>0.0222</td>
<td>0.0202</td>
<td>0.0948</td>
</tr>
<tr>
<td>Leucine</td>
<td>0.699</td>
<td>0.33</td>
<td>0.496</td>
<td>0.0222</td>
<td>0.0202</td>
<td>0.0948</td>
</tr>
<tr>
<td>Lysine</td>
<td>0.576</td>
<td>0.33</td>
<td>0.496</td>
<td>0.0222</td>
<td>0.0202</td>
<td>0.0948</td>
</tr>
<tr>
<td>Methionine</td>
<td>0.202</td>
<td>0.33</td>
<td>0.496</td>
<td>0.0222</td>
<td>0.0202</td>
<td>0.0948</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>0.343</td>
<td>0.33</td>
<td>0.496</td>
<td>0.0222</td>
<td>0.0202</td>
<td>0.0948</td>
</tr>
<tr>
<td>Proline</td>
<td>0.246</td>
<td>0.33</td>
<td>0.496</td>
<td>0.0222</td>
<td>0.0202</td>
<td>0.0948</td>
</tr>
<tr>
<td>Serine</td>
<td>0.469</td>
<td>0.33</td>
<td>0.496</td>
<td>0.0222</td>
<td>0.0202</td>
<td>0.0948</td>
</tr>
<tr>
<td>Threonine</td>
<td>0.443</td>
<td>0.33</td>
<td>0.496</td>
<td>0.0222</td>
<td>0.0202</td>
<td>0.0948</td>
</tr>
<tr>
<td>Tryptophane</td>
<td>0.057</td>
<td>0.33</td>
<td>0.496</td>
<td>0.0222</td>
<td>0.0202</td>
<td>0.0948</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>0.298</td>
<td>0.33</td>
<td>0.496</td>
<td>0.0222</td>
<td>0.0202</td>
<td>0.0948</td>
</tr>
<tr>
<td>Valine</td>
<td>0.514</td>
<td>0.33</td>
<td>0.496</td>
<td>0.0222</td>
<td>0.0202</td>
<td>0.0948</td>
</tr>
<tr>
<td>ATP (polymerization energy)</td>
<td>39.94</td>
<td>4.39</td>
<td>1.25</td>
<td>1.912</td>
<td>0.4588</td>
<td>0.1161</td>
</tr>
</tbody>
</table>

Note: An average chain length of the fatty acids of 16 was used as sole representative for all acyl-chains based lipids.

References for the biomass composition can be found with the supplementary material.

(Pramanik and Keasling, 1998), this averaged biomass composition was used for all our simulations.

DNA/RNA

The ratio of the nucleic acids in the DNA was derived from the G/C-content according to the genome sequence (Kuroda et al., 2001). The RNA nucleic acid composition was also determined from the genome’s G/C-content assuming that the ratios of G to C and A to U are unity.

Proteins

For the protein assembly reaction, the average amino acid composition was taken from a genomic sequence-based analysis (http://www.pasteur.fr/~tekaia/aafreq_GENE.html).

Lipids

The most prominent lipids occurring in S. aureus are phospholipids, glycolipids, and apolar lipids (Wilkinson, 1997). The phospholipids are phosphatidyl glycerol, cardiolipin, and lysyl-phosphatidyl glycerol (Hugo and Davidson, 1973; Koch et al., 1984; O’Leary and Wilkinson, 1988; White and Frerman, 1967). There are three glycolipids reported: monoglycosyldiacyl glycerol, diglycosyldiacyl glycerol, and lipoteichoic acid (Hugo and Davidson, 1973; White and Frerman, 1967). The major apolar lipid is menaquinone (White and Frerman, 1967). Furthermore, there is evidence on the presence of considerable amounts of 1,2-diacylglycerol (Koch et al., 1984).

For acylglycerol-based compounds such as phospholipids, glycolipids, and 1,2-diacylglycerol, an average fatty acid chain length of 16 was calculated from experimental data and an unsaturation of the fatty acids was neglected since it was shown that only less than 5% of the chains have a C=C-double bond (Gutberlet et al., 2000; Hugo and Davidson, 1973; O’Leary and Wilkinson, 1988; Ward and Perkins, 1968; Weerkamp et al., 1978).
Cell Wall Constituents

The cell wall constituents of *S. aureus* include murein (Tomasz, 2000; Weidel and Pelzer, 1964), teichoic acids (Baddiley, 1989), and wall-associated surface proteins (Perry et al., 2002). The latter have already been considered in the protein section. The lipoteichoic acids, that is teichoic acids attached to the membrane lipids, were included in the lipid fraction as they were determined experimentally as a part of this fraction (Koch et al., 1984). They are synthesized via a different pathway than wall teichoic acid and differ structurally, too (cf. Fig. 1). The wall teichoic acids, linked to peptidoglycan, and peptidoglycan itself, constitute the “polymer” cell wall.

