Microphase separation in two-length-scale multiblock copolymer melts
Smirnova, Yuliya Georgiyevna

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic representation of three classical morphologies of diblock copolymer melts: (a) the lamellar morphology, (b) the cylindrical (planar hexagonal) morphology, and (c) the spherical (body-centered cubic) morphology. The majority component fills the volume, the minority component is inside the cylindrical or spherical domains.</td>
</tr>
<tr>
<td>1.2</td>
<td>Different architectures of block copolymer with two intrinsic length scales: (a) linear-comb copolymer, (b) linear-alternating copolymer, (c) linear-alternating-linear copolymer.</td>
</tr>
<tr>
<td>1.3</td>
<td>The TEM of self-assembled structure of P2VP-b-[(PI-b-PS)_4-b-PI]-b-P2VP [10].</td>
</tr>
<tr>
<td>1.4</td>
<td>Cartoon and TEM of self-assembled PS-b-P4VP(PDP) supramolecules [11, 12].</td>
</tr>
<tr>
<td>1.5</td>
<td>TEM of self-assembled PS-b-[PI-b-(PS-b-PI)₅]-b-PS multiblock copolymer melt [20].</td>
</tr>
<tr>
<td>2.1</td>
<td>The architecture of the macromolecules considered (here n = 3).</td>
</tr>
</tbody>
</table>
2.2 Schematic representation of morphologies with Miller indices [321] (a) the single gyroid (SG) morphology with a single network, (b) the double gyroid (DG) morphology with two separate interpenetrating networks, which are mirror images of one another. The volume is filled with the majority component and the tunnels with the minority component. The DG structure forms only in asymmetric systems, whereas the SG morphology forms also in the symmetric multiblock, where each of the tail blocks (A and B) forms its own network. . . . 20

2.3 (a) Classification diagram for the symmetric system. Solid lines delineate the bifurcation region. Dashed line inside the bifurcation region is the equimaxima line, where a dramatic change of length scales occurs: below this line the scattering function has a dominant maximum at q_2^* ($q_2^* > q_1^*$), and above this line it has a dominant maximum at q_1^*. Inserts show characteristic scattering functions. 23

2.4 (a) Phase diagram in the (n, m) plane. (b) Enlarged region of this diagram. Solid lines show the phase transition lines, dotted lines depict the bifurcation region and dashed line indicates the equimaxima line. Dashed-dotted line depicts transition between short scale LAM and short scale BCC structures occurring at $\chi N > \chi_s N$ values. 25

2.5 Schematic representation of the sequence of morphologies of the symmetric multiblock copolymer melts. No attempts have been made to indicate the increase in periodicity length scale except qualitatively for the two lamellar structures. 26

2.6 (a) Spinodal $\chi_s N$ values. (b) Characteristic dimensionless inverse length scale $Q^* = (q^* R_g(N))^2$, $D/R_g(N) = 2\pi/\sqrt{Q^*}$, where $R_g(N)$ is the radius of gyration of the repeat unit. 27

2.7 Phase diagram in the $(m, \chi N)$ plane for the symmetric system with $n = 15$ inside the bifurcation region. Only one-length-scale structures are considered. 29
3.1 The characteristic surfaces in the \((n, f, m)\) space for asymmetric multiblock copolymers. The dashed, dotted and solid wire surfaces are the critical, bifurcation and equimaxima surface, respectively. The solid line with dots shows variation of the bifurcation point as the parameter \(f\) varies from 0.5 to 0. . . . 35

3.2 The dots in this figure correspond to the values of the structural parameters \(n\) and \(m\), for which the phase diagrams in the \((f, \chi N)\) plane are presented in the subsequent figures. Solid lines indicate the ODT phase diagram for the symmetric systems. Dashed lines delineate the projection of the bifurcation region into \((n, m)\) plane. The dotted and top dashed line demarcate the region where the double gyroid (DG) phase is stable for some value of \(f \in (0, 0.5)\). 36

3.3 Phase diagrams in the \((f, \chi N)\) plane for asymmetric systems with \(n = 3\) and various tail block lengths: (a) \(m = 1.5\) and \(m = 2\) (dashed and solid lines respectively); (b) \(m = 2.8\) and \(3.4\) (solid and dashed lines respectively). Phase diagrams depicted with dashed lines have only conventional phases. Note that the BCC and HEX phase lines in these diagrams are very close to each other. 37

3.4 Phase diagrams in the \((f, \chi N)\) plane for asymmetric systems with \(n = 10\) and (a) \(m = 1.6\), (b) \(m = 3.5\). Regions of stability of different phases are labeled with corresponding letters. . . . 39

3.5 Phase diagrams in the \((f, \chi N)\) plane for asymmetric systems with \(n = 10\) and (c) \(m = 4.2\), (d) \(m = 5\). 40

3.6 Phase diagrams in the \((f, \chi N)\) plane for asymmetric systems with \(n = 10\) and (c) \(m = 6\), (f) \(m = 10\). 41

3.7 Plot of the dimensionless inverse length scale of microphase separation vs the asymmetry parameter for the set \(n = 10\). From top to bottom: \(m = 1.6, 3.5, 4.2, 5, 6\) and 10. Here \(Q^* = (q^* R_g(N))^2\) and the corresponding length scales can be found from \(D/R_g(N) = 2\pi/\sqrt{Q^*}\). 42
3.8 SCFT phase diagram for the system $n = 3$, $m = 2$ calculated in ref. [65]. Dashed lines indicate the weak segregation phase diagram.

