Heterologous amplification of homologous beta-adrenoceptor desensitization in airway smooth muscle
Boterman, Mark

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Potentiation of β-adrenoceptor function in bovine tracheal smooth muscle by inhibition of protein kinase C

Mark Boterman
Carolina R.S. Elzinga
David Wagemakers
Pauline B. Eppens
Johan Zaagsma
Herman Meurs

Summary

To examine the role of contractile agonist-induced activation of protein kinase C (PKC) in functional antagonism of airway smooth muscle contraction by β-adrenoceptor agonists, we examined the effects of the specific PKC-inhibitor GF 109203X (2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl) maleimide) on isoprenaline-induced relaxation of bovine tracheal smooth muscle contracted by various concentrations of methacholine and histamine. In the absence of GF 109203X, the potency of isoprenaline (pD2) was gradually reduced at increasing methacholine- and histamine-induced smooth muscle tones, but the maximal relaxation (E_max) was decreased only at higher concentrations of methacholine. In the presence of GF 109203X, pD2-values were significantly increased for both methacholine- and histamine-induced contractions. Moreover, isoprenaline E_max-values in the presence of high concentrations of methacholine were also increased. Although both methacholine- and histamine-induced contractions were slightly reduced by GF 109203X, the changes in isoprenaline pD2 could only partially be explained by reduced contractile tone. In contrast to isoprenaline, forskolin-induced relaxations were not affected by GF 109203X. The results indicate that PKC-activation contributes to the reduced β-adrenergic responsiveness induced by methacholine and histamine, which may involve uncoupling of the β-adrenoceptor from the effector system. Since many mediators and neurotransmitters in allergic airway inflammation can activate PKC, this cross-talk may be important in the reduced bronchodilator response of patients with severe asthma.

Introduction

Inhaled β2-adrenergic agonists are effective bronchodilators and widely used to control airway function in asthma and chronic obstructive pulmonary disease (COPD) [1,2]. The efficacy of these drugs in asthma is mainly due to the functional antagonism counteracting the bronchoconstrictor effects of neurotransmitters and mediators released in airway inflammation [3].

However, it is well known that patients during a severe exacerbation of asthma have a reduced bronchodilator response to β2-adrenoceptor agonists [4]. Most bronchoconstrictive receptors, including muscarinic M3- and histamine H1-receptors, activate Gq-protein coupled receptors and cause bronchoconstriction through phosphatidyl inositide hydrolysis, resulting in the formation of inositol triphosphate which releases Ca2+ from internal stores to initiate contraction. Subsequently, a sustained influx of extracellular Ca2+ and a sn-1,2-diacylglycerol (DAG)-induced activation of protein kinase C (PKC) follows, which are both implicated in the tonic phase of contraction [5,6].

β2-Adrenergic agonists mediate relaxation of airway smooth muscle by stimulation of Gs-coupled β2-adrenoceptors, which results in the activation of adenylyl cyclase (AC) to generate cyclic adenosine 3',5'-monophosphate (cAMP), which in turn activates cAMP-dependent protein kinase A (PKA) [7]. Phosphorylation of specific target proteins by PKA
results in various biochemical responses that induce smooth muscle relaxation, by reducing intracellular $[\text{Ca}^{2+}]$ and diminishing the Ca^{2+}-sensitivity of the contractile elements. Both signalling pathways, however, do not appear to be independent, but are likely to interact at different homeostatic levels. It is well known that contractions induced by muscarinic agonists are relatively resistant to relaxation by β_2-agonists compared with contractions induced by histamine. Thus, in canine and bovine tracheal smooth muscle it has been demonstrated that β_2-adrenoceptor-mediated and nonreceptor-mediated elevation of cAMP potently inhibited histamine- but not methacholine-induced accumulation of inositol phosphates [8,9]. Furthermore, several studies have shown that exaggerated cholinergic stimulation of airway smooth muscle causes a reduced relaxability of the muscle by β_2-adrenoceptor agonists. In human [10,11] and animal [7,12-14] airway smooth muscle, it has been found that both the potency and the maximal relaxation are gradually reduced in the presence of increasing concentrations of contractile agonists. Such diminished functional antagonism has also been observed in vivo [15] which may explain why β_2-adrenoceptor agonists become less effective during severe asthmatic episodes, whereas their efficacy is unchanged in patients with mild or asymptomatic asthma [16,17]. Although it has been found in various cells and tissues that activation of PKC may lead to uncoupling of the β_2-adrenoceptor, presumably via phosphorylation of the β_2-adrenoceptor and/or G_i [18-20], the specific role of contractile agonist induced PKC-activation in functional antagonism has never been addressed in the airways. In this study we present direct evidence for the involvement of PKC in the (acute) functional antagonism of contractile agonist-induced bovine airway smooth muscle contraction by β_2-adrenoceptor agonists, using a specific, nonselective PKC inhibitor GF 109203X (2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl) maleimide) [21], which inhibits all conventional (α, β_1 and β_2) and novel (δ, ϵ and θ) PKC isozymes present in bovine tracheal smooth muscle [22]. The marked involvement of PKC in the cross-talk between contractile agonist induced contraction and β_2-adrenoceptor agonist induced relaxation of airway smooth muscle may be of considerable importance by reducing the bronchodilator response of patients with severe asthma.

