The quasi-periodic Hamiltonian Hopf bifurcation

Henk W Broer1, Heinz Hanßmann2,3 and Jun Hoo1,4

1 Department of Mathematics and Computing Science, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands
2 Institut für Reine und Angewandte Mathematik der RWTH Aachen, 52056 Aachen, Germany

Received 1 February 2006, in final form 10 October 2006
Published 19 January 2007
Online at stacks.iop.org/Non/20/417
Recommended by R de la Llave

Abstract
We consider the quasi-periodic dynamics of non-integrable perturbations of a family of integrable Hamiltonian systems with normally 1 : −1 resonant invariant tori. In particular, we focus on the supercritical quasi-periodic Hamiltonian Hopf bifurcation and address the persistence problem of the singular foliation into invariant quasi-periodic tori near the bifurcation point. With the help of KAM theory, we show that the singular torus foliation survives a small perturbation and that the persisting tori in this foliation form Cantor families. A leading example is the Lagrange top near gyroscopic stabilization weakly coupled with a quasi-periodic oscillator.

Mathematics Subject Classification: 37G99, 37J20, 37J40, 70E17
(Some figures in this article are in colour only in the electronic version)

1. Introduction

The centre-saddle bifurcation and the Hamiltonian Hopf bifurcation are the only ways in which an equilibrium can lose its stability in a generic one-parameter family of Hamiltonian systems. While the equilibrium ceases to exist altogether after a centre-saddle bifurcation, the persistence of the equilibrium is not in question during a Hamiltonian Hopf bifurcation, cf [51], where the linear behaviour changes from elliptic to hyperbolic. A periodic orbit may furthermore lose its stability in a (Hamiltonian) period doubling bifurcation, see [55].

Corresponding to these three bifurcations there are several Diophantine conditions that have to be imposed to prove the persistence of normally elliptic invariant tori in Hamiltonian systems, cf [19, 20, 34, 44, 47, 53, 54, 56, 63, 67]. The condition

\[|\langle \omega, k \rangle| \geq \gamma |k|^{-1} \quad \text{for all } k \in \mathbb{Z}^m \setminus \{0\} \]

(1)

3 Present address: Mathematisch Institut, Universiteit Utrecht, Postbus 80010, 3508 TA Utrecht, The Netherlands.
4 Present address: PricewaterhouseCoopers Advisory N.V., PO Box 22735, 1100 DE Amsterdam, The Netherlands.
bounds the internal frequencies $\omega_1, \ldots, \omega_m$ away from resonance and is also imposed to prove the persistence of normally hyperbolic invariant tori, cf \cite{19, 20, 38, 44, 67}. In the periodic case $m = 1$ it expresses that the period is finite.

The remaining conditions also involve the normal frequencies ω_N^j. The first Mel’nikov condition

\[|\langle \omega, k \rangle + \omega_N^j | \geq \gamma (1 + |k|)^{-1} \quad \text{for all } k \in \mathbb{Z}^m \]

ensures in particular that the normal frequencies do not vanish. Where this condition is violated a quasi-periodic centre-saddle bifurcation may occur, cf \cite{40}. In the periodic case $m = 1$ the first Mel’nikov condition expresses that the Floquet multipliers $\exp(\omega_N^j / \omega_1)$ are bounded away from 1. Then the implicit function theorem can be used to prove the persistence of the periodic orbit. Correspondingly, the approach in \cite{8, 9, 74} yields the persistence of lower dimensional tori already under (1) together with (2). The price to pay is that one loses control on the normal linear behaviour.

The second Mel’nikov condition excludes normal internal resonances of (normal) order two and thus effectively allows us to control the normal linear behaviour. Let us write this condition in two parts, as

\[|\langle \omega, k \rangle + 2\omega_N^j | \geq \gamma (1 + |k|)^{-1} \quad \text{for all } k \in \mathbb{Z}^m \]

and

\[|\langle \omega, k \rangle + \omega_N^j + \omega_N^l | \geq \gamma (1 + |k|)^{-1} \quad \text{for all } k \in \mathbb{Z}^m. \]

Let us furthermore assume that the first Mel’nikov condition (2) is satisfied, otherwise (3) is violated as well. In the periodic case $m = 1$ the condition (3) then expresses that the Floquet multipliers $\exp(\omega_N^j / \omega_1)$ are bounded away from -1. Correspondingly, the (normally) elliptic tori may undergo a frequency halving bifurcation where (3) is violated, cf \cite{15}.

