The hepatic stellate cell in sight
Greupink, Albert Hendrikus

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
THE ANTIPTROLIFERATIVE DRUG DOXORUBICIN INHIBITS LIVER FIBROSIS IN BILE DUCT-LIGATED RATS AND CAN BE SELECTIVELY DELIVERED TO HEPATIC STELLATE CELLS IN VIVO

Rick Greupink
Hester I. Bakker
Wilma Bouma
Catharina Reker-Smit
Dirk K.F. Meijer
Leonie Beljaars
Klaas Poelstra

Journal of Pharmacology and Experimental Therapeutics 2006; 317(2):514-521
ABSTRACT

Hepatic stellate cell (HSC) proliferation is a key event in liver fibrosis and, therefore, pharmacological intervention with antiproliferative drugs may result in antifibrotic effects. In this paper, the antiproliferative effect of three cytostatic drugs is tested in cultured rat HSC. Subsequently, the antifibrotic potential of the most potent drug was evaluated in vivo. As a strategy to overcome drug-related toxicity, we additionally studied how to deliver this drug specifically to HSC by conjugating it to the HSC-selective drug carrier mannose-6-phosphate-modified human serum albumin (M6PHSA). We investigated the effect of cisplatin, chlorambucil and doxorubicin on BrdU-incorporation in cultured HSC, and found DOX to be the most potent drug. Treatment of bile duct-ligated (BDL) rats with daily i.v. injections of 0.35 mg/kg DOX from day 3 to day 10 after BDL, reduced α-smooth muscle actin-stained area in liver sections from 8.5±0.8 to 5.1±0.9% (P<0.01) and collagen-stained area from 13.1±1.3 to 8.9±1.5% (P<0.05). DOX was coupled to M6PHSA and the organ distribution of this construct (M6PHSA-DOX) was investigated. Twenty minutes after i.v. administration, 50±6% of the dose was present in the livers and co-localization of M6PHSA-DOX with HSC-markers was observed. Additionally, in vitro studies showed selective binding of M6PHSA-DOX to activated HSC. Moreover, M6PHSA-DOX strongly attenuated HSC proliferation in vitro, indicating that active drug is released after uptake of the conjugate. In conclusion, DOX inhibits liver fibrosis in BDL rats and HSC-selective targeting of this drug is possible. This may offer perspectives for the application of antiproliferative drugs for antifibrotic purposes.
INTRODUCTION

Liver fibrosis is the common response to chronic liver injury. The activated hepatic stellate cell (HSC) is generally considered as the key cell that is responsible for the excessive collagen deposition during this disease. New antifibrotic strategies therefore mainly focus on the discovery of drugs that inhibit stellate cell functioning (1-7).

Since HSC proliferation is the hallmark of liver fibrosis, the question emerges what would happen if HSC proliferation is inhibited during the fibrotic process. Cytostatic drugs are among the most potent inhibitors of cell proliferation and effects of these drugs on wound healing are well known (8). However, to our knowledge no attempts to test cytostatic drugs in fibrotic animals have been made. Obviously, an important concern when using such drugs is the occurrence of serious side effects in non-hepatic tissues. Even within the liver, treatment with antiproliferative drugs may result in unwanted effects. For instance, inhibition of hepatocyte proliferation may be detrimental to the renewal of functional liver parenchyma, a crucial process in the fibrotic liver (9).

In recent years, HSC-selective drug carriers have become available, which allow drugs to be delivered to HSC with increased specificity (10-12). Conjugating very potent inhibitors of cell proliferation to the HSC-selective drug carrier mannose-6-phosphate-modified human serum albumin (M6PHSA) has therefore now become an option. M6PHSA has been shown to accumulate in HSC in vivo via binding to mannose-6-phosphate/insulin-like growth factor-II receptors, which are upregulated on the cell surface of activated HSC (10;13;14). Ligands bound to the receptor are subject to receptor-mediated endocytosis and are routed to the acidic lysosomal compartment, where degradation of the construct and subsequent release of the coupled drug may take place (15;16). If cytostatic drugs can be targeted to the HSC by employing this strategy, this could result in a reduction of
systemic side effects and may improve the applicability of potent antiproliferative agents for antifibrotic purposes, in the future.