Pool of Solutes

The pool of solutes includes mainly free amino acids (Graham and Wilkinson, 1992; Hancock, 1960; Miller et al., 1991; Tynecka, 1968) and metal ions (Christian and Waltho, 1964; Graham and Wilkinson, 1992) with potassium as the predominating ion (Wilkinson, 1997) and carbohydrates expressed in glucose equivalents (Miller et al., 1991). Intracellular concentrations of ATP were taken from the literature (Vinnikov, 1988), while concentration data for the remaining pool components (acetyl-CoA, succinyl-CoA, CoA, FAD, NAD(H), NADP(H)) were taken from *E. coli* as they were unavailable for *S. aureus* (Pramanik and Keasling, 1997; Reed et al., 2003). It is important to note that when a medium with high osmolarity is employed, glycine betaine should be added to the pool of solutes, since it is known that *S. aureus* uses this compound as pool component in high amounts for osmoregulation (Graham and Wilkinson, 1992; Miller et al., 1991).

Biomass Synthesis and Maintenance Requirements

The above-mentioned polymers are combined into a single reaction leading to the formation of biomass. The weight fraction of each polymer was determined based on a number of different literature sources (Christian and Waltho, 1964; Hugo and Davidson, 1973; Wilkinson, 1997; Wiltshire and Foster, 2001).

Not all consumed substrate is used for synthesis of new biomass and energy production, but some effort is also essential to maintain the cell’s integrity. In our model, all maintenance efforts are “paid” for with ATP as energy currency, which is in agreement with the current practice in the field (Varma et al., 1993). The ATP maintenance requirements are typically divided into a growth-associated and non-growth associated part (Chen, 1964; Tempest and Neijssel, 1984). The growth-associated portion is normally considered in the overall biomass equation by an additional conversion of ATP and water into ADP and orthophosphate. For the non-growth associated maintenance requirements, an ATP drain flux is defined constantly removing ATP at a fixed rate.

The respective values for growth-associated and non-growth associated ATP maintenance requirements are normally determined experimentally. Knowing the stoichiometry of ATP production and by measuring substrate uptake rates at varying growth rates, both parameters can be determined (Stephanopoulos et al., 1998). To the best of our knowledge, such data are not available for staphylococci. Experimentally determined maintenance parameters for different organisms show that values of 40 mmol ATP/(g cell dry weight)/h and 5 mmol ATP/(g cell dry weight) for growth-associated and non-growth associated maintenance requirement are reasonable assumptions, corresponding to an ATP consumption of about 70 mmol ATP/(g cell dry weight)/h (Stephanopoulos et al., 1998).

Completion of the Model With Data From Various Sources

Network gaps remaining after exploitation of genomic databases were closed with reactions derived from a number of different sources. Missing reactions in pathways leading to metabolites for polymers were identified by the use of linear programming methods, in which metabolite production was maximized. For the generation of hypotheses on the missing of certain metabolic functions, reactions from the set of KEGG reference pathways were systematically added and it was checked whether the consequence synthesis of the respective metabolite was possible. None of the reactions identified to be able to fill certain network gaps could be inferred from the KEGG genome annotations of any of the other available *S. aureus* genome sequences. Thus, the identified reactions were screened against putatively assigned enzymes from KEGG and TIGR, which had not been included in the model until then. The SEED-WIT2 database (http://wit.mcs.anl.gov/WIT2/) supported comparative analysis of so far missing functions.

To the largest extent, however, biochemical data from literature were used to complete the model by adding enzymes and reactions specifically occurring in *S. aureus* strains. In addition to this, additional and so far biochemically not yet identified reactions had to be inserted in order to allow for an in silico representation of in vivo observed physiological behavior. In this context, especially transporters were added.

Finally, the preliminary set of reaction directions, taken from the KEGG database, had to be carefully revised, as the initial set of suggested reaction directions allowed certain cycle fluxes, which produced ATP without net conversion of any other metabolite or permitted an artificial transhydrogenation by converting NADH into NADPH. We changed 30 so far reversible to irreversible reactions in order to avoid these thermodynamically infeasible flux states or the artificial transhydrogenation cycles.

Charge and elementally balancing of the reaction network was omitted as the therefore required additional efforts.
Figure 1. Illustration of the reconstructed pathways leading to cell envelope constituents. Abbreviations were taken from the KEGG database. C55-P denotes the undecaprenol phosphate lipid carrier. The following biochemical literature sources were employed for reconstruction: (Arakawa et al., 1981; Blumenthal, 1972; Harrington and Baddiley, 1985; Ito and Strominger, 1962; Jolly et al., 1997; Kiriukhin and Neuhaus, 2001; Koch et al., 1984; Navarre and Schneewind, 1999; Perego et al., 1995; Pereira and Brown, 2004).
would not have provided a proportional enhancement of results.

The complete model (including the sources or references for every reaction including gene names) is available for download from the supplementary files.

RESULTS

Model Characteristics

In the following, general properties of the reconstructed network are presented in order to allow for an appraisal of the completeness of the metabolic model.