Materials and methods

Tissue preparation

Fresh bovine tracheas were obtained from the slaughterhouse and were transported to the laboratory within 30 min at room temperature in Krebs-Henseleit (KH) buffer of the following composition (nM): NaCl 177.5, KCl 5.6, MgSO$_4$ 1.2, CaCl$_2$ 2.5, NaH$_2$PO$_4$ 1.3, NaHCO$_3$ 25.0, glucose 5.5, pregassed with 95% O_2 and 5% CO$_2$; pH 7.4. The tracheal smooth muscle was dissected carefully and smooth muscle strips (12x3 mm) were prepared free of mucosa and serosal connective tissue in KH buffer gassed with 95% O_2/5% CO$_2$ at room temperature. Subsequently, all strips were maintained overnight in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10 mM NaHCO$_3$, 20 mM HEPES, 100 U/ml penicillin, 100 μg/ml streptomycin and 10% fetal bovine serum at 37°C (55 rpm).

Mechanical responses

After washing in several volumes of KH-buffer, gassed with 95% O$_2$ and 5% CO$_2$, pH 7.4 at 37°C, the bovine tracheal smooth muscle strips were mounted in 15 ml organ baths containing gassed KH-buffer (37°C) for isotonic recording, using a preload of 500 mg. No basal myogenic tone was observed in bovine tracheal smooth muscle. After a 60 min equilibration period the strips were precontracted twice with methacholine (0.1, 1, 10 and 0.1, 1, 10, 100 μM, respectively) with a 60 min washing period in between. Maximal relaxation was established with isoprenaline (0.1 μM), immediately followed by a 30 min washing period. Cumulative concentration response curves were made with methacholine (1 nM – 100 μM) and histamine (10 nM-100 μM) in the absence and presence of 10 μM GF 109203X. In separate experiments it was found that this concentration of GF 109203X caused complete inhibition of 10 μM phorbol 12-myristate 13-acetate (PMA)-induced contraction.

For relaxation studies, the preparations were precontracted with different concentrations of methacholine (100 nM – 100 μM) or histamine (3 μM – 1 mM) in the absence or presence of 10 μM GF 109203X, increasing smooth muscle tone gradually in 2-4 concentration steps. Subsequently, cumulative concentration-relaxation curves were obtained with isoprenaline (using 1 nM – 100 μM for methacholine-induced tone and 0.1 nM – 10 μM for histamine-induced tone) or forskolin (0.1 nM – 10 μM). After the maximal relaxation had been obtained, the preparations were washed twice and maximal relaxation of the smooth muscle strips was re-established with 10 and 100 μM isoprenaline. When used, GF 109203X was administered 45 min before building up smooth muscle tone with methacholine or histamine.

In separate experiments, the reduction of methacholine- and histamine-induced contractile tone in the presence of GF 109203X was carefully compensated for by additional administration of small amounts of agonist, before isoprenaline relaxation curves were obtained.