The present study first evaluates the antiproliferative effect of three cytostatic drugs in culture-activated rat HSC. Subsequently, the most promising drug from these experiments, doxorubicin (DOX), was tested in a rat experimental model for liver fibrosis, in order to provide better rationale for its use as an antifibrotic drug. Finally, we use in vitro and in vivo techniques to investigate whether DOX can be selectively delivered to the HSC in a pharmacologically active form by coupling it to M6PHSA.

MATERIALS AND METHODS

HSC isolation

HSC were isolated from the livers of male Wistar rats (> 400 g, Harlan, Horst, The Netherlands) according to the method of Geerts et al. (17). After isolation, HSC were cultured at 37 ºC in a 95% air, 5% CO₂ atmosphere in Dulbecco’s Modified Eagles Medium with glutamax-1 (Gibco, Breda, The Netherlands), supplemented with 10% FCS (Biowithaker), 100 U/ml penicillin (Sigma, Gillingham, UK) and 100 µg/ml streptomycin (Sigma). The purity of the HSC culture was assessed after 9 days of culture in the described medium, during which HSC activation spontaneously occurs. In these cultures, always more than 95% of the cells were positive for the activated HSC marker α-smooth muscle actin (α-sma), as assessed by immunohistochemical staining and cell counting.

Effect of drugs on HSC proliferation in vitro

After 9 days in culture, when HSC displayed an activated phenotype, cells were seeded in 24-wells plates at a density of 30,000 cells per well. Cells were incubated with various concentrations of chlorambucil (Sigma), doxorubicin (Pfizer, Capelle
Doxorubicin and Liver Fibrosis

89

aan den IJssel, The Netherlands) or cisplatin (Sigma) in the presence of 10% FCS, 50 ng/ml Platelet Derived Growth Factor-BB (PDGF-BB) and 10 µM 5-bromo-2'-deoxyuridine for 24h (BrdU, Sigma) to allow detection of proliferating cells by immunohistochemistry. BrdU-incorporation was subsequently quantified by cell counting as described previously (18).

Antifibrotic potential of doxorubicin in BDL rats

Experimental animals

Male Wistar rats of 220-240g were used. Animals had free access to tap water and standard lab chow (Harlan, Horst, The Netherlands). All experiments were approved by the local committee for care and use of laboratory animals and were performed according to strict governmental and international guidelines for the use of experimental animals. Liver fibrosis was induced by ligation of the common bile duct as described previously (10).

Experimental setup

Ten animals were subjected to bile duct ligation under isoflurane/N₂O/O₂ anaesthesia at day 0 of the protocol. On day 3, the animals were randomly divided into two groups and were treated with either PBS (n=5) or DOX (n=5) at a dose of 0.35 mg/kg/day. A total of 7 i.v. injections was given, starting on day 3 of the protocol and the animals were sacrificed 24 hours after the last injection on day 10. Three additional rats were not submitted to bile duct ligation and served as control group.

Number of activated HSC and the extent of liver fibrosis

The number of activated HSC in the liver was assessed by staining for α-sma (Sigma, Gillingham, UK) on 4 µm cryostat sections, according to standard indirect immunohistochemical techniques. To study the extent of fibrosis, cryostat sections of livers were stained for collagen type III (Southern Biotechnology, Birmingham, UK). Also, formalin-fixed paraffin-embedded tissue samples were stained with
picrosirius-red dye to stain all collagens (Sigma). Microphotographs of both staining were taken at an original magnification of 4x10. The fibrotic area per liver section was quantified by morphometric analysis of the sections using the Image J software package (NIH, Bethesda, ML, USA). Secondary to the antifibrotic effects, also adverse effects were assessed. General toxicity was monitored by analysis of body weight (BW), whereas intrahepatic toxicity of DOX towards liver cells was examined by analysis of serum AST, ALT, AP and γ-GT levels. Inflammatory cell influx in the livers was assessed by diaminobenzidine (DAB) staining as described previously, as well as by evaluation of haematoxylin/eosin-stained liver sections (18;19). To evaluate the effect of DOX on the bile duct epithelial cell proliferation, staining with a monoclonal antibody raised against cytokeratin 7 (Santa Cruz Biotechnology, Santa Cruz, CA, USA) was performed, according to standard indirect immunohistochemical techniques.

