Hirschsprung disease - genetics and development
Burzynski, Grzegorz Maciej

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 26-08-2019
4. References

Auricchio A, Casari G, Staiano A, Ballabio A. Endothelin-B receptor mutations in patients with isolated Hirschsprung disease from a non-

Barlow A, de Graaff E, Pachnis V.
Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET.
Neuron 2003 Dec 4;40(5):905-16

Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder.

Baynash AG, Hosoda K, Giaid A, Richardson JA, Emoto N, Hammer RE, Yanagisawa M.
Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons.

Bitgood MJ, McMahon AP.
Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo.

Bolk S, Pelet A, Hofstra RM et al. A human model for multigenic inheritance: phenotypic expression in Hirschsprung disease requires both the RET gene and a new 9q31 locus.

A founding locus within the RET proto-oncogene may account for a large proportion of apparently sporadic Hirschsprung disease and a subset of cases of sporadic medullary thyroid carcinoma.
Am J Hum Genet 2003 72:88-100

Homozogous nonsense mutations in KIAA1279 are associated with malformations of the central and enteric nervous systems.

Brooks AS, Oostra BA, Hofstra RM.
Studying the genetics of Hirschsprung's disease: unraveling an oligogenic disorder.
Clin Genet 2005 Jan;67(1):6-14

Burns, A. J.
Burns, A. J., and Le Douarin, N. M.
Enteric nervous system development: analysis of the selective developmental potentialities of vagal and sacral neural crest cells using quail-chick chimeras.

Burns AJ, Champeval D, Le Douarin NM.
Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia.
Dev Biol 2000 Mar 1;219(1):30-43

Burns AJ, Douarin NM.
The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system.
Development 1998 Nov;125(21):4335-47

Localizing a putative mutation as the major contributor to the development of sporadic Hirschsprung disease to the RET genomic sequence between the promoter region and exon 2. Eur J Hum Genet 2004 12:604-612

Loss-of-function mutations in SIP1 Smad interacting protein 1 result in a syndromic Hirschsprung disease.

Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease.
Nat Genet 2002;32:237-244.

Chakravarti, A and Lyonnet S.
Beaudet, D. Valle, W. S. Sly, B. Childs, K. Kinzler and B. Vogelstein),

Chalazonitis A, D’Autreaux F, Guha U, Pham TD, Faure C, Chen JJ, Roman D, Kan L, Rothman TP, Kessler JA, Gershon MD.
Bone morphogenetic protein-2 and -4 limit the number of enteric neurons but promote development of a TrkC-expressing neurotrophin-3-dependent subset.

Cornell RA, Eisen JS.
Notch in the pathway: the roles of Notch signaling in neural crest development.
Semin Cell Dev Biol 2005 Dec;16(6):663-72

Elworthy S, Pinto JP, Pettifer A, Cancela ML, Kelsh RN.
Phox2b function in the enteric nervous system is conserved in zebrafish and is sox10-dependent.
Mech Dev 2005 May;122(5):659-69

A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk.

ENCODE Project Consortium.
The ENCODE (ENCyclopedia Of DNA Elements) Project.

Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM Jr, Milbrandt J.
GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys.

Epstein, M. L., Mikawa, T., Brown, A. M., and McFarlin, D. R.
Mapping the origin of the avian enteric nervous system with a retroviral marker.
Dev Dyn 1994 201, 236-44.

Ancestral RET haplotype associated with Hirschsprung's disease shows linkage disequilibrium
breakpoint at -1249.

Fitze G, Appelt H, Konig I, Gorgens H, Stein U, Walther W, Gossen M, Schreiber M, Ziegler A,
Roesner D, Schackert HK
Functional haplotypes of the RET proto-oncogene promoter are associated with Hirschsprung
disease (HSCR).
Hum Mol Genet 2003 12:3207-3214

Association between c135G/A genotype and RET proto-oncogene germline mutations and
phenotype of Hirschsprung's disease.

Fu M, Lui VC, Sham MH, Pachnis V, Tam PK.
Sonic hedgehog regulates the proliferation, differentiation, and migration of enteric neural crest
cells in gut.

Fukuda T, Kiuchi K, Takahashi M.
Novel mechanism of regulation of Rac activity and lamellipodia formation by RET tyrosine
kinase.
References

Guillemot F, Joyner AL.
Dynamic expression of the murine Achaete-Scute homologue Mash-1 in the developing nervous system.

Hayashi, H., Ichihara, M., Iwashita, T., Murakami, H., Shimono, Y., Kawai, K., Kurokawa, K.,
Murakumo, Y., Imai, T., Funahashi, H., Nakao, A. and Takahashi, M.
Characterization of intracellular signals via tyrosine 1062 in RET activated by glial cell line-
derived neurotrophic factor.
Oncogene 2000 19,4469 -4475

Hearn CJ, Murphy M, Newgreen D.
GDNF and ET-3 differentially modulate the numbers of avian enteric neural crest cells and
enteric neurons in vitro.
Dev Biol 1998 May 1;197(1):93-105

Herbarth B, Pingault V, Bondurand N, Kuhlbrodt K, Hermans-Borgmeyer I, Puliti A, Lemort N,
Goossens M, Wegner M.
Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human
Hirschsprung disease.

