On t-Motifs
Taelman, Lenny

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Chapter 8

The Period Functor

8.1 A Tannakian Category of Periods

8.1.1. Let L be a commutative ring, A a commutative L-algebra and B an A-algebra such that $A \to B$ is injective. Consider the category whose objects are triples (V, W, α) consisting of

- a projective and finitely generated L-module V;
- a projective A-module W;
- an isomorphism of B-modules $\alpha : V_B \to W_B$.

Morphisms in this category are pairs (f, g) of an L-linear homomorphism $f : V_1 \to V_2$ and an A-linear homomorphism $g : W_1 \to W_2$ such that the obvious square commutes:

$$g_B \circ \alpha_1 = \alpha_2 \circ f_B.$$

Thus, f determines g_B and even g, since $A \to B$ is injective. It follows that $\text{Hom}((V_1, W_1, \alpha_1), (V_2, W_2, \alpha_2))$ is a sub-L-module of $\text{Hom}(V_1, V_2)$, and that the category we are dealing with is L-linear.

This category has a natural tensor product

$$(V_1, W_1, \alpha_1) \otimes (V_2, W_2, \alpha_2) \overset{\text{def}}{=} (V_1 \otimes_L V_2, W_1 \otimes_A W_2, \alpha_1 \otimes_B \alpha_2)$$

and the unit for tensor product is (L, A, id). The dual of a triple takes the contragredient α, thus $(V, W, \alpha)^\vee \overset{\text{def}}{=} (V^\vee, W^\vee, (\alpha^\vee)^{-1})$. There is a
trace map from \((V, W, \alpha) \otimes (V, W, \alpha)^\vee\) to the unit \((L, A, \text{id})\):

\[
\text{tr} : (v \otimes \lambda, w \otimes \mu) \mapsto (\lambda(v), \mu(w)).
\]

This category of triples is an \(L\)-linear rigid tensor category and we shall denote it by \(P(L, A, B)\).

8.1.2. Such a category arises naturally in the context of periods of algebraic varieties.(1) Fix a subfield \(F\) of \(\mathbb{C}\).

Let \(X\) be a smooth and projective variety defined over \(F\). On the one hand, the algebraic De Rham complex yields cohomology with \(F\)-coefficients \(H^i_{\text{dR}}(X, F)\). The singular cohomology \(H^\bullet(X(\mathbb{C}), \mathbb{Q})\), on the other hand, has rational coefficients. They are related by the De Rham Theorem,(2) which furnishes in every degree \(i\) an isomorphism

\[
\omega_X : H^i(X(\mathbb{C}), \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C} \to H^i_{\text{dR}}(X, F) \otimes_{F} \mathbb{C},
\]

functorial in \(X\). The resulting functor

\[
X \rightsquigarrow (H^\bullet(X(\mathbb{C}), \mathbb{Q}), H^\bullet_{\text{dR}}(X, F), \omega_X)
\]

to \(P(\mathbb{Q}, F, \mathbb{C})\) is conjectured to factor through the motif of \(X\) (here loosely defined as an element of the universal Tannakian category for the collection of \(\ell\)-adic cohomology theories):

\[
X \rightsquigarrow h(X, \mathbb{Q}) \rightsquigarrow (H^\bullet(X(\mathbb{C}), \mathbb{Q}), H^\bullet_{\text{dR}}(X, F), \omega_X).
\]

Consider as an example the cohomology in degree \(2d\) of \(d\)-dimensional projective space. There is an isomorphism

\[
(H^{2d}(\mathbb{P}^d(\mathbb{C}), \mathbb{Q}), H^{2d}_{\text{dR}}(\mathbb{P}^d, F), \omega) \approx (\mathbb{Q}, F, \text{multiplication by } (2\pi i)^{-d}).
\]

8.2 Construction of the Period Functor

8.2.1. Let \(k[t] \to K\) be injective and let \(K^\dagger\) be any complete and algebraically closed field containing \(K\) such that \(\|\theta\| > 1\). Denote by

(1) See [ANDRÉ 2004], in particular section 7.1.6.

(2) Theorem 1' of [GROTHENDIECK 1966].
$R \subset K^\dagger \{t\}$ the subring consisting of those power series that have an infinite radius of convergence. Thus R is the ring of entire functions on the affine line over K. Let M be an effective t-motif over K. Recall that $H_{\text{an}}(M,k[t])$ is the set of σ-invariant vectors in $M\{t\} \overset{\text{def}}{=} M \otimes_{K[t]} K^\dagger \{t\}$.

Lemma. $H_{\text{an}}(M,k[t]) \subset M \otimes_{K[t]} R$.

Proof. This is essentially Proposition 3.1.3 of [Anderson et al. 2004]—to see this it suffices to choose a basis of M and to express everything in terms of matrices. \qed

8.2.2. By the Lemma, there is a natural map

$$H_{\text{an}}(M,k[t]) \rightarrow M[[t-\theta]] \overset{\text{def}}{=} M \otimes_{K[t]} K^\dagger [[t-\theta]]$$

obtained through Taylor expansion in $t = \theta$. It induces a map

$$H_{\text{an}}(M,k[t]) \otimes_{k[t]} K^\dagger((t-\theta)) \overset{\omega_M}{\longrightarrow} M[[t-\theta]] \otimes_{K^\dagger[[t-\theta]]} K^\dagger((t-\theta))$$

and this map is an isomorphism if and only if M is analytically trivial.

With $M = C$, we have that on the natural bases ω_C equals multiplication with Ω.