Synthesis and characterization of M6PHSA-DOX

M6PHSA was synthesized as described by Beljaars et al. (10). DOX was coupled to this drug carrier via cisaconitic acid according to the method of Shen and Ryser, covalently linking the drug and the carrier via an acid-sensitive spacer, which allows drug release within the acidic lysosomal compartment of cells (20). M6PHSA-DOX was subsequently purified by dialysis against PBS and size-exclusion chromatography on a HiLoad 16/60 Superdex 200 column (Amersham Biosciences, Uppsala, Sweden). After further dialysis against water, the product was lyophilized and stored at –20 °C until use.

Chemical characterization M6PHSA-DOX

The total amount of coupled DOX was assessed by spectrophotometric analysis (21;22). In brief, the conjugate was dissolved in PBS in a concentration of 1 mg/ml. The absorption at 480 nm was measured and the total amount of DOX in the preparation was calculated from a calibration curve. The amount of free drug
was subsequently assessed on an HPLC system fitted with a pump (model 510, Waters, Milford, MA), a Thermoquest 250 x 4.6 mm 5 μm Hypersil BDS C8 column (Thermo Electron Corporation, Waltham, MA) and a UV detector (model 441, Waters) at 254 nm. A solution of 6.7 g trisodiumcitrate in 760 ml water and 240 ml acetonitril (pH adjusted to 4 with formic acid) was used for elution at a flow of 1 ml/min. Monomeric protein content was analyzed by standard SDS-PAGE techniques, using a 10% polyacrylamide gel. The net negative charge of M6PHSA-DOX and control proteins was assessed by anion exchange chromatography on a mono Q column as described previously (10).

In vivo distribution of DOX and M6PHSA-DOX

In vivo organ distribution of 125I-labeled M6PHSA-DOX

One week after bile duct ligation (BDL), animals were injected i.v. with a tracer dose of 125I-labeled M6PHSA-DOX under O$_2$/N$_2$O/Isoflurane anaesthesia. Twenty minutes after injection, blood samples were taken by heart puncture (5-10 ml), and the animals were subsequently sacrificed by bleeding after severing the aorta. Organs were harvested and processed as described before. All urine present in the bladder was collected in order to measure the amount of radioactivity that was excreted into the urine. The organ-associated radioactivity was expressed per whole organ, and was corrected for blood-derived radioactivity. The latter was calculated from the radioactivity present in each organ of BDL rats that were injected with 125I-labeled HSA, which is known to remain in the blood. The percentage of the dose of M6PHSA-DOX in blood was calculated from the amount of radioactivity in the 5-10 ml blood sample, by extrapolation to the corresponding value for the total blood volume in rats (60 ml/kg) (10).

Localization of the untargeted and targeted drug

To investigate the distribution of DOX, 20 minutes after i.v. injection of the uncoupled form (2mg/kg), after injection of M6PHSA-DOX (30 mg/kg, which
contains an amount of 2 mg/kg DOX), or after injection of PBS, the animals were sacrificed and 4 µm cryostat sections of liver, kidney and heart were made. These sections were examined by fluorescence microscopy, without embedding the sections in a mounting medium first, since this may corrupt the original localization of DOX. Microphotographs were taken with an Olympus C5050 zoom digital camera and were converted to blue-scale images, so the localization of DOX could be better discerned.