The present paper is concerned with condition (4). We follow \cite{74} and choose Floquet coordinates that turn a given resonance violating (4) into $\omega_N^j + \omega_N^l = 0$. As shown in \cite{49, 75} the perturbed tori can still be reduced to the Floquet form, but both (normally) elliptic and hyperbolic tori may occur. The result proven in \cite{16} states that generically both types of invariant m-tori do occur and that furthermore the family of m-tori undergoes a linear Hamiltonian Hopf bifurcation. When passing through the $1 : -1$ resonance $\omega_N^j + \omega_N^l = 0$ the normal linear behaviour changes from elliptic to hyperbolic.

Under generic conditions on the higher order terms, a nonlinear Hamiltonian Hopf bifurcation takes place. Next to the m-tori this also involves families of $(m + 1)$-tori and $(m + 2)$-tori. This yields a stratification of the product of phase space and parameter space. The resonances excluded by (1)–(4) lead to a Cantorization of this stratification. To fix thoughts we assume from now on that the two normal frequencies in the $1 : -1$ resonance are the only normal frequencies, whence $(m + 2)$-tori are maximal tori of dimension $m + 2 = d$ equal to the number of degrees of freedom.

Remark 1.1. Usually the second Mel’nikov condition is formulated in such a way that it includes the Diophantine condition

\[|\langle \omega, k \rangle + \omega_N^j - \omega_N^l | \geq \gamma (1 + |k|)^{-1} \quad \text{for all } k \in \mathbb{Z}^m. \]

As shown in \cite{45} and also following from \cite{49, 75}, elliptic m-tori that violate this condition nevertheless persist as elliptic invariant tori, i.e. under preservation of their normal linear behaviour.
The quasi-periodic Hamiltonian Hopf bifurcation

Figure 1. Eigenvalue configuration of the linearized Hamiltonian as μ passes through 0.

1.1. Hamiltonian Hopf bifurcation

We consider the quasi-periodic dynamics in Hamiltonian systems with a normally resonant invariant torus. If d is the number of the degrees of freedom, we assume that $d \geq 4$. In particular, we consider the normal $1:\!\!-1$ resonance, which involves a quasi-periodic Hamiltonian Hopf bifurcation. This bifurcation is a natural extension of the Hamiltonian Hopf bifurcation of equilibria (in two-degrees-of-freedom systems) [51]. For completeness we briefly recall the latter.

1.1.1. Hamiltonian Hopf bifurcation for equilibria. Let $H = H(z; \mu)$ be a 1-parameter family of Hamiltonian functions on $\mathbb{R}^4 = \{z_1, z_2, z_3, z_4\}$ with the standard symplectic 2-form $\sigma = dz_1 \wedge dz_3 + dz_2 \wedge dz_4$. For each μ, the Hamiltonian $H(z; \mu)$ has $z = 0$ as an equilibrium point. Moreover,

- the Hamiltonian H is in generic (or non-semisimple) $1:\!\!-1$ resonance at $\mu = 0$, that is, the quadratic part of H has the normal form
 \[\hat{H}_2(z; 0) = \lambda_0 (z_1 z_4 - z_2 z_3) + \frac{1}{2} (z_1^2 + z_4^2), \]
 where $\lambda_0 \neq 0$. Notice that $N = \frac{1}{4} (z_1^2 + z_4^2)$ is the nilpotent part of $\hat{H}_2(z; 0)$, while $\lambda_0 S = \lambda_0 (z_1 z_4 - z_2 z_3)$ is the semisimple part;
- as μ passes through the critical value $\mu = 0$, the equilibrium $z = 0$ changes from linearly unstable to linearly stable, that is, the linearized Hamiltonian vector field associated with \hat{H} (at $z = 0$) changes from hyperbolic into elliptic, see figure 1.

