Chapter 4

Batch production of micron size particles from poly(ethylene glycol) using supercritical carbon dioxide as a solvent

The major advantage of using supercritical CO$_2$ as a solvent in polymer processing is an enhancement in the free volume of a polymer due to dissolved CO$_2$, which causes a considerable reduction in the viscosity. This allows spraying the polymer melt at low temperatures to produce micron size particles. We have used supercritical CO$_2$ as a solvent for the generation of particles from poly(ethylene glycol) (PEG) of different molecular weights. Since PEG is a hydrophilic compound, it is a most commonly used polymer for encapsulating a drug. PEG particles with different properties may allow keeping a good control over the release of the drug. It has been possible to produce particles with different size, size distribution, porosity and shape by playing with the various process and product related parameters such as molecular weight, temperature, pressure, and nozzle diameter. A flow and a solidification model have been applied to gain a theoretical insight into the role of the different parameters.
4.1. Introduction

Pharmaceutical industries are always in an utmost need of methods or technologies, which can produce fine particles without using organic solvents. This is possible with traditional methods such as grinding or milling. However, the cost in case of cryogenic milling or the heat dissipation during grinding constraint their applications to particular materials.

During the last two decades, various methods using supercritical fluids as solvents or anti solvents have become available. Supercritical fluids could replace the organic solvents due to their gas-like and liquid-like properties, which play a vital role in the dissolution process. It is possible to produce nano or micron size particles not only for low but also for high molecular weight materials using supercritical fluids [1]. Among various fluids, carbon dioxide (CO₂) has already been touted as a supercritical fluid for many applications as it is inexpensive and inert in nature. It has a critical temperature close to room temperature (304 K) and a moderate critical pressure (7.38 MPa). Moreover, since it is a gas at ambient conditions, it is easy to separate it from the final product.

PGSS (particles from gas saturated solution) is one of the particle production methods, which uses supercritical fluid as a solvent. PGSS utilizes the solubility of a supercritical fluid in a material. The dissolved supercritical fluid reduces the viscosity of the material to be micronised and hence, allows expansion at low temperatures. The principle of PGSS is actually very simple. Thermodynamics instability caused by depressurisation leads to a supersaturation due to reduction in the solubility of a gas. Supersaturation is defined as the ratio of the actual solution concentration when precipitation or crystallization takes place to the equilibrium concentration. The supersaturation leads to nucleation of micron size gas bubbles and a vigorous expansion of these bubbles breaks up the solution into small particles. CO₂ is generally used as a supercritical fluid in PGSS for polymers mainly due to its high solubility [2-6]. PGSS has already been reported for the production of particles from poly(ethylene glycol) of different molecular weights of 1500, 4000, and 35000 [2-3].

In this work, particle production of poly(ethylene glycol) (PEG) of different molecular weights using supercritical CO₂ has been studied in detail. PEG is one of the commonly used compounds in the pharmaceutical industry for controlled drug delivery because of its hydrophilic nature. PEG is available in different states such as liquid or solid depending on the molecular weight. PEG in the solid state is mainly used for the pharmaceutical applications as drug carriers in particle form. In the application above, the particle shape, size, density, and particle size distribution are very important. Since the melting point (T_m) of PEG is not high (around 335 K), milling or grinding is not an easy task.
In this study, the batch production of particles from PEG with a weight average molecular weight \((M_w)\) of 6000 and 10000 has been reported. The experimental results have been presented in terms of particle size, shape, morphology, and particle size distribution, which are dependent on the molecular weight, nozzle diameter, and process conditions. Moreover, a flow and a solidification model have been applied to study the effect of the rate of nucleation on the particle size distribution and the effect of different parameters on the particle shape, respectively.

4.2. Experimental

4.2.1. Materials

Poly(ethylene glycol) (PEG) having a weight average molecular weight \((M_w)\) of 6000 and 10000 were purchased from Aldrich, The Netherlands. Digital scanning calorimetric (DSC) measurements were carried out to determine the melting points \((T_m)\) and the heat of melting \((\Delta H_m)\) of PEG 6000 and 10000. The crystallinity of the PEG calculated using \(\Delta H_m\) of 100 % crystalline PEG (196.8 J/g [7]) are provided in Table 4.1. High purity CO\(_2\), 99.99 %, was used in the experiments. The materials were used without any further purification.