Cellular localization of M6PHSA-DOX

One week after BDL, animals were injected i.v. with 30 mg/kg M6PHSA-DOX. After 20 minutes the animals were sacrificed and tissues were excised and frozen in isopentane at -80 °C. Cryostat sections (4 µm) of liver, heart and kidney were acetone-fixed and stained for the presence of the conjugate with an antibody directed against human serum albumin (HSA, Cappel, Zoetermeer, The Netherlands). In addition, we investigated whether there was co-localization of the injected construct with HSC markers. To this end, double-stainings were performed for HSA and HSC-markers. As a marker for HSC, two monoclonal antibodies were combined: a mouse monoclonal IgG directed against desmin (Sigma) and mouse monoclonal IgG anti-GFAP (Neomarkers, Fremont, CA, USA) (23).

In vitro studies with M6PHSA-DOX

To investigate whether the in vivo binding to HSC was mediated by specific binding of M6PHSA-DOX to receptors on HSC, the protein backbone of the conjugate was labeled with 125I according to the chloramine-T method. Culture-activated HSC were exposed to 100,000 cpm of 125I-labeled M6PHSA-DOX at 37 °C, in the absence of a competitor for receptor binding, or in the presence of either 1 mg/ml HSA or 1 mg/ml M6PHSA. After 2 hours, the cell-associated radioactivity was measured on a γ-counter (Riastar, Packard instruments, Palo Alto, USA). The effect of M6PHSA-DOX was investigated as described above for the uncoupled
drugs. The cells were incubated with 10 µg/ml M6PHSA-DOX, an equivalent amount of control protein, or PBS.

Statistical analysis

Results were expressed as the mean ± SEM. One-way ANOVA was used to compare means, and differences were considered statistically significant at P < 0.05. For statistical analysis the SPSS software package was used (SPSS Inc, Chicago, IL, USA).

RESULTS

Effect of drugs on HSC proliferation in vitro

Culture-activated rat HSC were incubated with chlorambucil, cisplatin and doxorubicin in various concentrations. We found that all antiproliferative drugs inhibited BrdU-incorporation in a dose-dependent manner (Fig. 1). Of the tested compounds, doxorubicin was the most potent inhibitor of HSC proliferation. In the concentrations used, cell morphology was not affected as assessed by phase
contrast microscopy (data not shown), which indicates that inhibition of proliferation precedes the cytotoxic effects of these drugs.

Antifibrotic potential of doxorubicin in BDL rats

Based on the results from the *in vitro* study we subsequently investigated the effect of DOX on the fibrotic process *in vivo* (Fig. 2). We found that in BDL animals, treatment with 0.35 mg/kg/day DOX significantly reduced the α-smooth muscle actin (α-sma)-stained area from 8.5 ± 0.8% (PBS-treated BDL rats) to 5.1 ± 0.9% (P<0.01). In normal livers only 1.2 ± 0.2% of the total evaluated area of the liver was stained, mainly reflecting α-sma-positive vascular smooth muscle cells in the vessel walls (Fig. 2A-C and J). Treatment with DOX also reduced the amount of collagen, as reflected by a reduction in the collagen type III-stained area within liver sections to 8.9 ± 1.5%, compared to 13.1 ± 1.3% in PBS-treated BDL animals (P<0.05). In livers of healthy control rats only 4.9 ± 0.5% of the area was stained for collagen type III (Fig 2. D-F and K). Sirius red staining confirmed the results of DOX on collagen deposition (Fig 2. G-I).