The in silico metabolic genotype of *S. aureus* enables 774 metabolic processes (682 internal processes and 92 transport processes) that influence 712 metabolites. There are 604 enzymes involved, of which 551 have ORF assignments in the sequence annotations of either KEGG (including the database’s section of only putatively assigned functions), TIGR, SEED-WIT2, or the primary annotation (Kuroda et al., 2001), while the remaining 48 enzymes have not been assigned to genes but were added to the model due to biochemical evidence or physiological considerations (Tables II and III). Table II provides a quantitative summary of the sources of the metabolic processes comprising internal, transport, biomass-constituting and maintenance as well as spontaneous chemical reactions.

The genome sequence of *S. aureus* N315 is known to have a length of 2,813,641 base pairs with an estimated 2595 protein-coding regions (Kuroda et al., 2001). Thus, our metabolic model covers approximately 23% of all ORFs, assuming that every added and not yet assigned enzymatic function is encoded in a single gene. In accordance with the recently proposed nomenclature for in silico metabolic models (Reed et al., 2003), the model is termed iMH551, where 551 represents the number of genes involved in the model with a so far known locus in the genome.

A total of 248 metabolites (approx. 35% of all metabolites) were found to be involved in only one reaction. In other words, they were only consumed or only produced, but not both. Reasons for this could be that connecting reactions were not yet identified, proteins may have been assigned a wrong function, or *S. aureus* N315 has lost specific functions through evolution. Part of this relatively large portion is likely to be a result of the still incomplete genome annotation. The core model without dead-end pathways comprises 549 reactions with 410 metabolites. By addition of 11 auxiliary reactions (i.e., the biomass constituting and maintenance reactions) and the corresponding eight auxiliary metabolites (including the polymers), the model was completed in terms of biomass assembly and ATP maintenance requirements.

Reconstruction of Pathways to Cell Envelope Constituents

The *S. aureus* cell wall is known to be important in the context of antibiotic resistance (Kuroda et al., 2003; Pechous et al., 2004). Furthermore, as metabolic alterations affecting the cell wall structures have been described in this context (Cui et al., 2000), this motivated us to put a special focus on this part of the metabolic network.

Reconstructing cell wall and cell membrane metabolism in particular was strongly hampered by incomplete or even completely missing pathway assignments from genomic databases. In this respect it is important to note that such homology approaches strongly depend on the degree of enzyme and pathway conservation and might not be useful to describe specialized metabolic pathways of a particular strain. Looking at Gram-positive bacteria, pathway variability is particularly obvious in the context of cell wall composition, for example the composition of the lipoteichoic and wall-teichoic acids differs with the genus (Neuhaus and Baddiley, 2003; Reusch, 1984; Sutcliffe and Shaw, 1991). Thus, the reconstruction of *S. aureus* metabolic pathways leading to these cell wall residues was mainly established using biochemical literature and not with the aid of genomic databases. On the other hand, pathways leading to peptidoglycan precursors, which are rather well conserved within Gram-positives (Schleifer and Kandler, 1972), could be readily reconstructed from genomic databases.

By including information from an additional genomic database (SEED-WIT2) as well as by adding functions required by the cell envelope’s composition, it was possible to develop an overall metabolic picture for the main cell envelope constituents (Fig. 1). Incorporations of additional functions included (i) a hypothetical enzymatic step in place

<table>
<thead>
<tr>
<th>Table II. Sources of in silico metabolic processes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolism</td>
</tr>
<tr>
<td>Total metabolic processes</td>
</tr>
<tr>
<td>Enzymatic and transport reactions</td>
</tr>
<tr>
<td>Genomic databases matches</td>
</tr>
<tr>
<td>KEGG</td>
</tr>
<tr>
<td>TIGR</td>
</tr>
<tr>
<td>SEED-WIT2</td>
</tr>
<tr>
<td>Primary annotation (Kuroda et al., 2001)</td>
</tr>
<tr>
<td>No genomic database matches</td>
</tr>
<tr>
<td>Biochemical literature</td>
</tr>
<tr>
<td>Physiological literature</td>
</tr>
<tr>
<td>Added reactions</td>
</tr>
<tr>
<td>Spontaneous chemical reactions and transport phenomena</td>
</tr>
<tr>
<td>Biomass constituting and ATP maintenance reactions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table III. Distribution of reactions of S. aureus with currently no ORF assignment that were added during the reconstruction process.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolism</td>
</tr>
<tr>
<td>Amino acid metabolism</td>
</tr>
<tr>
<td>Carbohydrate metabolism</td>
</tr>
<tr>
<td>Energy metabolism</td>
</tr>
<tr>
<td>Glycan biosynthesis and metabolism</td>
</tr>
<tr>
<td>Lipid metabolism</td>
</tr>
<tr>
<td>Membrane transport</td>
</tr>
<tr>
<td>Metabolism of cofactors and vitamins</td>
</tr>
<tr>
<td>Nucleotide metabolism</td>
</tr>
</tbody>
</table>
of the still unknown enzymatic machinery required for wall-teichoic acid attachment to glycan strands (Navarre and Schneewind, 1999) and (ii) another hypothetical enzymatic step to include wall-teichoic acid glycosylation (Harrington and Baddiley, 1985; Neuhaus and Baddiley, 2003).