Table 4.1. The physical properties of PEG of different weight average molecular weights \((M_w)\)

<table>
<thead>
<tr>
<th>(M_w)</th>
<th>(T_m) (K)</th>
<th>(\Delta H_m) (J/g)</th>
<th>Crystallinity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>332</td>
<td>185.1</td>
<td>94</td>
</tr>
<tr>
<td>10000</td>
<td>338</td>
<td>181.4</td>
<td>92</td>
</tr>
</tbody>
</table>

4.2.2. Apparatus

The batch set up is shown schematically in Fig. 4.1. The set up, designed and constructed, in our laboratory can withstand a pressure of 25 MPa at 473 K. A cylinder (150 ml), tubes, nozzle and valves were obtained from Swagelok, The Netherlands. In the set up, a pressure sensor (Dynisco, USA) is mounted in the CO\(_2\) line using a connector just before to the entrance of the cylinder. Before the nozzle, a ball valve (open-close) is used as it can be opened or closed more quickly. The cylinder and the tubes are heated using a heating element, whose temperature is controlled using a Eurotherm controller, The Netherlands. The set up is mounted on the supports, which oscillate, very slowly, over 180 ° in order to achieve better mixing. Additionally, an insert having left-right elements in the cylinder also improves the mixing. CO\(_2\) is added using a membrane pump (Lewa, USA) and heated in a double pipe heat exchanger prior to its addition. A
drum is used for the expansion of the polymer solution and collection of the particles.

Fig. 4.1. A schematic drawing of the batch particle production set up

4.2.3. **Experimental method**

A known quantity of PEG, ~ 75 g, was first added to the cylinder and the set up was then subjected to a vacuum. Subsequently, the temperature of the polymer was set to a desired value and CO₂ was added using a membrane pump to the cylinder until the desired pressure was reached. The set up was then disconnected from the pump and mounted on a horizontal support. The polymer was always allowed to be in contact with CO₂ at least for 4 hrs despite the fact that the equilibrium, in terms of a pressure reduction, was achieved in a relatively short time. Then, the set up was mounted vertically to expand the PEG-CO₂ single phase solution. Before expanding the solution, the CO₂ inlet line was connected to the CO₂ pump to avoid that the pressure inside the cylinder would decrease below the saturation pressure. Finally, the solution was expanded over a nozzle (length of 1.2 mm) for a short time in a spray drum and solid powder was collected.

4.2.4. **Particle analysis**

A wet laser diffraction (WLD) apparatus, Malvern Mastersizer®, was used to measure the particle size and PSD. Toluene was used as a solvent for the particle size measurements. An average particle diameter \(d_{p,0.5}\) was determined from the cumulative volume fraction. Scanning electron microscope (SEM) was used to observe the morphology and shape of the particles.

4.3. **Results and discussion**

4.3.1. **Literature: CO₂ solubility and viscosity of PEG-CO₂**

In PGSS, the shear viscosity plays an important role in the break up of a molten polymer into particles. The higher the viscosity the more difficult is the particle production [2-3]. Therefore, not only the supersaturation but also the shear
viscosity is important. Since the viscosity reduction due to dissolved CO₂ is dependent on the amount of CO₂ dissolved, a detailed knowledge of the solubility and viscosity reduction is essential in particle production.

Weidner et al. [8] have published the CO₂ solubility data for PEG (Mw 1500-35000 g/mol) over a pressure range from 0.5-30 MPa at different temperatures in the range of 323-393 K. It was found that the CO₂ solubility is independent of the molecular weights investigated, Fig. 4.2. Recently, viscosities of several PEG-CO₂ solutions have been measured by Kukova [9]. The viscosities curves for different molecular weights are shown in Fig. 4.3. From Fig. 4.3, it is clear that the viscosity increases in the multiple of 2 with an approximately 60 % increment in the molecular weight.

