Appendix A
Convex functions and differentiability

We review some basic concepts and properties from the theory of differentiable functions (See, e.g., [9]) and from Convex Analysis (See, e.g., [16] and [88]).

A.1 Maxima of parameterized families

In this section X is a topological space, D is a compact topological space, and $\Phi : X \times D \to \mathbb{R}$ is a continuous function. The function Φ may also be considered as a family of functions $\Phi_p : X \to \mathbb{R}$, parameterized by $p \in D$, where $\Phi_p(x) = \Phi(x, p)$. We will also use the shorthand notation $\Phi(\cdot, p)$ for Φ_p. Furthermore, we consider the maximum-function $\varphi : X \to \mathbb{R}$, defined by

$$\varphi(x) = \max_{p \in D} \Phi(x, p).$$

Lemma 63. The function φ is continuous.

Proof. Let $x \in X$, and let $\varepsilon > 0$. We shall prove that there is a neighborhood X_0 of x in X such that $|\varphi(\xi) - \varphi(x)| \leq \varepsilon$ for $\xi \in X_0$. For $p \in D$ there is a neighborhood X_p of x in X and a neighborhood D_p of p in D such that

$$|\Phi(\xi, \eta) - \varphi(x)| \leq \varepsilon,$$

for $(\xi, \eta) \in X_p \times D_p$. Since D is compact, the cover $\{D_p \mid p \in D\}$ of D contains a finite sub cover. In other words, there are $p_1, \ldots, p_n \in D$ such that $D = D_{p_1} \cup \cdots \cup D_{p_n}$. Let $X_0 = X_{p_1} \cap \cdots \cap X_{p_n}$, then X_0 is a neighborhood of x in X such that

$$|\Phi(\xi, \eta) - \varphi(x)| \leq \varepsilon,$$

for $\xi \in X_0$ and all $\eta \in D$. It follows that $|\varphi(\xi) - \varphi(x)| \leq \varepsilon$ for $\xi \in X_0$. In other words, φ is continuous in x. \square

In general, for given $x \in X$ the value of p for which $\Phi(x, p)$ attains its maximum is not unique. However, if it is unique it depends continuously on x.
Appendix A. Convex functions and differentiability

Lemma 64. If for each x in X there is a unique value $\lambda(x) \in D$ such that

$$\varphi(x) = \Phi(x, \lambda(x)),$$

then the function $\lambda : X \to D$ is continuous.

Proof. Let $x \in X$, and consider a sequence $\{x_n\}$ of points in X, converging to x. We shall prove that the sequence $\{\lambda(x_n)\}$ has $\lambda(x)$ as its unique limit point, which allows us to conclude that λ is continuous at x.

Let $\eta \in D$ be a limit point of $\{\lambda(x_n)\}$. Such a limit point exists, since D is compact. Passing to subsequences if necessary we may assume that the sequence converges to η. Since Φ is continuous by assumption, and φ is continuous according to Lemma 63, taking limits in

$$\varphi(x_n) = \Phi(x_n, \lambda(x_n))$$

we obtain the identity

$$\varphi(x) = \Phi(x, \eta).$$

Since the point at which $\Phi(x, \cdot)$ attains its maximum is unique, we conclude that $\eta = \lambda(x)$. In other words, $\lambda(x)$ is the unique limit point of the sequence $\{\lambda(x_n)\}$. \qed

A.2 Gateaux- and Fréchet-differentiability

Consider a function $f : \mathbb{R}^d \to \mathbb{R}$. The one-sided directional derivative of f at $x \in \mathbb{R}^d$ in the direction v, $v \in \mathbb{R}^d$, is

$$f'(x; v) = \lim_{h \to 0} \frac{f(x + hv) - f(x)}{h},$$

provided this limit exists.