The quality of this part of our model was confirmed by flux balance considerations. Predictions of flux distributions in the pathways to cell envelope constituents under aerobic conditions with a complex medium containing glucose as the main carbon source were in good agreement with experimental results. For example, we calculated a 94% incorporation of the glycerophosphate moieties of phosphatidylglycerol into lipoteichoic acid polymers, whereas 90% were described in pulse-chase experiments. Furthermore, we predicted that 8% of 1,2-diacylglycerol are used for the synthesis of glycolipids and the lipid anchor of lipoteichoic acids in comparison to the experimentally determined 10% (Koch et al., 1984).

Overall, with the model we can present an expanded view of the *S. aureus* cell envelope metabolism linked to the entire cellular metabolism. This is in stark contrast to common attempts focused on localized aspects of distinct cell envelope structures (Navarre and Schneewind, 1999; Neuhaus and Baddiley, 2003).

Reconstruction of the Respiratory Chain

As *S. aureus* is capable of growing aerobically, a fully functional respiratory chain, including membrane-associated dehydrogenases, quinone electron transfer, and ATPase had to be reconstructed (Fig. 2). The KEGG sequence annotation of *S. aureus* N315 identified several genes encoding respiratory chain dehydrogenases. These dehydrogenases oxidize NADH, L-lactate, succinate, glycerol 3-phosphate, (S)-malate, and formate. In most cases, however, we were unable to identify the according electron acceptors from the KEGG sequence annotation. Thus, these reactions were carefully revised using data from biochemical literature (Kubak and Yotis, 1981; McNamara and Proctor, 2000; Sehnalova and Dadak, 1976; Tynecka and Malm, 1996; Tynecka et al., 1999; Wilkinson, 1997). As menaquinone is known to be the only quinone in *S. aureus* (McNamara and Proctor, 2000; Tynecka et al., 1999; Wilkinson, 1997), the ubiquinone dependency of the NADH dehydrogenase, erroneously identified by the KEGG annotation, was substituted by a menaquinone dependency (NDH I) (Tynecka et al., 1999). From the biochemical literature, the list of sequence derived primary electron donors was further supplemented by a menaquinone-dependent FADH$_2$ dehydrogenase (McNamara and Proctor, 2000; Wilkinson, 1997) and a lactate dehydrogenase with the same electron acceptor (Tynecka et al., 1999).

Electron transfer to the terminal electron acceptor is mediated by two terminal oxidases (ba$_3$(a$_{602}$)- and bo(b$_{556}$)-type) that use b-type cytochromes as interim electron carriers (Tynecka et al., 1999). They are collapsed into one step in the model and also in Fig. 2. According to studies carried out with *S. aureus* 17810R, the NADH dehydrogenase and the cytochrome b oxidase are translocating protons across the membrane to establish the proton motive force (PMF) (Tynecka et al., 1999). As the details of the molecular mechanisms of the two proton-translocating enzymes are not available, we assumed that in both cases two protons are translocated.

The efficiency of the ATPase in *S. aureus* (F_0F_1) in using the PMF to generate ATP was calculated from a literature-derived experimentally determined PMF (Kashket, 1981). According to the chemiosmotic theory, the H^+/ATP stoichiometry was calculated from the comparison of the PMF and the phosphorylation potential. Applying experimental data on ATP, ADP, and P_i concentrations for growing *S. aureus* cells (Christian and Waltho, 1964; Tynecka et al., 1999) and on Gibbs free energy of formation of these compounds under physiological conditions (Alberty, 2000),

![Figure 2](image-url)
Figure 2. Scheme of the reconstructed respiratory chain. Solid lines represent enzymatic reactions, whereas broken lines denote proton translocation processes. Only the reduced forms of the metabolites are given in the figure.
it was calculated that 2.4 protons have to be transported across the membrane to synthesize one molecule of ATP. The fact that this thermodynamically determined stoichiometry is a non-integer number is in agreement with the literature on other microorganisms, for example *E. coli* (Jiang et al., 2001). It results from the fact that the ratio of c subunits in the H$^+$ transporting F$_0$ rotary motor (which is still unknown for the *S. aureus* ATPase) and the three ATP molecules produced per complete rotary movement of the $\alpha_3\beta_3$ hexamer of the F$_1$ complex is not necessarily an integer number. *E. coli*, for example, has ten c subunits, which consequently lead to a H$^+$/ATP stoichiometry of 3.3 (Jiang et al., 2001). In summary, with the values we have assigned for the proton translocation in the respiratory chain and the one determined for the H$^+$/ATP stoichiometry, approximately 1.7 molecules of ATP are produced per molecule of NADH (with NADH-linked substrates), which is in reasonable agreement with the generally assumed ratio of 2 for *S. aureus* (Wilkinson, 1997) and with the only known experimental *S. aureus* P/O ratio of 1.3 determined for glutamate as a substrate (Tynecka et al., 1999).

Under anaerobic conditions, *S. aureus* is able to grow by fermentation of a carbohydrate carbon source to lactic acid or by anaerobic respiration by utilizing nitrate as the terminal electron acceptor (Burke and Lascelles, 1975). In the latter case, cytochrome-b (Burke et al., 1981; Burke and Lascelles, 1979; Lascelles and Burke, 1978) and menaquinone (Sasarman et al., 2003) take part in the electron transport chain and we assumed that the nitrate reductase is not involved in proton translocation.