Data analysis

Contractile responses were expressed as percentages of the response to 100 μM methacholine in the second precontraction curve in each experiment. Maximal relaxant effects of isoprenaline were expressed as percentages of contractile agonist induced tone. All data are presented as mean ± S.E.M. Curves were fitted using the logistic 4-parameter model (Sigmaplot 8.0). Statistical analysis was performed by means of the two-tailed Student’s t test for paired or unpaired observations. P values < 0.05 were considered statistically significant.
Materials

Dulbecco’s modification of Eagle’s Medium (DMEM), foetal bovine serum, NaHCO₃ solution (7.5%), penicillin/streptomycin solution (5000 U/ml; 5000 μg/ml) and HEPES solution (1 M) were obtained from Gibco BRL Life Technologies (Paisley, U.K.). Methacholine chloride, histamine dihydrochloride, (-)-isoprenaline hydrochloride and forskolin were obtained from Sigma Chemical Co. (St. Louis, MO, U.S.A.) and GF 109203X (2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl) maleimide) was purchased from Boehringer (Mannheim, Germany). All other chemicals were of analytical grade.

Results

Effect of GF 109203X on methacholine- and histamine-induced contraction

GF 109202X caused a small but significant shift to the right of the cumulative concentration-contraction curve of methacholine, with a reduction in pD₂ (i.e. –log EC₅₀) from 7.05 ± 0.07 to 6.67 ± 0.06 (P<0.05), while the maximal contractile effect (Eₘₐₓ) was unchanged (Fig. 1). For histamine-induced contraction, a pD₂ change from 5.88 ± 0.10 to 5.36 ± 0.11 (P<0.05) was observed, which was accompanied by a small but significant decrease in Eₘₐₓ, from 107 ± 3 to 95 ± 5% (P<0.05) (Fig. 1).

![Figure 1](image)

Figure 1 Cumulative concentration-response curves of methacholine (MCh) and histamine (His)-induced bovine tracheal smooth muscle contraction in the absence and presence of 10 μM GF 109203X (GF). Results are means ± S.E.M. of 4-6 experiments each performed in duplicate.

Functional antagonism of methacholine- and histamine-induced contraction by isoprenaline

Both for methacholine and histamine, it was found that at increasing smooth muscle tone isoprenaline-induced relaxation was gradually reduced (Fig. 2A and 2B, open symbols).
However, the maximal changes in isoprenaline pD$_2$ and E$_{\text{max}}$ values were considerably larger for methacholine than for histamine. Thus, for methacholine, a gradual fall of the pD$_2$ value of 3.4 log units was observed at contraction levels increasing from 24.9% (at 30 nM) to 108.9% (at 100 μM methacholine), while for histamine the pD$_2$ decrease amounted to 2.2 log units at smooth muscle tone ranging from 28.9% (1 μM) to 102.6% (1 mM histamine). In addition, at high contraction levels, the E$_{\text{max}}$ of isoprenaline-induced relaxation was gradually reduced to only 5.6% in the presence of 100 μM methacholine, while with histamine only at the highest concentration a very small but significant decrease in E$_{\text{max}}$ to 95.3% was observed (Table 1; Fig. 2A and 2B). Fig. 3A and B (open symbols) show that the isoprenaline pD$_2$ values were lower with methacholine than with histamine at equal levels of contractile tone.

Table 1 (-)-Isoprenaline pD_2 and E_{max} values obtained after contraction of bovine tracheal smooth muscle strips with different concentrations of methacholine (MCh) and histamine (His) in the absence and presence of 10 μM GF 109203X (GF).

<table>
<thead>
<tr>
<th>MCh (μM)</th>
<th>Contraction level (%</th>
<th>pD_2 (-log M)</th>
<th>∆pD_2</th>
<th>E_{max} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control + GF</td>
<td>Control + GF</td>
<td>Control + GF</td>
<td>Control + GF</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>51.4±3.7</td>
<td>21.6±8.1</td>
<td>7.69±0.08</td>
<td>8.70±0.04 b</td>
</tr>
<tr>
<td>0.3</td>
<td>90.9±1.6</td>
<td>73.9±5.9</td>
<td>6.59±0.10</td>
<td>8.11±0.19 b</td>
</tr>
<tr>
<td>1</td>
<td>95.1±2.4</td>
<td>82.0±4.6</td>
<td>6.39±0.10</td>
<td>7.72±0.20 b</td>
</tr>
<tr>
<td>3</td>
<td>103.1±2.1</td>
<td>93.9±1.2</td>
<td>5.97±0.10</td>
<td>7.39±0.13 b</td>
</tr>
<tr>
<td>10</td>
<td>108.0±1.4</td>
<td>102.9±2.6</td>
<td>5.57±0.06</td>
<td>6.93±0.14 b</td>
</tr>
<tr>
<td>100</td>
<td>108.9±1.7</td>
<td>103.3±1.4</td>
<td>5.06±0.13</td>
<td>6.86±0.12 b</td>
</tr>
</tbody>
</table>