Besides the antifibrotic effect of DOX, treatment with this drug also resulted in significant body weight loss. Furthermore, DOX treatment elicited increased serum γ-glutamyl transferase (γ-GT) levels, but not AST and ALT levels, indicating that early hepatocyte or bile duct epithelial cell injury has occurred (Table 1). Yet, the absolute number of bile duct epithelial cells, as assessed by cytokeratin 7 staining (CK7), did not differ between the PBS- and DOX-treated groups (Table 1). Moreover, evaluation of DAB stainings revealed that the number of reactive-oxygen species-producing cells, was also increased in the livers of DOX-treated rats (Table 1). These DAB-positive cells consisted mainly of neutrophils, judged by the presence of polymorphic nuclei in these cells after evaluation of HE-stained liver sections, and based on previous studies (19).
Fig. 2. Effect of treatment with DOX on the number of activated HSC, as assessed by α-sma stainings (A, B, C) and on the amount of collagen present in liver cryostat sections, as assessed by staining with an antibody directed against collagen III (D, E, F) or with picrosirius red (G, H, I). Representative microphotographs were taken at an original magnification of 40x from the livers of healthy animals, PBS-treated BDL-rats and DOX-treated BDL-rats. J: Quantification of α-sma staining by morphometric analysis. K: Quantification of collagen-III-stained area by morphometric analysis. Data are expressed as mean ± SEM. † indicates P < 0.01 compared to normal rats, * indicates P<0.05 compared to PBS-treated BDL-rats, ** indicates P<0.01 compared to PBS-treated BDL rats.
Table 1. The effect of DOX on toxicity parameters and bile duct epithelial cell proliferation. * indicates P<0.05 compared to PBS-treated BDL rats. N.D: not determined.

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>PBS</th>
<th>DOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ BW (relative to BW at day 3)</td>
<td>N.D.</td>
<td>+ 4.3 ± 1.0%</td>
<td>- 10.1 ± 1.4%*</td>
</tr>
<tr>
<td>γ-GT (U/l)</td>
<td>3 ± 0</td>
<td>29.83 ± 4.98</td>
<td>75.70 ± 13.84*</td>
</tr>
<tr>
<td>AST (U/l)</td>
<td>50 ± 5</td>
<td>310 ± 53</td>
<td>391 ± 37</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td>30 ± 2</td>
<td>104 ± 32</td>
<td>89 ± 13</td>
</tr>
<tr>
<td>AP (U/l)</td>
<td>177 ± 14</td>
<td>436 ± 33</td>
<td>398 ± 42</td>
</tr>
<tr>
<td>Inflammatory cells</td>
<td>25 ± 1</td>
<td>33 ± 7</td>
<td>97 ± 14*</td>
</tr>
<tr>
<td>(number per microscopic field)</td>
<td>0.2 ± 0.03</td>
<td>3.9 ± 0.5</td>
<td>3.3 ± 0.4</td>
</tr>
</tbody>
</table>

Synthesis and characterization of M6PHSA-DOX

In order to increase the HSC-specificity of DOX, a conjugate of this drug and M6PHSA was synthesized (Fig. 3A). Spectrophotometric analysis of the construct revealed that per mg of construct 66.7 µg of doxorubicin was present. Of the total amount of doxorubicin in the preparation only 1% was present in uncoupled form, as assessed by HPLC-analysis. SDS-PAGE analysis revealed that no significant amounts of polymeric protein could be detected in the conjugate (Fig 3B). Furthermore, the net negative charge of the conjugate was increased compared to M6PHSA and HSA, which is in agreement with molecules being covalently coupled to the positively-charged amine groups of HSA (Fig 3C). The retention times measured by anion exchange chromatography were 18.9 min, 26.5 min, and 28.0 min for HSA, M6PHSA and M6PHSA-DOX, respectively.
Fig. 3. A: Schematic representation of the chemical bond between DOX and M6PHSA. B: Coomassie Brilliant Blue staining of an SDS-PAGE gel containing the drug carrier and the conjugate. Lane 1: marker, lane 2: M6PHSA-DOX, lane 3: HSA, lane 4: M6PHSA. No significant amount of polymeric protein could be detected. C: Elution profile of HSA, M6PHSA and M6PHSA-DOX on a mono Q anion exchange column. Longer retention times represent an increased net negative charge.

In vivo distribution of DOX and M6PHSA-DOX

In vivo organ distribution of 125I-labeled M6PHSA-DOX

The organ distribution of M6PHSA-DOX in rats with liver fibrosis was assessed 20 minutes after i.v. injection of a radio-labeled tracer dose of the
conjugate. In Fig. 4 it can be seen that already 50 ± 6% of the injected dose distributed to the liver at that time. In heart and kidney, target organs for serious side effects of doxorubicin, only 0.2 ± 0.1% and 1.2 ± 0.5% of the dose accumulated, respectively. In the different parts of the intestine less than 2% of the dose was found and also in the bone marrow no significant radioactivity could be demonstrated (data not shown).