Prediction of Phenotype Characteristics

With the reconstructed metabolic network, it should now be possible to predict certain phenotypic characteristics using the FBA approach. We used maximization of bacterial biomass production as objective function for FBA, as it has been shown for *E. coli* that the cell’s regulatory machinery indeed controls the metabolic fluxes to achieve maximal biomass per consumed substrate (Burgard and Maranas, 2003), and fixed a substrate uptake rate. Then FBA allows calculating the value of all metabolic fluxes. These represent in principle the enzymatic reaction rates at the organism’s optimum flux distribution for biomass production. In this context, it is important to note that typically alternative optimal solutions exist for the internal flux distribution (Mahadevan and Schilling, 2003). In the following, examples of predicted physiological phenotypes will be presented, for which it was checked that the general result is not influenced by flux variability.

Minimal Requirements

* *S. aureus* N315 is capable of synthesizing all amino acids, since the complete set of genes for the corresponding biosynthesis pathways has been annotated in the genome (Kuroda et al., 2001). An auxotrophy for several amino acids, sometimes observed with staphylococci isolated from their hosts, is commonly explained by a repression of the corresponding pathways. These auxotrophies, however, can be eliminated by successively reducing the number of amino acids in the medium (Gladstone, 1937). Accordingly, in the in silico organism has no “intrinsic” auxotrophy for any amino acid.

With the model, however, an auxotrophy is predicted for nictinate for the synthesis of NADH and NADPH. This is in agreement with the literature, while the described requirement of thiamin or biotin is not reproduced by the model (Gladstone, 1937; Kuroda et al., 2001; Miller and Fung, 1973). This is due to the fact that in our model these two B-group vitamins, representing prosthetic groups for a number of proteins, are not considered in the biomass composition. However, this does not have an impact on the results presented in the following.

In the model, sulfate, ammonia, and inorganic phosphate are used as sources of sulfur, nitrogen, and phosphorus, respectively. Furthermore, the in silico organism requires magnesium, sodium, and potassium ions due to the fact that these are included in the pool of solutes. In experiments, these metal ions are also typically added to the medium (Gladstone, 1937; Miller and Fung, 1973; Wu and Bergdoll, 1971).

Aerobic and Anaerobic Growth

Under anaerobic conditions, *S. aureus* is able to grow by fermentation of, for example, glucose to lactate or by anaerobic respiration with nitrate as terminal electron acceptor (Blumenthal, 1972; Burke and Lascelles, 1975; Thrup et al., 2001). FBA of fermentative growth on glucose minimal media shows that the in silico organism is unable to synthesize nucleic acids and consequently also DNA or RNA. The calculation suggested that this shortcoming could be compensated by addition of uracil to the medium. This behavior has been confirmed experimentally (Burke and Lascelles, 1975; Garrard and Lascelle, 1968; Kashket, 1981; Wilkinson, 1997). In the following, uracil is added to the in silico medium.

The experimentally observed main fermentation product with *S. aureus* is lactate. It is generated by the reduction of pyruvate with the NADH-dependent lactate dehydrogenase, thereby, recycling NAD$^+$. Under respiratory conditions, NADH recycling is achieved by the various dehydrogenases belonging to the respiratory chain. Here, an excellent agreement in terms of by-product formation was found between the experimental data and the simulation. Figure 3A illustrates the major fluxes of *S. aureus* growing anaerobically on glucose.

It was shown experimentally that the anaerobic respiration uses the same apparatus as the aerobic respiration (e.g., menaquinone and cytochrome-b as electron carriers) (Lascelles, 1979; Lascelles and Burke, 1978; Sasarman et al., 1974). Also, the model predicts that the flux distribution for
Anaerobic respiration is similar to the one for aerobic respiration with the difference that nitrate reductase instead of cytochrome-\(b\) oxidase is used to transfer electrons to the terminal electron acceptor.

Under aerobic conditions, \textit{S. aureus} utilizes glycolysis, pentose phosphate pathway, and TCA cycle to catabolize glucose (Blumenthal 1972). An excess of this particular carbon source, however, leads to repression of the TCA cycle activity and excretion of acetate (Blumenthal, 1972; Somerville et al., 2002, 2003). This behavior, known as "glucose effect,” cannot be simulated with FBA using growth maximization as objective function as the secretion of not completely oxidized carbon will result in a reduction of biomass yield. This contradicts the given FBA objective function. In a rich carbon source environment, however, maximization of biomass yield might be less important and other objectives may be more favorable for the cell (e.g., inhibition of competing bacteria in the body). As the true objective for this glucose effect remains elusive, we included its manifestation (downregulation of TCA activity) by constraining fluxes. In this particular case, we constrained the flux through the aconitate hydratase reaction (encoded by \textit{acnA}) for aerobic conditions and glucose excess. Release of acetate into the medium was then also observed in silico. An experimental analysis of an \textit{acnA} mutant supported this approach: During the exponential growth phase, no significant difference in growth rate between the \textit{acnA} mutant and the wild-type strain was observed (Somerville et al., 2002), which is completely in line with the prediction of the adapted model (although the model predicts an additional glutamate auxotrophy for the mutant, which would have remained undetected in the experiment because of complex medium). Figure 3B illustrates the major fluxes of the wild type (simulated as \textit{acnA} mutant) growing with glucose excess.