Then, the Hamiltonian H has the Birkhoff normal form

\[\hat{H} = (v_1(\mu) + \lambda_0)S + N + v_2(\mu)M + \frac{1}{2} b(\mu)M^2 + c_1(\mu)SM + c_2(\mu)S^2 + \cdots, \]

where $M = \frac{1}{4} (z_1^2 + z_4^2)$ and the dots denote the higher order terms as functions of S, M and μ [51]. Note that a (truncated) normal form \hat{H} is invariant under the S^1-action generated by the flow of the semisimple quadratic part S; normalization consists of pushing this symmetry through the Taylor series up to an arbitrary order [51]. Then, \hat{H} is Liouville-integrable with the integrals S and \hat{H}. We say that the family \hat{H} undergoes a Hamiltonian Hopf bifurcation at $\mu = 0$, if $(\partial v_2/\partial \mu)(0) \neq 0$ and $b(0) \neq 0$.

The inverse images of the energy-momentum map $EM := (S, \hat{H}) : \mathbb{R}^4 \to \mathbb{R}^2$ fibre the phase space into invariant sets of the Hamiltonian system $\dot{X}_{\hat{H}}$ associated with \hat{H}: for a regular value $m = (s, h) \in \mathbb{R}^2$, the set $EM^{-1}(m) \subset \mathbb{R}^4$ is an $X_{\hat{H}}$-invariant 2-torus; for a critical value m, this set is an invariant ‘pinched’ 2-torus, a circle or an equilibrium. In this way the
Figure 2. Local stratification by invariant tori near the Hamiltonian Hopf bifurcation point \((G, S, \delta) = (0, 0, 0)\) in the parameter space. The surface is a piece of the swallowtail catastrophe set \([64]\).

The phase space becomes a \textit{ramified torus bundle} or \textit{singular foliation}, where the regular fibres are \(X_{H}\)-invariant tori. This gives rise to a stratification in the product of the phase space and the parameter space: the \((\mu, s, h)\)-space is split into different strata according to the dimension of the tori \(EM^{-1}(s, h)\). In the supercritical case where \(b(0) > 0\), it is shown in [51] that the energy-momentum map \((\hat{H}, S) : \mathbb{R}^4 \rightarrow \mathbb{R}^2\) is (locally left–right) equivalent to the map \((G, S)\) with \(G = N + \delta(\mu)M + M^2\). Thus, the inverse images of \((G, S)\) provide a local foliation of the phase space near the equilibrium. Associated with this foliation we obtain a local stratification in the \((\delta, S, G)\)-space given by a piece of the swallowtail catastrophe set: the stratum of equilibria at the crease and the thread, the stratum of periodic solutions at the smooth part of the surface and the stratum of Lagrangian 2-tori at the open region above the surface (excluding the thread). For a sketch see figure 2. The question is what remains of this singular foliation when the family \(\hat{H}\) is slightly perturbed to \(\tilde{H} = H\), where \(H\) is the original Hamiltonian. By an application of the inverse function theorem, the perturbed family \(\tilde{H}\) has a normalized quadratic part of the same form as \(\hat{H}\), leading to the same normal form as (5), compare with [16, section 2]. Now the same local (singularity theoretical) analysis on the normal form \(\tilde{H}\) applies to the perturbation \(\tilde{H}\). From this we conclude that the singular foliation is preserved if \(\tilde{H}\) is \(S^1\)-symmetric. Expressing the dynamics in the variables \(N, M\) and \(P\) effectively reduces the \(S^1\)-symmetry; see figure 3 for the projection of the resulting reduced flow to the \((M, P)\)-plane. In the case of nearly integrable (i.e. not necessarily \(S^1\)-symmetric) perturbation it is shown in [51] that the geometrical picture in figure 2 still remains the same, except for the Lagrangian 2-tori. Application of KAM theory [2, 46, 56] yields the persistence for most of these. In fact, the persistent 2-tori form a Whitney-smooth Cantor family, due to Diophantine non-resonance conditions [23, 62].