The function f is called Gateaux differentiable at x if the two-sided directional derivative in the direction v

$$\lim_{h \to 0} \frac{f(x + hv) - f(x)}{h}$$

exists for all $v \in \mathbb{R}^d$. In this case $f'(x; v) = -f'(x; -v)$. The function f is called Fréchet differentiable at $x \in \mathbb{R}^d$ if there is a linear function $T_x : \mathbb{R}^d \to \mathbb{R}$ such that

$$f(x + v) = f(x) + T_x(v) + \|v\|E(v),$$

for all v is some neighborhood of x, where $E : \mathbb{R}^d \to \mathbb{R}$ is a function such that $E(v) \to 0$ if $\|v\| \to 0$. The linear transformation T_x is called the total derivative of f at x, and is denoted by $f'(x)$. If f is Fréchet-differentiable at x, then f is Gateaux-differentiable at x in all directions v, and $f'(x; v) = f'(x)(v)$ for all $v \in \mathbb{R}^d$. Conversely, if f is Gateaux-differentiable at x, and all its partial derivatives are continuous at x, then f is Fréchet-differentiable at x.

A.3. Convex functions

Note that this last property does not necessarily hold if the partial derivatives are not continuous. To see this, consider the function $f: \mathbb{R}^2 \to \mathbb{R}$, defined by

$$f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^4}, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

Then f is Gateaux-differentiable at $x_0 = (0,0)$. In fact, if $v = (a, b)$ then $f'(x_0; v) = \frac{b^2}{a}$, if $a \neq 0$, and $f'(x_0; v) = 0$, if $a = 0$. On the other hand f is not even continuous at $(0,0)$, since $f(y^2, y) = \frac{1}{2}$, if $y \neq 0$, and $f(0,0) = 0$. In particular, f is not Fréchet-differentiable at $(0,0)$.

A.3 Convex functions

We continue the discussion of Appendix A.1, but now we assume that $X = \mathbb{R}^d$ and D is a compact subset of \mathbb{R}^n. First we recall some results and terminology from Convex Analysis.

A set A is convex if for any two points $x, x' \in A$ the line segment xx' lies in A and A is called strictly convex if the open line segment (x, x') lies in the interior of A for any two points $x, x' \in A$.

The set of convex functions on a compact subset of a Euclidean space is closed.

Lemma 65. If a sequence of convex continuous functions defined on a compact subset D of \mathbb{R}^d is convergent, then the limit function is convex on D.

The proof is straightforward. Note that the result is not true if we restrict to strictly convex functions.

The *epigraph* of a function $f: X \to \mathbb{R}$ is the set of points in $X \times \mathbb{R}$ above the graph of f:

$$\text{epi}(f) = \{(x, z) | x \in X, z \in \mathbb{R} \text{ and } f(x) \leq z\}.$$

A function is (strictly) convex if and only if its epigraph is a (strictly) convex set.

The following criterion for strict convexity is useful in the context of piecewise smooth functions.

Lemma 66. Let f be a convex continuous function defined on a closed interval I of the real line. If f is strictly convex on each connected component of the complement of a finite set of points in I, then f is strictly convex on I.

Proof. Let S be the finite set of points such that f is strictly convex on each connected component of $I \setminus S$. Consider a point $\xi \in S$, and a neighborhood U of ξ, in I that contains no other points of S. It is sufficient to prove that f is strictly convex on U, since a function is strictly convex on I if every point of I has a neighborhood on which f is strictly convex.

Let $x_0, x_1 \in U$ with $x_0 < x_1$, and let $x_t = (1-t)x_0 + tx_1$ for $0 < t < 1$. Since f is convex on $[x_0, x_1]$, we know that

$$f(x_t) \leq (1-t)f(x_0) + tf(x_1),$$

which is the desired inequality.

Note that this last property does not necessarily hold if the partial derivatives are not continuous. To see this, consider the function $f: \mathbb{R}^2 \to \mathbb{R}$, defined by

$$f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^4}, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

Then f is Gateaux-differentiable at $x_0 = (0,0)$. In fact, if $v = (a, b)$ then $f'(x_0; v) = \frac{b^2}{a}$, if $a \neq 0$, and $f'(x_0; v) = 0$, if $a = 0$. On the other hand f is not even continuous at $(0,0)$, since $f(y^2, y) = \frac{1}{2}$, if $y \neq 0$, and $f(0,0) = 0$. In particular, f is not Fréchet-differentiable at $(0,0)$.