![Bar graph showing organ distribution of radio-labeled M6PHSA-DOX.](image)

Fig. 4. Organ distribution of radio-labeled M6PHSA-DOX. One week after ligation of the common bile duct, animals were injected with a tracer dose of the 125I-labeled conjugate. Animals were sacrificed 20 minutes after injection. Data represent the average ± SEM of 5 animals.

Localization of the untargeted and targeted drug

To confirm the data of organ distribution studies that were performed with radio-labeled M6PHSA-DOX, immunohistochemical staining for HSA was performed on liver sections and sections of heart and kidney, important organs with respect to DOX toxicity. Strong staining was found in livers in a pattern consistent with accumulation in the non-parenchymal cells of the liver. In hearts and kidneys, complete absence or only minimal staining was found, respectively (Fig. 5 A-C). We also investigated the actual localization of doxorubicin itself by fluorescence microscopy at an excitation wavelength of 450-490 nm and an emission filter > 515 nm, at which DOX fluoresces (Fig. 5 D-I). Administration of free DOX to
Fig. 5. Images of liver (A, D, G), heart (B, E, H), kidney (C, F, I) from animals receiving M6PHSA-DOX 30 mg/kg (upper two rows) or unconjugated DOX 2 mg/kg (lower row). Immunohistochemical staining for HSA (A-C) was performed to demonstrate the distribution of the drug carrier part of the conjugate (M6PHSA) and fluorescence microscopy was used to detect the drug itself (D-I). Arrows indicate the localization of DOX. Note the change in distribution of DOX after coupling to M6PHSA compared to the uncoupled drug. In the images J, K and L the autofluorescence in livers, hearts and kidneys of BDL rats is shown (original magnification 200x). M: Co-localization of M6PHSA-DOX with HSC-markers in the liver. The conjugate was demonstrated by immunohistochemical staining for HSA (red staining) and HSC were identified with anti-desmin/GFAP antibodies (blue staining). Arrows indicate double-positive cells (original magnification 400x). A full color version of this figure can be found in the appendix.
fibrotic rats resulted in association of the drug with the nuclei of cardiomyocytes and with the nuclei of glomerular and tubular epithelial cells of the kidney, 20 minutes after administration. In the livers, untargeted DOX associated with the nuclei of both hepatocytes and non-parenchymal cells (NPC). However, after coupling of DOX to M6PHSA, no DOX-specific fluorescence could be found at all in heart and kidney. Within the liver, drug-specific fluorescence was notable; animals that received M6PHSA-DOX displayed a non-parenchymal distribution pattern for the drug, with no detectable accumulation in hepatocytes.

Cellular localization of M6PHSA-DOX

To examine in which liver cells the conjugate was taken up, immunohistochemical double-stainings were performed on liver sections for M6PHSA-DOX together with markers for HSC. We found that M6PHSA-DOX co-localized with HSC-markers (Fig. 5J). As can be seen in the same figure, cells that were HSA-positive but negative for HSC-markers were also found. Further investigation of this revealed that M6PHSA-DOX also co-localized with markers for Kupffer cells (ED2) and liver endothelial cells (RECA-1, data not shown).

In vitro studies with M6PHSA-DOX

To test whether M6PHSA-DOX selectively binds to receptors on HSC, we performed binding studies on culture-activated HSC with 125I-labeled M6PHSA-DOX. In Fig. 6 it can be seen that binding to HSC was reduced by $75.2 \pm 6.3\%$ ($P<0.05$) after co-incubation with M6PHSA, which is an M6P/IGF-II receptor ligand. In contrast, the control protein HSA had no significant effect.