Table 1: (-)-Isoprenaline pD_2 and E_{max} values obtained after contraction of bovine tracheal smooth muscle strips with different concentrations of methacholine (MCh) and histamine (His) in the absence and presence of 10 μM GF 109203X (GF).

<table>
<thead>
<tr>
<th>His (μM)</th>
<th>Contraction level (%</th>
<th>pD_2 (-log M)</th>
<th>∆pD_2</th>
<th>E_{max} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control + GF</td>
<td>Control + GF</td>
<td>Control + GF</td>
<td>Control + GF</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>41.5±1.7</td>
<td>30.0±6.5</td>
<td>9.06±0.08</td>
<td>9.84±0.06 b</td>
</tr>
<tr>
<td>10</td>
<td>71.9±3.4</td>
<td>54.7±4.7</td>
<td>8.72±0.08</td>
<td>9.61±0.07 b</td>
</tr>
<tr>
<td>100</td>
<td>90.7±2.9</td>
<td>71.4±2.6</td>
<td>8.08±0.13</td>
<td>9.17±0.13 b</td>
</tr>
<tr>
<td>1000</td>
<td>102.6±2.6</td>
<td>-</td>
<td>7.33±0.05</td>
<td>-</td>
</tr>
</tbody>
</table>

Date represent means ± S.E.M. of 4-14 experiments each performed in duplicate. Significantly different from control: a P<0.01; b P<0.001

Figure 3 Relationship between contraction levels of bovine tracheal smooth muscle induced by various concentrations of methacholine (A) and histamine (B) and (-)-isoprenaline relaxation potencies (pD_2) in the absence and presence of 10 μM GF 109203X.
Effect of GF 109203X on isoprenaline-induced relaxation

In the presence of the specific PKC inhibitor, both the pD₂ and the Eₘₐₓ values of isoprenaline-induced relaxations were significantly enhanced at the different concentrations of methacholine used (Fig. 2A and 3A). Similarly, at 3, 10 and 100 µM histamine-induced contractile tones, significant increases in the isoprenaline pD₂ values were found (Fig. 2B and 3B). Although methacholine-and histamine-induced contractile tones were reduced in the presence of GF 109203X, the increased sensitivity to the β-agonist could not solely be explained by the reduced contraction levels. Thus, both for methacholine and histamine, isoprenaline pD₂ values were higher in the presence of the PKC inhibitor compared to control at equal levels of contractile tone (Fig. 3A and 3B). To overcome the effects of a reduced methacholine-induced contraction in the presence of GF 109203X on the potency and maximal relaxation of isoprenaline, in separate experiments the reduced contractile tones were compensated for by additional agonist administration.

Figure 4 (-)-Isoprenaline-induced relaxation of bovine tracheal smooth muscle strips following contraction by various concentrations of methacholine (MCh) (A) and histamine (His) (B) in the absence and presence of 10 µM GF 109203X, with readjustments of smooth muscle tone, if necessary (see Methods). Results are means ± S.E.M. of 3-14 experiments each performed in duplicate.
Modulation of β-adrenoceptor function by PKC

Effect of GF 109203X on isoprenaline-induced relaxation after readjustment of contractile tone

In accordance with the results described above, both at methacholine- and histamine-induced contractions significantly higher isoprenaline pD2 values were obtained in the presence of GF 109203X, when reduced contraction levels were readjusted by additional agonist administration (Fig. 4A and 4B; Table 2). However with histamine, the effects of GF 109203X were considerably smaller than with methacholine (Fig. 4A and 4B; Table 2). Fig. 4A also indicates that the potentiating effect of GF 109203X on the maximal isoprenaline-induced relaxation increased with increasing levels of the adjusted methacholine-induced smooth muscle tone. As before, with all histamine-induced contraction levels, both in the absence and presence of GF 109203X, maximum relaxation by isoprenaline was achieved.