![Fig. 4.2. CO₂ sorption isotherms for PEG 6000 and PEG 10000 [8] (Reprinted from Journal of Supercritical Fluids, Wiesmet V, Weidner E, Behme S, Sadowski G, Arlt W., Measurement and modelling of high-pressure phase equilibria in the systems polyethyleneglycol (PEG)-propane, PEG-nitrogen and PEG-carbon dioxide, 17:1-12 (2000), with permission from Elsevier)](image)

![Fig. 4.3. Viscosity reductions in the presence of CO₂ for PEG 6000 (solid lines) and PEG 10000 (dashed lines) [9] (Reprinted from PhD Thesis, Kukova E., Phasenverhalten und Transporteigenschaften binärer Systeme aus hochviskosen Polyethylenglykolen und Kohlendioxid (2000) with permission from Ruhr-Universität Bochum, Germany)](image)
4.3.2. Batch production of PEG particles

Several experiments have been performed at different temperatures and pressures in the supercritical state using two different nozzles, 0.81 and 0.36 mm, for PEG 6000 and 10000. All experimental results of powder generation from PEG 6000 and 10000 using different diameter nozzles are provided in Table 4.2. These results have been explained using various parameters such as the molecular weight, temperature, pressure, and nozzle diameter.

Table 4.2. The average diameter of the particles obtained from PEG 6000 and 10000 using different nozzles

<table>
<thead>
<tr>
<th>PEG (Mw)</th>
<th>d_n (mm)</th>
<th>T (K)</th>
<th>P (MPa)</th>
<th>$d_{p,0.5}$ (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>0.81</td>
<td>328</td>
<td>20</td>
<td>297.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>307.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.7</td>
<td>321.0</td>
</tr>
<tr>
<td></td>
<td>0.81</td>
<td>338</td>
<td>20</td>
<td>246.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.6</td>
<td>213.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.5</td>
<td>255.1</td>
</tr>
<tr>
<td></td>
<td>0.81</td>
<td>343</td>
<td>15.8</td>
<td>324.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.6</td>
<td>316.5</td>
</tr>
<tr>
<td></td>
<td>0.36</td>
<td>328</td>
<td>22</td>
<td>266.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>233.4</td>
</tr>
<tr>
<td></td>
<td>0.36</td>
<td>338</td>
<td>22</td>
<td>200.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>198.1</td>
</tr>
<tr>
<td>10000</td>
<td>0.81</td>
<td>328</td>
<td>20.0</td>
<td>318.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14.5</td>
<td>306.0</td>
</tr>
<tr>
<td></td>
<td>0.81</td>
<td>338</td>
<td>21.1</td>
<td>357.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14.8</td>
<td>345.7</td>
</tr>
<tr>
<td></td>
<td>0.81</td>
<td>348</td>
<td>20.7</td>
<td>321.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.5</td>
<td>354.8</td>
</tr>
<tr>
<td></td>
<td>0.36</td>
<td>338</td>
<td>21.0</td>
<td>292.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.0</td>
<td>314.2</td>
</tr>
<tr>
<td></td>
<td>0.36</td>
<td>348</td>
<td>20.5</td>
<td>309.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.2</td>
<td>280.1</td>
</tr>
</tbody>
</table>

Since a few experiments have also been carried out below the melting point of the polymers, it is requisite to ensure that PEG is present in the liquid state under these conditions. It has already been reported in literature [8] that the dissolved CO$_2$ in PEG causes a considerable decrease in the melting point. Minimum CO$_2$ pressures around 2 and 5.5 MPa at 328 K have been reported for PEG 6000 and 12000, respectively, above which they are present in the liquid state. Therefore, the pressures above 5.5 MPa have always been selected in these experiments.
During experiments, PEG has always been exposed to the temperatures specified above for a long duration to ensure CO\textsubscript{2} saturation. This may lead to thermal degradation of the polymer. Therefore, a thermal degradation test has been performed for the low molecular weight PEG. No weight loss during a thermo gravimetric analysis (TGA) of the low molecular weight PEG confirms the thermal stability of both PEG (Fig. 4.4).