The presented results demonstrate that the model is capable of reproducing the main characteristics of aerobic and anaerobic growth as described in the experimental literature.

An exact comparison of yields or growth rates was impossible because in most cases experimental data were obtained with complex media, of which the exact chemical composition was unknown. For an exact comparison of yields, however, the medium composition has to be known, whereas for a prediction of growth rates also experimentally determined substrate uptake rates are necessary, which are also not available from the literature.

Nevertheless, by-product formation as well as the requirement of additional medium components is either correctly predicted with our model using FBA with growth maximization as objective function or can be easily accounted for. This indicates that also for \textit{S. aureus} this objective function is in most in vitro cases applicable as it has been shown for \textit{E. coli} (Burgard and Maranas 2003).

Small Colony Variants

Having validated our model against the available experimental evidence, we proceeded to analyze a clinically relevant phenotype. Small colony variants (SCV) of \textit{S. aureus} have been the focus of several studies because of a close association between the recovery of SCV and infections (Kohler et al., 2003; McNamara and Proctor, 2000). SCV show an alteration in metabolism leading to slow growth. It has been suggested that this is mainly caused by the interruption of the electron transport chain (Proctor et al., 1994). To analyze small colony variants experimentally, \textit{hemB} mutants were constructed (Kohler et al., 2003; McNamara and Proctor, 2000; von Eiff et al., 1997). These mutants lack the ability to synthesize heme and thus mimic SCV with their interrupted electron transport chain. As the SCV phenotype is experimentally rather well defined, we investigated whether our model could faithfully reproduce the observed behavior by simply removing the heme-requiring cytochrome-\(b\) oxidase from the model.

Figure 3. Illustration of major fluxes of \textit{S. aureus} growing anaerobically on glucose medium without nitrate (A) and growing aerobically on medium with glucose excess and glutamate (simulated as \textit{acnA} mutant) (B). Fluxes are given relative to the specific glucose consumption rate. TCA: tricarboxylic acid cycle; PPP: pentose phosphate pathway.
When aerobic conditions and a mineral medium with glucose were assumed for the in silico hemB mutant, we found an essentially fermentative behavior: lactate excretion and consequently reduced growth rate. Correctly, the in silico hemB mutant did not show nitrite accumulation after nitrate addition as found experimentally (Burke and Lascelles, 1975). As a next step, we added systematically all proteinogenic amino acids, for which S. aureus can provide a transporter to the nitrate-free medium separately and investigated their effect on growth rate. According to the model, glutamate, glutamine, and arginine should lead to an increase in growth rate because of additional energy production. Isoleucine, leucine, valine, and lysine should be utilized directly for polymer synthesis (also leading to a growth rate increase), whereas glycine and alanine should not be consumed at all. The last effect is a result of the fact that the transport of these two amino acids into the cell is under these specific modeling conditions energetically more costly than the potential gain by avoided biosynthesis.

Looking more detailed at the effect of glutamate, glutamine, and arginine in the medium, the model predicted that arginine would be used for protein synthesis and ATP production (via the breakdown of carbamoyl-phosphate obtained from citrulline), explaining the effect on growth rate. Remarkably, this is very much in line with protein expression studies that showed an increase in the level of the enzymes of the arginine deiminase pathway together with the level of glycolytic enzymes in a hemB mutant during anaerobiosis (Kohler et al., 2003). From the experimental study, it was postulated that arginine was depleted to finally produce ATP (Kohler et al., 2003).

Furthermore, the model predicted that glutamate and glutamine would increase biomass yields by ATP production. In these cases, acetate is excreted via pyruvate oxidase and acetate kinase with concomitant formation of ATP. However, this acetate excretion is not observed experimentally (Kohler et al., 2003), providing a strong indication that pyruvate oxidase and acetate kinase are not synthesized in the hemB mutant. As such a mutant exists under "quasi"-fermentative conditions, it can be hypothesized that despite the presence of oxygen, only fermentative pathways are activated in the hemB mutant.

Effect of In Silico Gene Deletions

A gene product that is essential for bacterial growth is a potential target for antibacterial chemotherapy. However, experimental methods for determining whether a gene is essential for growth always involve laborious experiments in order to construct a desired genotype. Even though technologies such as in vitro expression technology will remain invaluable tools to identify elements for example of the bacterial infection process (Angelichio and Camilli, 2002), a metabolic model might be a much more economic way to generate a set of rational hypotheses regarding the essentiality of particular genes under a large set of environmental circumstances. FBA has proven to be a versatile tool to determine the effects of variations in the metabolic genotype (Price et al., 2003). Such in silico screenings for gene deletion effects can be performed within a few minutes, including variations in media and growth conditions.