Table 2 (-)-Isoprenaline pD2 and Emax values obtained after contraction of bovine tracheal smooth muscle strips with different concentrations of methacholine (MCh) and histamine (His) in the absence and presence of 10 μM GF 109203X (GF), after readjustment of contractile tone if necessary (see Methods).

<table>
<thead>
<tr>
<th>MCh (μM)</th>
<th>Contraction level (%)</th>
<th>pD2 (-log M)</th>
<th>ΔpD2</th>
<th>Emax (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>+ GF</td>
<td>Control</td>
<td>+ GF</td>
<td>Control</td>
</tr>
<tr>
<td>0.1</td>
<td>59.1 ± 4.9</td>
<td>57.5 ± 4.6</td>
<td>7.75 ± 0.10</td>
<td>8.36 ± 0.14b</td>
</tr>
<tr>
<td>1.0</td>
<td>94.5 ± 1.3</td>
<td>93.0 ± 1.1</td>
<td>6.32 ± 0.10</td>
<td>7.39 ± 0.09a</td>
</tr>
<tr>
<td>10</td>
<td>101.7 ± 1.2</td>
<td>101.5 ± 1.2</td>
<td>5.94 ± 0.14</td>
<td>6.61 ± 0.12b</td>
</tr>
<tr>
<td>His(μM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>39.7 ± 2.0</td>
<td>40.4 ± 1.9</td>
<td>8.85 ± 0.21</td>
<td>9.22 ± 0.16a</td>
</tr>
<tr>
<td>10</td>
<td>65.6 ± 2.9</td>
<td>65.3 ± 2.4</td>
<td>8.70 ± 0.05</td>
<td>9.04 ± 0.15a</td>
</tr>
<tr>
<td>100</td>
<td>86.2 ± 3.3</td>
<td>85.8 ± 3.1</td>
<td>8.08 ± 0.14</td>
<td>8.74 ± 0.14b</td>
</tr>
</tbody>
</table>

Date represent means ± S.E.M. of 4-14 experiments each performed in duplicate. Significantly different from control: * P<0.01; b P<0.001

Effect of GF 109203X on forskolin-induced relaxation

In contrast to isoprenaline, forskolin-induced relaxation of 1 μM methacholine-induced contraction was not affected by GF 109203X (Fig. 5), indicating a specific effect of methacholine-induced PKC activation on the β-adrenoceptor system.
Discussion

Stimulation of muscarinic M₃-receptors and histaminic H₁-receptors in bovine, human and canine tracheal smooth muscle activate phospholipase C (PLC), producing a rapid and dose-related increase of inositol phosphates including inositol 1,4,5-trisphosphate (IP₃) [5,8,9,23-26]. The formation of IP₃ is accompanied by a parallel increase in sn-1,2-diacylglycerol (DAG) [13]. It has been reported that activation and translocation of PKC by DAG and Ca²⁺ is involved in the tonic phase of smooth muscle contraction [27,28]. Thus, concentration-dependent methacholine-induced contraction of bovine tracheal smooth muscle is correlated with the translocation of PKC from the cytosol to the plasma membrane [28]. Furthermore, in human airway smooth muscle PKC is involved in the sustained phase of histamine-induced contraction [6]. Overall, these data indicate that methacholine- and histamine-induced inositol phosphates production, over a wide concentration-range, is paralleled by the increase in DAG, resulting in the activation of PKC.