![Weight loss (%) as a function of time of PEG 6000 at 350 K determined using a thermo gravimetric apparatus](image)

Fig. 4.4. Weight loss (%) as a function of time of PEG 6000 at 350 K determined using a thermo gravimetric apparatus

Effect of molecular weight

The shear viscosity of the polymer plays an important role in PGSS during the break up of polymer/gas solution into particles. The lower the polymer solution viscosity, the easier is the break up of the solution. The viscosity of polymer can in general be related to its molecular weight, the viscosity increases with increasing molecular weight. Therefore, PEG of different molecular weights have been selected for this study.

The effect of the molecular weight on the shape of the particles for PEG 6000 and 10000 can be seen in Fig. 4.5. Relatively long fibre shape particles are obtained for PEG 10000 compared to PEG 6000 for similar processing conditions below the melting point of both PEG. Since the CO\textsubscript{2} solubility is independent of the molecular weight in case of PEG, the viscosity is responsible for the different morphology of the products. In the high viscous polymer, expansion force is not sufficient to overcome viscous force and hence, break up of the solution is delayed compared to the solidification. Above the melting point (pure polymer), no considerable effect of the molecular weight on the shape of the particles has been found. However, the results can be compared with the particle size as smaller particles are obtained with the low molecular weight PEG, Table 4.2.
Chapter 4: Batch production of micron size particles from poly(ethylene glycol) using supercritical carbon dioxide as a solvent

The higher the dissolved amount of CO₂ in a polymer, the higher is the supersaturation and hence, a larger nucleation of CO₂ bubbles is achieved during the expansion [1]. Since the dissolved amount of CO₂ is a function of temperature and pressure, the effect of temperature and pressure are discussed together for both PEG. It is possible to produce particles from both PEG 6000 as well as PEG 10000 even below their melting points. The decrease in the melting point due to dissolved CO₂ allows the expansion of the polymers. The higher the dissolved amount of CO₂, the higher is the decrease in the melting point.

A considerable effect of temperature on the particle size is observed for PEG 6000, Table 4.2. The particle size increases with increasing temperature above its melting point. The effect can be related to a decrease of the CO₂ solubility with increasing temperature. However, converse to the result above, large particles of PEG 6000 are obtained below its melting point probably due to foaming of the particles. In Fig. 4.6, foaming can be seen at the temperature below the melting point for both nozzles in case of PEG 6000. This might be explained by the fact that CO₂ cannot escape easily due to rapid solidification of the particles as the polymer is already below its melting point. Since the solidification is fast, the diffusion of CO₂ from the particles is reduced due to an instantaneous increase in the viscosity of the polymer. Consequently, bubbles of CO₂ are captured inside the particles resulting in foamed particles. The effect of temperature on the particle size is, probably due to high viscosity, absent for PEG 10000.
Chapter 4: Batch production of micron size particles from poly(ethylene glycol) using supercritical carbon dioxide as a solvent

Fig. 4.6. Scanning electron microscope pictures of the PEG 6000 particles obtained using 0.81 mm diameter nozzle at a) 12.7 MPa, 328 K, b) 20 MPa, 328 K c) 12.5 MPa, 338 K, and d) 20 MPa, 338 K

A noticeable effect of temperature has been observed on the shape of the particles. The particles obtained from PEG 6000 and 10000 under different processing conditions are shown in Fig. 4.7. At high temperatures nearly-spherical shaped particles are obtained. The shape of the particles is mainly dependent on the available solidification time. As the temperature is increased, more sensible heat of the material needs to be removed, which delays the solidification process. Moreover, less energy is utilized for evaporation of CO₂ as the amount of CO₂ dissolved decreases with increasing temperature. Such a delayed solidification facilitates retraction of molten polymer into a spherical shape both by visco-elastic relaxation and surface tension.