A.3 Convex functions

We continue the discussion of Appendix A.1, but now we assume that $X = \mathbb{R}^d$ and D is a compact subset of \mathbb{R}^n. First we recall some results and terminology from Convex Analysis.

A set A is convex if for any two points $x, x' \in A$ the line segment xx' lies in A and A is called strictly convex if the open line segment (x, x') lies in the interior of A for any two points $x, x' \in A$.

The set of convex functions on a compact subset of a Euclidean space is closed.

Lemma 65. If a sequence of convex continuous functions defined on a compact subset D of \mathbb{R}^d is convergent, then the limit function is convex on D.

The proof is straightforward. Note that the result is not true if we restrict to strictly convex functions.

The *epigraph* of a function $f: X \to \mathbb{R}$ is the set of points in $X \times \mathbb{R}$ above the graph of f:

$$\text{epi}(f) = \{(x, z) | x \in X, z \in \mathbb{R} \text{ and } f(x) \leq z\}.$$

A function is (strictly) convex if and only if its epigraph is a (strictly) convex set.

The following criterion for strict convexity is useful in the context of piecewise smooth functions.

Lemma 66. Let f be a convex continuous function defined on a closed interval I of the real line. If f is strictly convex on each connected component of the complement of a finite set of points in I, then f is strictly convex on I.

Proof. Let S be the finite set of points such that f is strictly convex on each connected component of $I \setminus S$. Consider a point $\xi \in S$, and a neighborhood U of ξ, in I that contains no other points of S. It is sufficient to prove that f is strictly convex on U, since a function is strictly convex on I if every point of I has a neighborhood on which f is strictly convex.

Let $x_0, x_1 \in U$ with $x_0 < x_1$, and let $x_t = (1-t)x_0 + tx_1$ for $0 < t < 1$. Since f is convex on $[x_0, x_1]$, we know that

$$f(x_t) \leq (1-t)f(x_0) + tf(x_1),$$

which is the desired inequality.
for $0 < t < 1$. If there is a t, with $0 < t < 1$, for which equality holds, then equality holds for all t. In that case f is an affine function on $[x_0, x_1]$. This contradicts the fact that f is strictly convex on (x_0, ξ) and on (ξ, x_1). Hence the inequality is strict for all t with $0 < t < 1$. In other words, f is strictly convex on U. □

Lemma 67. If f is C^2 on a convex domain D, then f is (strictly) convex iff the Hessian of f is nonnegative definite (positive definite).

Proof. If the Hessian of f is nonnegative definite then the function is locally strictly convex. A function that is everywhere locally strictly convex, is strictly convex. □

We present a simple situation in which the maximum-function φ, introduced in Section A.1, is convex.

Lemma 68. If $\Phi(\cdot, p) : \mathbb{R}^d \to \mathbb{R}$ is convex, for all $p \in D$, then the function $\varphi : \mathbb{R}^d \to \mathbb{R}$ is convex.

Proof. Note that $(x, z) \in \text{epi}(\varphi)$ if and only if $\varphi(x) \leq z$, i.e., if and only if $\Phi(x, p) \leq z$ for all $p \in D$. Therefore:

$$\text{epi}(\varphi) = \cap_{p \in D} \text{epi}(\Phi(\cdot, p)).$$

The right hand side is an intersection of convex sets, so it is a convex set. □

Lemma 69. A convex function on \mathbb{R}^d has a (one sided) directional derivative at all points in all directions. Furthermore,

$$-f'(x; -v) \leq f'(x; v),$$

for all $x, v \in \mathbb{R}^d$.

Proof. Consider a monotonically decreasing sequence h_n of positive numbers tending to 0. Since f is convex, the sequence

$$\frac{f(x + h_n v) - f(x)}{h_n}$$

is monotonically decreasing, so it has a limit. In other words, $f'(x; v)$ exists for all $x, v \in \mathbb{R}^d$. Now let h_- and h_+ be arbitrary positive numbers. Convexity of f implies that

$$\frac{f(x) - f(x - h_- v)}{h_-} \leq \frac{f(x + h_+ v) - f(x)}{h_+}.$$

Taking limits for $h_- \downarrow 0$ and $h_+ \downarrow 0$ yields $-f'(x; -v) \leq f'(x; v)$. □