1.1.2. \textit{Quasi-periodic Hamiltonian Hopf bifurcation.} The local stratification by tori in a parameter space as sketched in figure 2 can also be found in families of integrable Hamiltonian systems of more degrees of freedom with an invariant normally \(1 : -1\) resonant torus, compare with figure 4(a). Then, we may ask the same persistence question as before, now regarding the (higher dimensional) invariant tori associated with this stratification. In view of KAM theory, we expect Whitney-smooth Cantor families of invariant tori in the foliation to survive small
perturbations, compare with figure 4(b). These families are parametrized over domains with positive Lebesgue measures of corresponding dimension.

Let us specify our present setting. Consider the phase space $M = \mathbb{T}^m \times \mathbb{R}^m \times \mathbb{R}^4 = \{x, y, z\}$ with the symplectic 2-form

$$\sigma = \sum_{i=1}^m dx_i \wedge dy_i + \sum_{j=1}^2 dz_j \wedge dz_{2j},$$

where $\mathbb{T}^m = \mathbb{R}^m / (2\pi \mathbb{Z}^m)$. Notice that M admits the free \mathbb{T}^m-action

$$(\theta, (x, y, z)) \mapsto (\theta + x, y, z) \in M.$$

A Hamiltonian function is said to be \mathbb{T}^m-symmetric if it is invariant under this \mathbb{T}^m-action. We consider the family of \mathbb{T}^m-symmetric Hamiltonian functions

$$H(x, y, z; \nu) = \langle \omega(\nu), y \rangle + \frac{1}{2} \langle Jz, \Omega_1(\nu)z \rangle + \cdots,$$

where $\nu \in \mathbb{R}^p$ and where the dots denote higher order terms. Notice that the union $T = \bigcup T_v$, where $T_v = \{(x, y, z; \nu) : (y, z) = (0, 0)\}$, is a p-parameter family of invariant m-tori of H.

We assume that the torus T_v is in generic normal $1 : -1$ resonance, that is, the Floquet matrix $\Omega_0 = \Omega(v_0)$ has a double pair of purely imaginary eigenvalues with a non-trivial nilpotent part, compare with figure 1. Moreover, we assume that H is invariant under the S^1-action, generated by the quadratic term $S = \frac{1}{2} \langle Jz, \Omega_0^2 z \rangle$, where Ω_0^2 is the semisimple part of Ω_0, cf the previous section. For $m = 0$ and $m = 1$, we arrive at the settings of [51] and [61], respectively. From now on we restrict to the case where $m \geq 2$.

Denote by M/\mathbb{T}^m the orbit space of the \mathbb{T}^m-action. For each value $a \in \mathbb{R}^p$, we introduce the space $M_a = (M/\mathbb{T}^m) \cap \{y = a\}$, identified with $\mathbb{R}^4 = \{z_1, z_2, z_3, z_4\}$. Then, the function H induces a two-degrees-of-freedom Hamiltonian $H_a = H(a, z; v)$ on the reduced space M_a with the symplectic 2-form $dz_1 \wedge dz_3 + dz_2 \wedge dz_4$. The Hamiltonian family $H = H(x, y, z; v)$ of $(m + 2)$-degrees-of-freedom is said to undergo a (non-integrable) quasi-periodic Hamiltonian Hopf bifurcation at $v = v_0$ if the reduced family $H_a = H_a(z; v)$ has a Hamiltonian Hopf bifurcation and the frequencies are non-degenerate. As before we restrict to the supercritical case. Then, from the discussion in the previous section, the phase space M, near the resonant torus T_v, is foliated by invariant m-, by $(m + 1)$- and by $(m + 2)$-tori of the integrable Hamiltonian H. This defines a local stratification, as sketched in figure 4(a), in a suitable

\[5\] In this case, Ω_0 is also said to be in generic or non-semisimple $1 : -1$ resonance.
Figure 4. (a) Singular foliation by invariant tori of the unperturbed integrable Hamiltonian H near the resonant torus, in the supercritical case. (b) Sketch of Cantor families of surviving Diophantine invariant tori in the singular foliation of the perturbed, nearly integrable Hamiltonian \tilde{H}.

parameter space. Notice that the Hamiltonian Hopf bifurcation point corresponds to the normally 1 : -1 resonant torus T_{ν_0}. Now our goal is to investigate the persistence of the local singular foliation by tori near this resonant torus, when H is perturbed to a non-integrable Hamiltonian.