Unlike temperature, the effect of pressure on the particle size and shape has been absent for both PEG. Similar results have been reported in the literature for
PEG of different molecular weights [2]. Pressure affects mainly the bulk density of particles. For example, the bulk densities of the particles obtained at 13 and 22 MPa (338 K) using 0.36 mm nozzle are 270 and 195 kg/m³, respectively. The higher the pressure, the higher is the CO₂ solubility. Therefore, more foamed (less dense) particles are produced at the elevated pressures.

![Scanning electron microscope pictures of the particles obtained using a nozzle of 0.36 mm diameter](image)

Fig. 4.7. Scanning electron microscope pictures of the particles obtained using a nozzle of 0.36 mm diameter a) PEG 6000: 22 MPa, and 328 K, b) PEG 6000: 22.5 MPa, and 338 K; and c) PEG 10000: 12.2 MPa, and 348 K

In addition to the particle size, shape, and morphology, the effect of temperature and pressure on the particle size distribution has also been tested. The particle size distributions of the particles of PEG 6000 and 10000 obtained under different processing conditions are shown in Fig. 4.8. A bimodal distribution with a very small peak in the range of 0.1-1 micron size is obtained. In PGSS, generally, a cyclone separator is used in order to remove very fine dust. Such arrangement is not present in our set up. The effect of pressure on the particle
size distribution is absent while relatively narrow particle size distributions are obtained at the low temperature for PEG 6000. In case of PEG 10000, the effect of pressure and temperature on the particle size distribution is absent.

Fig. 4.8. The particle size distributions of the PEG particles obtained using a 0.81 mm diameter nozzle at different processing conditions

Effect of nozzle diameter

From Table 4.2, it is clear that the average diameter of the particles is decreased with decreasing nozzle diameter. Apart from the size of the nozzle, this may be explained using a pressure drop rate depending of the nozzle diameter. The classical homogeneous nucleation theory [10] is not applicable here as it includes only the pressure drop and not the pressure drop rate. The effect of pressure drop rate on the nucleation of CO₂ bubbles has already been discussed theoretically for a microcellular foaming study [10]. Authors conjectured that pressure drop rate decides the solubility drop rate, which in turn determines the nucleation rate of CO₂ bubbles. The approach above has been considered also for this study. Thus, it is first necessary to calculate the average residence time of a polymer solution inside a nozzle under different expansion pressures.

The Fanning equation, equation 1), has been used to calculate the velocity of solution, which in turn has been used to calculate the residence time. Here, it has been assumed that the single phase polymer solution is incompressible. The assumption is valid as the concentration of the polymer is always much higher than the concentration of CO₂.

\[
\Delta P = 4 f \rho_s \left(\frac{1}{2} \right) \rho_p^2 \left(\frac{l_n}{d_n} \right)
\]

(1)

In the equation above, \(\Delta P\), \(f\), \(\rho_s\), \(\rho_p\), \(l_n\), and \(d_n\) are the pressure drop, the friction factor, the density of the polymer solution, the velocity of the polymer solution, the length of the nozzle, and the diameter of the nozzle, respectively. The
density of the polymer solution has been approximated using a linear mixing rule based on the weight fraction of CO₂.

Equation 1) is applicable to Newtonian fluids. Viscosity measurements have been performed for PEG 6000 at 338 and 343 K in a shear rate range of 10-200 1/s. In this region, the polymer behaves like a Newtonian fluid at both temperatures.

In the equation above, the friction factor is different for laminar to turbulent flow. Therefore, the Reynolds numbers (N_{Re}) have been calculated for different nozzle diameters. Because the velocity is not known, a limiting value of 300 m/s (being the velocity of sound in vacuum) has been used. It has been found that the flows are in the laminar regime (< 2000), despite the high velocity, because of high viscosity of PEG. To calculate the friction factor, the f-N_{Re} relationship for the laminar regime has been used, equation 2).

$$4f = \frac{N_{Re}}{64} \left(\frac{\eta_s}{d_n \rho_s} \right)$$ \hspace{1cm} \text{(2)}$$