Using the specific PKC inhibitor GF 109203X, we found that the cumulative concentration-contraction curve of methacholine in bovine tracheal smooth muscle strips slightly but significantly shifted to the right, with no changes in maximal effect (Fig. 1), whereas for histamine also a significant decrease in maximal effect in the presence of GF 109203X was observed. This reduced contraction confirms that PKC-activation by DAG is implicated in the tonic phase of the contraction and that PKC exerts a feedforward control of agonist-induced Ca²⁺ mobilisation and influx [29], the more pronounced attenuation of the histamine-induced response by GF 109203X being in line with the lower phosphoinositide metabolism seen with this agonist [5,12]. In addition, we found that at increasing concentrations of the contractile agonists, the isoprenaline-induced relaxation was gradually
Modulation of β-adrenoceptor function by PKC

reduced (Fig. 2A and 2B). Similar findings were shown in other studies, using human [10] and animal [7,12,13] airway smooth muscle. Remarkably, in the presence of increasing concentrations of methacholine, in contrast to histamine, not only the potency (pD$_2$) of isoprenaline but also the maximal relaxation was gradually reduced. Again, this is in line with the markedly higher inositol phosphates responses of bovine tracheal smooth muscle seen with methacholine compared to histamine, at all concentrations used [12]. The resulting Ca$^{2+}$-mobilization and -influx induced by methacholine have shown to be less susceptible towards cAMP elevation indeed [5]. Interestingly, in human bronchial smooth muscle, showing similar inositol phosphates responses with histamine and methacholine, very similar correlations between inositol phosphates production induced by various concentrations of the two agonists and the reduction of isoprenaline pD$_2$ and E$_\text{max}$ values were found [10].

In addition to cAMP-induced PKA mediated inhibition of the Ca$^{2+}$-responses [5], direct interference by phosphoinositide metabolism of β$_2$-adrenoceptor function through DAG-induced PKC activation may also play an important role. It has been demonstrated that PKC may desensitise β-adrenoceptors, presumably via phosphorylation of the β-adrenoceptor and/or G$_s$-protein [30]. Thus, phorbol-ester-induced PKC activation attenuates β-adrenoceptor function in human lymphocytes because of uncoupling of the receptor from the G$_s$-protein [31]. In the present study we found a significant increase in sensitivity to isoprenaline when PKC was inhibited by GF 109203X, with bovine tracheal smooth muscle strips precontracted with methacholine and histamine (Fig. 2). Although methacholine- and histamine-induced contractions were reduced by GF 109203X to some extent, the enhanced responsiveness to the β-agonist could only partially be explained by the reduced smooth muscle tone. When the reduced contractile tone in the presence of GF 109203X was carefully compensated for by additional agonist administration to reach the same contraction levels compared to controls (Fig. 4; Table 2), still significantly enhanced pD$_2$ values were obtained, both for methacholine and histamine. In addition, at all histamine-evoked contraction levels, in the absence and presence of GF 109203X, maximal relaxation by isoprenaline was achieved, whereas with methacholine the E$_\text{max}$ values for isoprenaline were consistently enhanced in the presence of GF 109203X. This enhancement increased with increasing levels of contraction, supporting the idea that β-adrenoceptor function worsens in parallel with increasing DAG-induced PKC activation. Remarkably, in contrast to isoprenaline, forskolin-induced relaxation of preparations precontracted by methacholine was not affected at all by GF 109203X (Fig. 5), strongly suggesting that uncoupling of the β-adrenoceptor from G$_s$ by PKC-induced phosphorylation of the receptor- and/or the G$_s$-protein is indeed involved. In line with these results, it has been recently demonstrated in rat oesophagus smooth muscle that the PKA-dependent but β-adrenoceptor-independent relaxation by IBMX (3-isobutyl-1-methyl-xanthine) is not modulated by 10 μM GF109203X either [32]. These findings demonstrate that in intact airway and oesophagus smooth muscle PKA-activity is not inhibited by 10 μM GF 109203X.

In conclusion, using the specific PKC inhibitor GF 109203X, we found direct evidence for the involvement of PKC in the acute functional antagonism of contractile agonist-induced
bovine airway smooth muscle contraction by β-adrenoceptor agonists. Since PKC, via receptor-mediated phosphoinositide metabolism, is activated by many mediators and neurotransmitters in airway inflammation, this could lead to reduced airway smooth muscle responsiveness toward β-adrenoceptor agonists in asthma. Therefore, this cross-talk may be of considerable importance in the reduced bronchodilator response of patients with severe asthma.

Acknowledgements

This work was financially supported by the Stichting Astma Bestrijding, grant 99.03.

References