The presence of the normal 1 : -1 resonance gives rise to multiple Floquet exponents, see figure 1. For the persistence of the m-tori near the resonance, the ‘standard’ KAM theory on the persistence of (normally) elliptic tori [19, 20, 34, 44, 47, 53, 54, 56, 63, 67] is therefore not directly applicable. Instead, we apply an adapted version of the KAM theorem [16] to the present setting. This ensures the existence of a Whitney-smooth Cantor family of surviving invariant m-tori, determined by Diophantine conditions. The persistence of the Cantor family of elliptic invariant $(m+1)$-tori will be obtained by a combination of a nonlinear normal form theory and an application of the ‘standard’ KAM theory [20, 44, 56, 63]. In the case of the Lagrangian $(m+2)$-tori, we resort to classical KAM theory [2, 46, 62]. The main results of the present paper roughly say that the singular foliation by tori near the normally resonant torus—corresponding to the local stratification in a suitable parameter space as given in figure 4—is ‘Cantorized’ under small perturbations of H. The persistent tori form Cantor families of invariant m, $(m+1)$- and $(m+2)$-tori which are only slightly deformed from the unperturbed ones. The stratification, associated with the surviving tori, in the parameter space is sketched.
in figure 4(b). Here the stratum of the \((m + 1)\)-tori consists of density points of \((m + 2)\)-quasi-periodicity of large \((2m + 4)\)-dimensional Hausdorff measure. Similarly, the stratum of the \(m\)-tori consists of density points of \((m + 1)\)-quasi-periodicity of large \((2m + 2)\)-dimensional Hausdorff measure. Compare also with [19].

1.2. Perturbations of the Lagrange top

The quasi-periodic Hamiltonian Hopf bifurcation may occur when mechanical systems including the Lagrange top [24, 28, 52], the Kirchhoff top [6] and the double spherical pendulum [50] are weakly coupled with a quasi-periodic oscillator. As a leading example, we consider the Lagrange top with a quasi-periodic oscillator. The Lagrange top is an axially symmetric rigid body in a three-dimensional space, subject to a constant gravitational field such that the base point of the body-symmetry (or figure) axis is fixed in space, see figure 5. Mathematically speaking, this is a Hamiltonian system on the tangent bundle \(TSO(3)\) of the rotation group \(SO(3)\) with the symplectic 2-form \(\sigma\). This \(\sigma\) is the pull-back of the canonical 2-form on the co-tangent bundle \(T^*SO(3)\) by the bundle isomorphism \(\tilde{\kappa}: TSO(3) \rightarrow T^*SO(3)\) induced by a non-degenerate left-invariant metric \(\kappa\) on \(SO(3)\), where \(\tilde{\kappa}(v) = \kappa(v, \cdot)\).