3.9 Plot of the third order vertex function (normalized by the system volume) vs asymmetry parameter f for the diblock (dashed line) and multiblock with $n = 3$ and $m = 2$ (solid line).

4.1 Plot of the ratio $\chi N/\chi_s N$ versus the number of diblocks in the multiblock n, $N = 50$. Letters L and S denote large and short length scale respectively.

4.2 Fluctuation phase diagram inside the region where the scattering function has two maxima for $n = 15$, $N = 50$. The border (crossover) between two disordered phases is depicted by the dashed line. The insertion shows the part of the diagram close to the region of large length scale BCC phase. Vertical dotted line indicates the value of m, which corresponds to the equimaxima line, and illustrates the shift of the BCC-L region compared to the mean-field phase diagram.

4.3 The dashed line is the equimaxima line. The solid line is the line of the points where the borders of the BCC-L phase merge if fluctuation corrections are taken into account.

4.4 Phase diagrams for the systems with $n = 10$ and (a) $N = 10^9$, $m = 1.6$, and (b) $N = 50$, $m = 3.5$. Dashed lines depict the mean-filed phase diagrams. Solid lines correspond to the phase diagrams with fluctuation corrections taken into account.

4.5 Phase diagrams for the systems with $n = 10$, $N = 50$, and (c) $m = 4.2$, (d) $m = 5$. Dashed lines depict the mean-filed phase diagrams. Solid lines correspond to the phase diagrams with fluctuation corrections taken into account.

4.6 Phase diagrams for the systems with $n = 10$ and (e) $N = 50$, $m = 6$, (f) $m = 10$, and $N = 10^5$ (solid lines), $N = 50$ (dotted line). Dashed lines depict the mean-filed phase diagrams. Solid lines correspond to the phase diagrams with fluctuation corrections taken into account.
4.7 Plot of the ratio $\chi N/\chi_s N$ versus m for the systems of Figures 4.4 – 4.6 with $f = 0.5$. 63

5.1 Picture illustrates three configurations of a diblock macromolecule with monomer s of type $\alpha = A$ fixed at position r. 75

5.2 Solid lines indicate the ODT phase diagram for the symmetric systems. The dots correspond to the values of the structural parameters n and m, for which the phase diagrams are obtained within SCFT approach. Letter L denotes large length scale. Dotted lines are the borders of the bifurcation region and dashed line is the equimaxima line. 87

5.3 The free energy graph for the system with $n = 6$ and $m = 2.4$. Note that free energies of SC and FCC phases are very close to each other. Insertions show two parts of the plot where the transitions occur. 88

5.4 Plot of the periodicity in units of the gyration radius of the whole macromolecule vs the segregation parameter χN expressed in units of the length of repeat diblock N for the system with $n = 6$, $m = 2.4$. First order transitions are marked with vertical dashed lines and the ODT is marked with a dotted line. 89

5.5 Tree-dimensional density plots for the system with $n = 6$ and $m = 2.4$ (a) A tail block, (b) B tail block, (c) total fraction of A monomers in the system, (d) middle multiblock part where A and B monomers are not separated. The distances along the cube axis are chosen to be twice the periodicity. The temperature is fixed at $\chi N = 10.71$. The colored bar shows the density multiplied by 10^4. 90
5.6 (a) Plot of the lamellar periodicity for the system with \(n = 6, m = 2.4 \) vs the segregation parameter. (b) The density profile for the lamellar structure at the temperature \(\chi N = 27.15 \). The distance is expressed in units of the periodicity. The solid line corresponds to the total reduced density of A monomers, the dashed line to the density of A tail, the dotted line to the density of B tail, and the dashed-dotted line to the density of the multiblock part.

5.7 Plot of the periodicity vs \(\chi N \) for two systems: (a) \(m = 2.9 \) and (b) \(m = 3.3 \) with fixed \(n = 6 \). First order transitions between different mesophases of cubic symmetry are marked with vertical dashed lines and the ODT is marked with a dotted line.

5.8 Tree-dimensional density plots for the system with \(n = 6, m = 3.3 \) (a) A tail block, (b) B tail block, (c) total fraction of A monomers in the system, (d) middle multiblock part where A and B monomers are not separated. The distances along the cube axis are chosen to be twice the periodicity. The temperature is fixed at \(\chi N = 6.02 \). The colored bar shows the density multiplied by \(10^4 \).

5.9 Plot of the periodicity vs the segregation parameter \(\chi N \) for the system with \(n = 6 \) and \(m = 4 \). First order transition is marked with vertical dashed line and the ODT is marked with a dotted line.

5.10 (a) Plot of the lamellar periodicity for the system with \(n = 6, m = 2.9 \) vs the segregation parameter. (b) The density profile for the lamellar structure at the temperature \(\chi N = 20 \). The distance is expressed in units of the periodicity. The solid line corresponds to the total reduced density of A monomers, the dashed line to the density of A tail, the dotted line to the density of B tail, and the dashed-dotted line to the density of the multiblock part.
5.11 (a) Plot of the lamellar periodicity for the system with $n = 6$, $m = 3.3$ vs the segregation parameter. (b) The density profile for the lamellar structure at the temperature $\chi N = 20$. The distance is expressed in units of the periodicity. The solid line corresponds to the total reduced density of A monomers, the dashed line to the density of A tail, the dotted line to the density of B tail, and the dashed-dotted line to the density of the multiblock part.