8.2.3. The construction

$$M \rightsquigarrow (H_{\text{an}}(M,k[t]), M[[t-\theta]], \omega_M) \quad (8.1)$$

defines a \otimes-functor from $t\mathcal{M}_{\text{eff,a.t.}}$ to $\mathcal{P}(k[t], K^\dagger[[t-\theta]], K^\dagger((t-\theta)))$. Extending scalars from $k[t]$ to $k(t)$ yields a functor

$$M \rightsquigarrow (H_{\text{an}}(M,k(t)), M[[t-\theta]], \omega_M) \quad (8.2)$$

from $t\mathcal{M}_{\text{eff,a.t.}}^\circ$ to $\mathcal{P}(k(t), K^\dagger[[t-\theta]], K((t-\theta)))$. Note that $K^\dagger[[t-\theta]]$ is indeed a $k(t)$-algebra, since θ is transcendental over k.

As the target categories \mathcal{P} are rigid, both functors extend to non-effective t-motifs in a purely formal way.
8.3 Fully Faithfulness on Pure t-Motifs

8.3.1. Denote by the letter P the functor

$$P : tM_{a.t.} \to \mathcal{P} \left(k[t], K^t[[t - \theta]], K^t((t - \theta)) \right)$$

described in the preceding section.

8.3.2. For the sake of brevity, we write \mathcal{P} for the target category of the functors P. Assume that $K = K^t$. Here is the main Theorem of this chapter:

Theorem (first form). If M_1 and M_2 are t-motifs that are analytically trivial and pure of the same weight, then the natural map

$$\text{Hom}_{tM}(M_1, M_2) \to \text{Hom}_P(P(M_1), P(M_2))$$

is an isomorphism of $k[t]$-modules.

Note that we have already shown that the map is injective (3.2.6.)

8.3.3. The Theorem is equivalent with the apparently weaker claim:

Theorem (second form). Let n be a non-negative integer and M an analytically trivial effective t-motif that is pure of weight n, then

$$\text{Hom}_{tM}(C^n, M) \to \text{Hom}_P(P(C^n), P(M))$$

is an isomorphism of $k[t]$-modules.

Proof of equivalence. Take M_1 and M_2 as in the first formulation. Then for a sufficiently large n the t-motif $M \overset{\text{def}}{=} \text{Hom}(M_1, M_2) \otimes C^n$ is effective and by adjunction (2.2.5) it follows that

$$\text{Hom}_{tM}(M_1, M_2) = \text{Hom}_{tM}(C^n, M)$$

and similarly that

$$\text{Hom}_P(P(M_1), P(M_2)) = \text{Hom}_P(P(C^n), P(M)).$$ \qed
8.34. Proof of the Theorem in its second form. Let $f : P(C^n) \to P(M)$ be given. Pick generators to identify

$$P(C^n) = (k[t], K[[t - \theta]], \Omega^n)$$

Denote the image of $1 \in k[t]$ under f by $v \in M\{t\}^\sigma$. The fact that f is a morphism in P implies that

$$\omega_M(v) \in \Omega^n M[[t - \theta]] = (t - \theta)^n M[[t - \theta]]. \quad (8.3)$$

Claim: $v \in \Omega^n M \otimes_{K[t]} R$.

By Lemma 8.2.1 v lies in $M \otimes_{K[t]} R$. The claim states that v has zeroes of order at least n at $t = \theta^i$ for all $i \geq 0$. For $i = 0$ this is precisely what is asserted in equation (8.3). The presence of the other zeroes follows by induction on i since $\sigma(v) = v$ and the action of σ is defined over $K[t]$.

The claim shows that

$$C^n \otimes R \to M \otimes R : g e \mapsto \sigma(g) \frac{v}{\Omega^n}$$

is a well-defined σ-equivariant R-homomorphism. By the GAGA-style Proposition 4.4 of [GARDEYN 2003], this ‘analytic’ map descends to an ‘algebraic’ morphism $C^n \to M$ of t-motifs which by construction gets mapped to f under the functor P. \hfill \Box

8.35. Remarks. The Theorem can also be deduced from ANDERSON’s results on scattering matrices$^{(3)}$

A more general result, accounting also for non-pure t-motifs, has been announced by PINK$^{(4)}$ but unfortunately no precise statement, nor a proof, has been published so far.

8.4 Corollary: Γ_K^s is Connected

8.4.1. Using the above fully faithfulness we obtain the following important Theorem.

$^{(3)}$See §3 of [ANDERSON 1986].

$^{(4)}$See the pre-print [PINK 1997].
Theorem. An effective and analytically trivial t-motif M that is pure of weight zero is constant.

Proof. It is sufficient to prove the Theorem for $K = K^\dagger$.

Denote by r the rank of M, so that $\wedge^r M$ is isomorphic to the unique rank one effective t-motif that is pure of weight zero: $\wedge^r M \approx 1$. By functoriality this translates into an isomorphism

$$P(\wedge^r M) \approx P(1)$$

which implies that the matrix expressing ω_M lies in $\text{GL}(r, K[[t - \theta]])$. From this it follows that there is an isomorphism

$$P(M) \approx P(r1)$$

whence by Theorem 8.3.2 the effective t-motif M is constant. □

8.4.2. This allows us to finish the proof of the connectedness of Γ_{K^\dagger} (4.2.3). Recall that assuming the non-connectedness of Γ we have obtained an effective t-motif M that is analytically trivial and such that $M \otimes M$ is a subquotient of nM for some n. We were left with the task of showing that M is constant.

End of the proof of Theorem 4.2.3. Let λ be the maximal weight of M. Then 2λ is the maximal weight of $M \otimes M$ and hence 2λ is a weight of nM, hence $2\lambda \leq \lambda$, hence $\lambda = 0$, hence M is pure of weight 0, hence, by the above Theorem, M is constant. □