The Hamiltonian function \(H\) of the Lagrange top is obtained as the sum of the potential and kinetic energy. In the following, we identify the tangent bundle \(TSO(3)\) with the product \(M = SO(3) \times so(3)\) via the map \(v_Q \in TSO(3) \mapsto (Q, T_{Id}L_Q^{-1}v) \in SO(3) \times so(3)\), where \(so(3) = T_{Id}SO(3)\) and \(L_Q\) denotes left-translation by \(Q \in SO(3)\). We assume that the gravitational force points vertically downwards. Then, the Lagrange top has two rotational symmetries: rotations about the figure axis and about the vertical axis \(e_3\). We let \(S \subset SO(3)\) denote the subgroup of rotations preserving the vertical axis \(e_3\). Then, for a suitable choice of the space coordinate system \((e_1, e_2, e_3)\), the two symmetries correspond to a symplectic right action \(\Phi^r\) and to a symplectic left action \(\Phi^l\) of the Lie subgroup \(S\) on \(M\). By the Noether theorem [1, 4], these Hamiltonian symmetries give rise to integrals \(M^r\) and \(M^l\) of the Hamiltonian \(H\): the angular momenta along the figure axis and along the vertical axis, respectively. These integrals induce the so-called energy-momentum map \(EM := (H, M^r, M^l): M \rightarrow \mathbb{R}^3\).

The topology of the inverse images of \(EM\) provides a qualitative description of the dynamics of the top. By the Liouville–Arnold theorem [1, 4], for regular values \((h, a, b) \in \mathbb{R}^3\),
the fibres $\mathcal{EM}^{-1}(h, a, b)$ are invariant 3-tori, on which the flow is conditionally periodic. These Lagrangian tori are associated with three physical motions of the top: spin (rotation about the figure axis), nutation (vertical movement of the figure axis) and precession (rotation of the figure axis about the vertical axis). Since the regular values of \mathcal{EM} form an open and dense set in the image of \mathcal{EM}, the phase space is to a large extent fibred by the invariant Lagrangian 3-tori. For a critical value (h, a, b), the fibre $\mathcal{EM}^{-1}(h, a, b)$ forms an invariant pinched 3-torus, an invariant 2-torus or an invariant 1-torus (circle) [24, 27]. A pinched 3-torus corresponds to motions where the top tends to a vertically spinning one, as time $t \to \pm \infty$, while a 2-torus corresponds to a regular precession of the top (i.e. spin + precession) and a 1-torus corresponds to a vertically spinning top.

We are interested in a perturbation problem where the Lagrange top is weakly coupled with a Liouville-integrable quasi-periodic oscillator of $n \geq 1$ frequencies. Here the coupling acts as a perturbation. For example, the base point of the top may be coupled to a vertically vibrating table-surface by a massless spring, see figure 6. In this example, the spring constant, say ε, plays the role of the perturbation parameter. More generally we consider that the (perturbed) Hamiltonian H_ε has the general form

$$H_\varepsilon = H + G + \varepsilon F,$$

where H and G are the Hamiltonians of the top and the oscillator, respectively. By Liouville-integrability, there are angle-action variables $(\xi, \eta) \in T^n \times \mathbb{R}^n$ for the Hamiltonian system of the oscillator such that the Hamiltonian G depends only on η. Then, the frequencies of this oscillator are given by $\partial G/\partial \eta_j(\eta)$ for $j = 1, \ldots, n$. The (unperturbed) Hamiltonian H_0 possesses invariant isotropic tori of dimension $n + 1$, $n + 2$ and $n + 3$. Our interest is in the fate of these invariant tori for small but non-zero ε. In particular, we address the persistence problem in the cases where the values a and b of the angular momenta M^r (along the figure axis) and M^l (along the vertical axis) are close to the critical values $a = b = \pm a_0$ at which the top undergoes gyroscopic stabilization: the spinning motion becomes stabilized as the angular momentum increases. This is related to a Hamiltonian Hopf bifurcation, see section 1.1. Indeed, while the top is gyroscopically stabilized, the linear part $\Omega_\varepsilon \in \mathfrak{sp}(4, \mathbb{R})$ of the once reduced Hamiltonian system H_ε (obtained by dividing out the right circle symmetry generated by M^r) changes from hyperbolic into elliptic, see figure 1.

1.3. Plan of the paper

The rest of the paper is organized as follows. In section 2, we review basic facts relevant for our discussion on the unperturbed Lagrange top [24]. In section 3, we introduce our perturbation problem of the Lagrange top. Section 4 is devoted to study the persistence of invariant quasi-periodic isotropic tori of dimension $m, m + 1$ and $m + 2$, respectively. Finally, in section 5,
conclusive remarks are made on the reduction of the numbers of parameters, on continua in the Cantor families of surviving tori for special perturbation models and on response solutions. Also a few open problems are briefly addressed.