Moreover, incubation with M6PHSA-DOX reduced HSC proliferation by $82 \pm 15\%$ ($P<0.05$), whereas the drug carrier alone (M6PHSA) exerted no significant effect compared to vehicle-treated control cells (Fig. 7). This indicates that active drug is released, after binding and uptake of the conjugate by the target cells.
Fig. 6. The influence of competitors on the binding and uptake of 125I-labeled M6PHSA-DOX by culture-activated rat HSC. Note that M6PHSA, a ligand for the M6P/IGF-II receptor, reduces binding of the conjugate by $75.2 \pm 6.5\%$, whereas the control protein HSA exerts no significant effect. Data represent the average ± SEM of 3 independent experiments from 3 different HSC isolations. * indicates $P<0.05$ compared to control.

Fig. 7. Effect of M6PHSA and M6PHSA-DOX on HSC proliferation in vitro. * indicates $P<0.05$ compared to control. Data represent the average ± SEM of 3 independent experiments from 3 different HSC isolations.

DISCUSSION

In the present paper we show that DOX is a potent inhibitor of HSC proliferation in vitro, inhibiting cellular proliferation in the nanomolar concentration range. This is in lower concentrations than a number of other typical inhibitors of HSC proliferation in vitro, such as mycophenolic acid, statins, the
selective Na+/H+ exchange inhibitor cariporide and the semi-synthetic analogue of fumagillin TNP-470 (4,18,24,25). The higher potency of DOX may be related to the fact that multiple intracellular mechanisms are implicated in its antiproliferative effect, in contrast to these other drugs (26). In this paper we also show that treatment of bile duct ligated rats with doxorubicin reduces the number of activated HSC in the fibrotic rat liver and attenuates the fibrotic process. To our knowledge, this is the first study investigating the use of a cytostatic agent in an experimental model of liver fibrosis and our data indicate that DOX in principle may form a new asset in the treatment of liver fibrosis, for which up till now no pharmacotherapeutics are available. However, the observed side effects will most certainly impede its actual clinical application. In fact, toxicity is a typical problem that forms an obstacle in the application of many other promising antifibrotic drugs as well (27-30).

In this study, the toxicity of DOX was reflected by the loss in body weight, whereas the increased in serum γ-GT levels, but not AST, ALT and AP levels, also suggested hepatocyte or bile duct epithelial cell injury. It is known that during the early stages of hepatocellular injury such an isolated γ-GT increase can precede AP, ALT or AST elevation (31). Very likely, the increased number of DAB-positive cells that we observed is the result of an immune response in reaction to this damage. It is known that drug-induced hepatic inflammation can lead to liver fibrosis, but usually this takes a prolonged period of time. In the present animal model, which is characterized by a very fast proliferation of fibrogenic cells, the antiproliferative effect of DOX on these cells apparently prevails, resulting in the observed antifibrotic effect. It would therefore be interesting to investigate the antifibrotic potential of DOX in animal models in which fibrosis progression is slower, for example in the CCl4 model. In this BDL model, the antifibrogenic effect of DOX was most prominent in the parenchyma and less clear in the portal areas. Whether this is due to a reduced sensitivity of portal fibroblasts to DOX, or
due to lower drug concentrations in this highly fibrotic area, remains to be established.

Although this DOX-induced hepatic inflammation does not result in a worsening of fibrosis, it should still be considered that an even more potent antifibrotic effect can be obtained, when the influx of inflammatory cells is avoided. The same may be true for the observed weight loss seen in DOX-treated rats, since it has been shown that alcohol in combination with malnutrition causes more severe liver fibrosis in rats (32). In this way HSC-selective delivery of DOX may not only help to avoid general drug-related toxicity, but also contribute to the antifibrogenic potential of DOX via the avoidance of pro-fibrogenic side effects.

Analysis of circulating white blood cell counts revealed no significant differences between DOX-treated BDL rats and PBS-treated BDL rats (data not shown), suggesting that no relevant meyelosuppressive effect was at hand at the present dose of DOX and duration of administration. This renders it unlikely that the antifibrotic effect of DOX we describe here is mediated via the known meyelosuppressive effect of the drug.