In equation 2), η_s is the viscosity of the polymer solution. The average pressure drop rate is calculated using equation 3), where Δt is the average residence time of the polymer solution.

$$-\frac{dp}{dt} \approx -\frac{\Delta P}{\Delta t} \approx -\frac{\Delta P \nu}{l_n}$$ \hspace{1cm} \text{(3)}$$

Pressure drop rates obtained using equations 1)-3) for PEG 6000 are given in Table 4.3. It is clear from the obtained values that the pressure drop rate is higher in the smaller diameter nozzle. An order of magnitude of the pressure drop rate for the smaller nozzle is around 25 times higher than for the bigger nozzle, while it is only around 3 in case of the different pressures for the same nozzle.

Table 4.3. The pressure drop rates calculated for different nozzles

<table>
<thead>
<tr>
<th>Pressure (MPa)</th>
<th>$\frac{\Delta P}{\Delta t}$ (MPa/s)</th>
<th>$\frac{\Delta P}{\Delta t}$ (MPa/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>26917.7</td>
<td>1100.4</td>
</tr>
<tr>
<td>12.5</td>
<td>8467.2</td>
<td>278.7</td>
</tr>
</tbody>
</table>

Since the CO₂ solubility is linearly proportional to pressure for PEG, the solubility drop rate may be considered proportional to the pressure drop rate. A high solubility drop rate in the smaller diameter nozzle results into a high
thermodynamic instability, supersaturation, and hence, a large number of nuclei is formed. Moreover, due to short residence time in the nozzle with smaller diameter a growth of the existing nuclei is a limiting factor. A better expansion takes place with this large number of nuclei and hence, smaller diameter particles are produced. On the other hand, a relatively longer time is available for a growth of the existing nuclei in the bigger nozzle. In addition to the particle size, a positive effect of the nozzle diameter on the particle size distribution has been found for PEG 6000, Fig. 4.9. A narrow particle size distribution is obtained for the smaller diameter nozzle. For PEG 10000, due to high viscosity, an improvement in the particle size distribution is not comparable to PEG 6000.

![Graph showing particle size distributions](image)

Fig. 4.9. The particle size distributions of the particles (PEG 6000) obtained using a 0.81 and 0.36 mm diameter nozzle

4.3.3. Solidification

In PGSS, the effect of temperature and pressure on the shape and morphology (porosity) can be explained using solidification of molten particles (droplets). The effect of temperature and pressure on the shape and morphology have qualitatively been discussed in detail. In addition to convection, the amount of CO₂ dissolved, which is dependent on temperature and pressure, contributes to the solidification in the form of the heat of evaporation of dissolved CO₂ (ΔH_v).

A solidification model has been applied to a single droplet. An average time (t_{avg}) required for cooling down the droplet to the melting point with a complete phase change has been calculated using this model. The estimated solidification time provides an insight into the dependency of the particles shape and morphology on different parameters. The assumption used in the model are 1. The droplet is spherical in shape.
2. The velocity difference between droplet and air present in the spray drum is negligible.
3. CO\textsubscript{2} expansion within the droplet is instantaneous after the nozzle exit.
4. No under cooling of the droplet takes place.
5. The droplet/particle does not shrink or expand during the solidification.

A liquid droplet is cooled by losing heat by evaporation of CO\textsubscript{2} and convection to the surrounding. For a crystalline material, the heat of crystallization (\(\Delta H_m\)) also needs to be taken into account. According to an energy balance over the droplet, heat in excess to the heat of evaporation (\(\Delta H_e\)) must be removed by the convection. Since the convection occurs over a complete solidification period, the average solidification time can be calculated using a convection term. The amount of heat needs to be removed in order to cool the droplet to the melting point of the polymer (\(T_m\)) is given by

\[
\rho_p V_p C_p (T_m - T_{\text{mix}}) = -h S \Delta T_{\text{in}} t_{\text{avg}} + \rho_p V_p \Delta H_m - \rho_p V_p \Delta H_e \left(\frac{w_{\text{co}_2}}{1-w_{\text{co}_2}} \right)
\]