C, Majoor-Krakauer D, Angrist M, Chakravarti A, Meijers C, Buys CH.
A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg type
2 and Hirschsprung phenotype (Shah-Waardenburg syndrome).

CH. A loss-of-function mutation in the endothelin-converting enzyme 1 (ECE-1) associated with
Hirschsprung disease, cardiac defects, and autonomic dysfunction.
Am J Hum Genet 1999;64:304-308.

JJ, Heydendael VM, Severijnen RS, Bax KM, Meijers C, Buys CH.
RET and GDNF gene scanning in Hirschsprung patients using two dual denaturing gel systems.

Holschneider AM
Hirschsprung's congenital megacolon. The concept of physiopathology and therapy
Med Welt 1982 Feb 12;33(6):210-3

Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC, Giaid A, Yanagisawa M.
Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce
megacolon associated with spotted coat color in mice.
Cell 1994 Dec 30;79(7):1267-76.
Kapur RP
References

Kapur RP, Yost C, Palmiter RD.
A transgenic model for studying development of the enteric nervous system in normal and aganglionic mice. Development 1992 Sep;116(1):167-75

Kim J, Lo L, Dormand E, Anderson DJ.

Kruger GM, Mosher JT, Tsai YH, Yeager KJ, Iwashita T, Gariepy CE, Morrison SJ.

Kusafuka T, Wang Y, Puri P.

LaBonne C, Bronner-Fraser M.

Lang D, Epstein JA.

Le Douarin NM, Teillet MA.

Le Douarin, N. M., and Teillet, M. A.
Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neurectodermal mesenchymal derivatives, using a biological cell marking technique. Dev Biol 1974 41, 162-84.

Le Douarin, N. M., and Kalcheim, C.

Passarge E
The genetics of Hirschsprung's disease. Evidence for heterogeneous etiology and a study of sixty-three families.

Homozygosity for a frequent and weakly penetrant predisposing allele at the RET locus in sporadic Hirschsprung disease.

Ablation of various regions within the avian vagal neural crest has differential effects on ganglion formation in the fore-, mid- and hindgut.
Dev Dyn 1993 196, 183-94.

Pingault V, Bondurand N, Kuhlbrodt K et al. SOX10 mutations in patients with Waardenburg-Hirschsprung disease.

Pomeranz, H. D., Rothman, T. P., and Gershon, M. D.

Mutations of the ret gene in isolated and syndromic Hirschsprung disease in human disclose major and modifier alleles at a single locus.
J Med Genet 2006 Jan 27

Single nucleotide polymorphic alleles in the 5’ region of the RET proto-oncogene define a risk haplotype in HSCR.
J Med Genet 2003 40:714-718

Salomon R, Attie T, Pelet A et al. Germline mutations of the RET ligand GDNF are not sufficient to cause Hirschsprung disease.

Schuchardt, A., D’Agati, V., Larsson-Blomberg, L., Costantini, F. and Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret.

Serbedzija, G. N., Burgan, S., Fraser, S. E., and Bronner-Fraser, M.
Vital dye labelling demonstrates a sacral neural crest contribution to the enteric nervous system of chick and mouse embryos.

Frequency of RET mutations in long- and short-segment Hirschsprung disease.

Shepherd, I. T., Pietsch, J., Elworthy, S., Kelsh, R. N., and Raible, D. W.
Roles for GFRalpha1 receptors in zebrafish enteric nervous system development.

Shin MK, Levorse JM, Ingram RS, Tilghman SM.
The temporal requirement for endothelin receptor-B signalling during neural crest development.
Nature 1999 Dec 2;402(6761):496-501

Shoba T, Dheen ST, Tay SS.
Retinoic acid influences the expression of the neuronal regulatory genes Mash-1 and c-ret in the developing rat heart.

Shoba T, Dheen ST, Tay SS.
Retinoic acid influences Phox2 expression of cardiac ganglionic cells in the developing rat heart.

Sonnenberg-Riethmacher E, Miehe M, Stolt CC, Goerich DE, Wegner M, Riethmacher D.
Development and degeneration of dorsal root ganglia in the absence of the HMG-domain transcription factor Sox10.
Southard-Smith EM, Kos L, Pavan WJ.

Stoller JZ, Epstein JA.
Cardiac neural crest.
Semin Cell Dev Biol 2005 Dec;16(6):704-15

Stolow MA, Shi YB.
Xenopus sonic hedgehog as a potential morphogen during embryogenesis and thyroid hormone-dependent metamorphosis.

Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system.
Development 1999 Jun;126(12):2785-97

Taraviras S, Pachnis V.
Development of the mammalian enteric nervous system.

Torfs CP, Christianson RE.
Anomalies in Down syndrome individuals in a large population-based registry.

Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma.
Am J Hum Genet 2004 Apr;74(4):761-4

PHOX2B genotype allows for prediction of tumor risk in congenital central hypoventilation syndrome.
Am J Hum Genet 2005 Mar;76(3):421-6

Villanueva S, Glavic A, Ruiz P, Mayor R.
Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction.
Dev Biol 2002 Jan 15;241(2):289-301