Besides the proliferation of HSC, proliferation of ductular epithelial cells occurs in the liver after ligation of the common bile duct. Our data revealed that the ductular response of BDL rats was not significantly affected by treatment with DOX. A possible reason for this is the high expression of mdr1a drug efflux transporters in the apical membrane of the cholangiocytes (33). Since doxorubicin is a substrate for mdr1a, it is conceivable that the resistance of cholangiocytes to DOX is due to a high efflux of the drug from these cells.

To limit the effect of DOX to fibrogenic cells and to avoid the described extra- and intrahepatic toxicity, we set out to investigate the targeted delivery of DOX to the HSC. From physico-chemical analyses we concluded that coupling of DOX to the HSC-selective drug carrier M6PHSA was successful. In vivo, the conjugate rapidly and selectively accumulated in the liver, whereas the untargeted drug also accumulated in organs that are prone to DOX toxicity. Within the liver, the uptake
of M6PHSA-DOX was confined to the non-parenchymal cells and the observed co-localization of M6PHSA-DOX with HSC-markers indicated that HSC were reached successfully. Next to the uptake in HSC, also co-localization with Kupffer cell and endothelial cell markers was observed. This very likely reflects scavenger receptor-mediated uptake of M6PHSA-DOX by these cells, since this is a highly negatively charged molecule. To attenuate uptake by these other non-parenchymal cells, the net charge of this construct should be modified. Nevertheless, we could clearly demonstrate that, although not 100% specific, injection with M6PHSA-DOX leads to a significant increase in stellate cell-selectivity compared to the untargeted drug. It remains to be established if the uptake of M6PHSA-DOX in Kupffer cells and liver endothelial cells results in toxicity or whether this contributes to the therapeutic effect of the conjugate. It is known from literature that an attenuation of Kupffer cell functioning may attenuate fibrogenesis (34).

The binding of M6PHSA-DOX to HSC was confirmed by studies performed with a 125I-labeled conjugate in cultures of activated HSC. The association of radio-labeled M6PHSA-DOX with the cells could be inhibited by an excess of M6PHSA but not by HSA, indicating that receptor-mediated uptake of the construct takes place. Moreover, the strong inhibition of cell proliferation by M6PHSA-DOX that we observed also indicates that active drug can be released from the conjugate after uptake by activated HSC.

Although these results show that the targeted delivery of a cytostatic drug to the HSC is possible, it is evident that chronic treatment of fibrotic rats is necessary to test the ultimate antifibrotic potential of this targeted strategy. However, before performing those studies, it will be necessary to better understand the pharmacokinetics of M6PHSA-DOX in fibrotic animals, as well as its intracellular kinetics within HSC. Explicitly, information on the mechanisms through which this new chemical entity is processed by activated HSC, and the rate at which intracellular drug release and elimination occur, will largely dictate the dosage regime of M6PHSA-DOX in chronically treated rats. Based on the expected
differences in cellular handling between the targeted and untargeted drug, this may be very dissimilar for the two compounds. Yet, irrespective of the eventual dosing regimen required, it is likely that by virtue of the improved organ and cell specificity, and the resulting smaller volume of distribution, the total body dose of M6PHSA-DOX can be reduced compared to untargeted DOX, whereas still similar drug concentrations can be obtained within HSC.

In summary, we have shown that treatment of BDL rats with free DOX inhibits the progression of experimental liver fibrosis and strongly inhibits HSC proliferation in vitro. Subsequently, we succeeded in delivering this potent antiproliferative drug to HSC in vitro as well as in vivo. By doing so, accumulation of DOX in extrahepatic tissues as well as hepatocytes was avoided. We conclude that DOX exerts potent antifibrotic effects in bile duct-ligated rats. In conjunction with the here-described drug delivery strategy this may offer perspectives for the use of potent but relatively toxic antiproliferative drugs in the pharmacological treatment of liver fibrosis.

ACKNOWLEDGEMENTS

A. van Loenen, M. de Ruijter, P. Tepper, J.H. Pol and J. Visser are all gratefully acknowledged for their excellent technical assistance. Dr. R.J. Kok is thanked for valuable scientific discussion.

REFERENCE LIST