We have carried out such an analysis for the internal reactions of the core metabolic model of S. aureus (without the dead-end pathways, see above) using aerobic growth conditions on complex medium as a test case. The employed medium, designed according to a Staphylococcus medium from Difco Laboratories (Bacto Staphylococcus), contained glucose, lactose, and mannitol as carbon sources, all amino acids for which transporters exist, nicotinate and choline as well as the typically employed nitrogen, sulfur, phosphorus sources (NH₃, sulfate, orthophosphate), and metal ions (Zn²⁺, K⁺, Na⁺, Mg²⁺).

The flux balance analysis revealed that the removal of 158 reactions from the model prevented growth. Table IV gives an overview about the distribution of those reactions whose elimination is incompatible with growth.

The number of predicted essential reactions in relation to the total number of reactions in each sub-metabolism allows classifying the sub-metabolisms into flexible or rigid parts. It is obvious that especially the glycans, lipid, cofactor, and vitamin metabolisms are quite rigid and deletions can hardly be compensated by means of alternative pathways and are potential targets for antibiotic action. A complete list of the

<table>
<thead>
<tr>
<th>Sub-metabolism</th>
<th>No. of predicted essential reactions</th>
<th>Total no. of reactions in sub-metabolism</th>
<th>Percentage [%]</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolism of proteinogenic amino acids</td>
<td>33</td>
<td>137</td>
<td>24</td>
<td>Flexible</td>
</tr>
<tr>
<td>Biodegradation of xenobiotics</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>Not used for growth</td>
</tr>
<tr>
<td>Carbohydrate metabolism</td>
<td>19</td>
<td>97</td>
<td>20</td>
<td>Flexible</td>
</tr>
<tr>
<td>Energy metabolism</td>
<td>3</td>
<td>16</td>
<td>19</td>
<td>Flexible</td>
</tr>
<tr>
<td>Glycan biosynthesis and metabolism</td>
<td>18</td>
<td>54</td>
<td>59</td>
<td>Rigid</td>
</tr>
<tr>
<td>Lipid metabolism</td>
<td>32</td>
<td>60</td>
<td>48</td>
<td>Rigid</td>
</tr>
<tr>
<td>Metabolism of cofactors and vitamins</td>
<td>29</td>
<td>8</td>
<td>25</td>
<td>Flexible</td>
</tr>
<tr>
<td>Metabolism of non-proteinogenic amino acids</td>
<td>2</td>
<td>8</td>
<td>25</td>
<td>Flexible</td>
</tr>
<tr>
<td>Nucleotide metabolism</td>
<td>20</td>
<td>87</td>
<td>23</td>
<td>Flexible</td>
</tr>
</tbody>
</table>
computational gene deletion results is available in the supplementary files.

The results of our gene deletion study can be compared with experimental data on the effect of metabolic gene deletion from the literature (Jana et al., 2000; Ji et al., 2001; Wilding et al., 2000). From these experimental studies, only those genes were considered for comparison for which an according model reaction could unambiguously be identified. The results of the comparison are provided in Table V. In this table, the experimental data are categorized in lethal and defective, indicating that the gene deletion has resulted in an unviable cell or in a growth-defective phenotype, respectively. For the computational analysis, the phenotype categories are lethal, yield reduction (corresponding to defective), and no difference (indicating that in silico there is no difference between the wild type and the mutant phenotype in terms of growth rate).

Inspection of Table V reveals that all the lethal gene deletions identified experimentally were correctly predicted by our model. This is a strong indication that the experimentally observed lethality of these particular gene deletions has indeed metabolic reasons. Furthermore, the experimentally observed growth-defective phenotype of three more genes was correctly predicted. Another three genes, for which the model did not identify any effect on growth rate, experimentally showed a growth-defective phenotype. This could indicate that an alternative pathway, chosen in the simulation to circumvent the gene deletion, in fact could not be upregulated to a sufficient level in vivo. Finally, three genes were found to be growth-defective in the experiment whose deletion was predicted lethal in the computational analysis. It turned out that the latter false negatives all encode reactions in the purine metabolism, indicating that this sub-metabolism has to be incomplete in the model. In fact, during the model construction process the purine metabolism required extensive addition of reactions from the KEGG pool of putatively assigned genes or other genomic databases such as SEED or TIGR. This supports the view that purine metabolism genes are poorly conserved and that a number of alternative routes might still exist. Future model extension efforts, therefore, should place a special focus on this area.