where, \(h\), \(S\), \(\Delta T_{\text{in}}\), \(\rho_p\), \(V_p\), \(C_p\), \(T_{\text{mix}}\) and \(w_{\text{co}_2}\) are the heat transfer coefficient due to convection, the surface area of the droplet, the logarithmic mean temperature difference, density of the polymer, the volume of the droplet (exclusive of the volume occupied by the pores), specific heat of the polymer, the temperature of the mixture, the weight fraction of CO\textsubscript{2}, respectively. The \(\Delta T_{\text{in}}\) is calculated using the \(T_{\text{mix}}\), \(T_{\text{air}}\) and \(T_m\). The \(h\) is calculated by using equation 5) proposed by Ranz-Marshall [11].

\[
h = \frac{\lambda_a}{d_{p,0.5}} \left(2.0 + 0.6 \sqrt{N_{Re} \frac{1}{\sqrt{N_{Pr}}} } \right)
\]

where, \(\lambda_a\) and \(N_{Pr}\) are the thermal conductivity of air and the Prandtl number. Before applying the heat balance equation, it is necessary to check the condition that there is no temperature gradient present within the droplet (\(N_{\text{Bi}}\) (Biot number) \(<\ll 1) [12].

For calculations, the physical properties reported elsewhere for PEG 6000 have been used [9]. The heat of crystallization, the specific heat, and the thermal conductivity (\(\lambda_p\)) of PEG 6000 are 181.5 kJ/kg, 2.1-2.5 kJ/kgK (293-393 K), and 0.23 w/mK, respectively. The solidification times have been estimated for different isothermal conditions used in the case of nozzle diameter of 0.81 mm. Constant values of average particle diameter as 300 and 320 micron for different pressures at 328 and 338 K, respectively, have been used in the calculations. For porous particles, the volume fraction occupied by the bubbles has been
approximated to 0.4 for all calculations. A constant value for the temperature of air has been considered ($T_{air} = 296$ K). The results obtained using the model above are shown in Fig. 4.10.

![Image](image-url)

Fig. 4.10. The estimated average solidification time for PEG 6000 particles at different temperatures

In Fig. 4.10, the solidification time is decreased with increasing pressure and decreasing temperature. A high CO$_2$ solubility is mainly responsible for a decrease in the solidification time. This is related to an amount of energy used for the evaporation of CO$_2$, which is large at higher pressures and low temperatures. At low temperature, a large amount of CO$_2$ is captured inside particles due to a rapid solidification and hence, porous particles are formed. On the other hand, at high temperatures an amount of sensible heat that needs to be removed from the droplet is increased. Moreover, the heat of evaporation is low due to low CO$_2$ solubility. Therefore, the solidification is delayed at higher temperatures. A more time is available at high temperatures in order to retract molten polymer into a spherical shape.

4.4. Conclusions

The batch production of particles from PEG of different molecular weights is possible using supercritical CO$_2$ as a processing solvent even below the melting point. Relatively larger particles have been produced for PEG 10000 compared to PEG 6000. The higher the molecular weight the higher is the viscosity of the polymer and hence, the more difficult is the expansion of the high molecular weight polymer melt despite the same CO$_2$ solubility. The decrease in temperature and the nozzle diameter result into smaller particles. This effect is explained by a large nucleation caused due to high CO$_2$ solubility and high depressurisation rate. The effect of pressure on the particle size and particle size distribution has been found absent in all PEG. Not only the size but also the shape and the density of the PEG particles can be controlled in the process.
studied. Depending on the processing conditions, both hollow and dense particles can be produced that can easily be related to high and low CO$_2$ solubility, respectively. Nearly spherical particles have been produced from PEG 6000 and 10000 as the temperature has been increased above the melting point. The solidification theory is a good tool to explain the roles of temperature and the CO$_2$ solubility in determining the shape and morphology of the particles. Finally, the process studied provides an opportunity of processing various other pharmaceutical and polymeric compounds that are difficult to process by the conventional methods.

References