In summary, the gene deletion analysis provided an extensive list of metabolic genes that are predicted essential since there is no alternative route available to compensate the deletion. Obviously, there are certain limits to the predictive power of this approach, most prominently because a substantial part of the genome has not been annotated so far and thus some of the reactions identified as essential in the currently available model might not be so in reality. On the other hand, we have to point out that in fact a larger number of metabolic genes could be essential for growth. As regulation aspects (such as for example the regulation-related auxotrophy for certain amino acids (Gladstone, 1937)) are not considered in this metabolic model, it is impossible to identify cases in which a pathway proposed in silico to circumvent a specific gene deletion in reality cannot be employed due to the fact that the respective pathway is not

<table>
<thead>
<tr>
<th>Gene</th>
<th>Enzyme</th>
<th>EC</th>
<th>Sub-metabolism</th>
<th>Experimental phenotype</th>
<th>Predicted phenotype</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>murE</td>
<td>UDP-N-acetylmuramoyl-1--alanoyl-2-glutamate-5--lysine ligase</td>
<td>6.3.2.7</td>
<td>Peptidoglycan biosynthesis</td>
<td>Lethal</td>
<td>Lethal</td>
<td>Jana et al. (2000)</td>
<td></td>
</tr>
<tr>
<td>pyrC</td>
<td>Dihydrooratase</td>
<td>3.5.2.3</td>
<td>Pyrimidine metabolism</td>
<td>Lethal</td>
<td>Lethal</td>
<td>Ji et al. (2001)</td>
<td></td>
</tr>
<tr>
<td>murB</td>
<td>UDP-N-acetylmurate dehydrogenase</td>
<td>1.1.1.158</td>
<td>Aminosugar metabolism</td>
<td>Lethal</td>
<td>Lethal</td>
<td>Ji et al. (2001)</td>
<td></td>
</tr>
<tr>
<td>tkt</td>
<td>Transketolase</td>
<td>2.2.1.1</td>
<td>Pentose phosphate pathway</td>
<td>Lethal</td>
<td>Lethal</td>
<td>Ji et al. (2001)</td>
<td></td>
</tr>
<tr>
<td>mvaA</td>
<td>Hydroxymethylglutaryl-CoA reductase</td>
<td>1.1.1.34</td>
<td>Biosynthesis of steroids</td>
<td>Lethal</td>
<td>Lethal</td>
<td>Wilding et al. (2000)</td>
<td></td>
</tr>
<tr>
<td>qoxB</td>
<td>Menaquinol oxidase</td>
<td>1.9.3.-</td>
<td>Respiratory chain</td>
<td>Yield reduction</td>
<td>Defective</td>
<td>Ji et al. (2001)</td>
<td></td>
</tr>
<tr>
<td>yufD</td>
<td>NADH dehydrogenase</td>
<td>1.6.5.3</td>
<td>Respiratory chain</td>
<td>Yield reduction</td>
<td>Defective</td>
<td>Ji et al. (2001)</td>
<td></td>
</tr>
<tr>
<td>pgaM</td>
<td>Phosphoglyceromutase</td>
<td>5.4.2.1</td>
<td>Glycolysis/gluconeogenesis</td>
<td>Defective</td>
<td>Yield reduction</td>
<td>Ji et al. (2001)</td>
<td></td>
</tr>
<tr>
<td>Pdh</td>
<td>Pyruvate dehydrogenase</td>
<td>1.2.4.1/2.3.1.12</td>
<td>Glycolysis/gluconeogenesis</td>
<td>Defective</td>
<td>Defective</td>
<td>Ji et al. (2001)</td>
<td></td>
</tr>
<tr>
<td>YpcA</td>
<td>Glutamate dehydrogenase</td>
<td>1.4.1.2</td>
<td>Glutamate metabolism</td>
<td>Defective</td>
<td>Defective</td>
<td>Ji et al. (2001)</td>
<td></td>
</tr>
<tr>
<td>adk</td>
<td>Adenylate kinase</td>
<td>2.7.4.3</td>
<td>Purine metabolism</td>
<td>Defective</td>
<td>Defective</td>
<td>Ji et al. (2001)</td>
<td></td>
</tr>
<tr>
<td>purB</td>
<td>Adenylosuccinatelyase</td>
<td>4.3.2.2</td>
<td>Purine metabolism</td>
<td>Defective</td>
<td>Defective</td>
<td>Ji et al. (2001)</td>
<td></td>
</tr>
<tr>
<td>purC</td>
<td>Phosphoribosyl aminoimidazole-succinocarboxamide synthase</td>
<td>6.3.2.6</td>
<td>Purine metabolism</td>
<td>Defective</td>
<td>Defective</td>
<td>Ji et al. (2001)</td>
<td></td>
</tr>
</tbody>
</table>
induced. Nevertheless, applying this large-scale gene deletion study, rational hypotheses for drug targets can easily be generated. The enzymes for glycan biosynthesis and lipid metabolism seem to be a promising target as these sub-metabolisms are quite inflexible.

CONCLUSIONS

A validated metabolic network of S. aureus N315, which represents an extensive compendium on S. aureus metabolism, was able to predict a number of different metabolic phenotypes and could be used to predict the effects of gene deletions on growth behavior. We hope that the model will be a useful guiding tool for potential future experiments to elucidate the interrelationship of bacterial metabolism and resistance. Furthermore, combining this stoichiometric model with transcriptomic and proteomic data in the future should allow a new quality in the analysis of clinically relevant organisms and a more rationalized system-level search for novel drug targets.

NOTE

During the review process, we became aware of another most relevant organisms and a more rationalized system-level approach for potential future experiments in relation to the water activity to the growth medium. J Gen Microbiol 35:205–213.