2. The unperturbed Lagrange top

The dynamics of the unperturbed Lagrange top is extensively studied in [4, 24, 37, 48, 72]. In this section, we revisit certain known results relevant for our purposes. In particular, we consider the local dynamics of the vertically upwards spinning top when it becomes gyroscopically stabilized by a Hamiltonian Hopf bifurcation. Our discussion here closely follows [24].

2.1. Preliminaries

As our starting point, we consider a Hamiltonian model of the Lagrange top. Let $\langle \cdot, \cdot \rangle$ denote the inner product of the Lie algebra $\mathfrak{so}(3)$, given by $\langle A, B \rangle = -\frac{1}{2} \text{tr} AB$, where tr stands for the trace. The tensor of inertia I of the top is a $\langle \cdot, \cdot \rangle$-symmetric positive linear operator on $\mathfrak{so}(3)$. By the axial symmetry, two of the three principal moments of inertia I_1, I_2 and I_3 are equal, say $I_1 = I_2$, implying that the map I is given by diag${\{I_1, I_1, I_3\}}$ on a suitable basis $\{E_1, E_2, E_3\}$ of $\mathfrak{so}(3)$, where $I_1, I_3 > 0$. Later on we will assume that $I_1 = 1$. The Lagrange top is now described by the Hamiltonian function $H: SO(3) \times \mathfrak{so}(3) \to \mathbb{R}$ of the form

$$H(Q, V) = \frac{1}{2} \langle I(V), V \rangle + c \langle QE_3 Q^{-1}, E_3 \rangle,$$

where $c > 0$ measures the strength of gravity and the position of the centre of mass. The Hamiltonian H has two symmetries, being the S^1-actions Φ^l and Φ^r of the Lie group S^1 on the phase space $SO(3) \times \mathfrak{so}(3)$, where $S = \{P \in SO(3) : PE_3 = E_3\}$. These two actions are given by

$$\Phi^l(P, (Q, V)) = (PQ, V)$$

and

$$\Phi^r((Q, V), P) = (QP, \text{Ad}_P^{-1} V).$$

By the Noether theorem [1, 4], the two rotational symmetries give rise to two integrals, namely, the angular momenta \mathcal{M}^r (along the figure axis) and \mathcal{M}^l (along the vertical axis). Following [24], one has $\mathcal{M}^r(Q, V) = \langle I(V), E_3 \rangle$ and $\mathcal{M}^l(Q, V) = \langle \text{Ad}_Q I(V), E_3 \rangle$. The integrals H, \mathcal{M}^r and \mathcal{M}^l induce the energy-momentum map

$$\mathcal{E}M \equiv (H, \mathcal{M}^r, \mathcal{M}^l): SO(3) \times \mathfrak{so}(3) \longrightarrow \mathbb{R}^3.$$

2.2. Reduction by symmetry

By dividing the right symmetry Φ^r associated with the rotation about the figure axis, the original Hamiltonian system H with three degrees of freedom is reduced to a system with two degrees of freedom, see [1, 27, 65]. Indeed, for any $a \in \mathbb{R}$, the fibre $(\mathcal{M}^r)^{-1}(a)$ is a Φ^r-invariant smooth submanifold. The reduced phase space $(\mathcal{M}^r)^{-1}(a)/S$ associated with the action Φ^r is diffeomorphic to the 4-dimensional submanifold $\mathcal{R}_a \subset \mathbb{R}^6$ given by

$$\mathcal{R}_a = \{(u, v) \in \mathbb{R}^3 \times \mathbb{R}^3 : u \cdot u = 1, u \cdot v = a\},$$

where \cdot denotes the usual inner product on \mathbb{R}^3. The reduced Hamiltonian $H_a : \mathcal{R}_a \to \mathbb{R}$, induced from H, now reads

$$H_a(u, v) = \frac{1}{2I_1} (v_1^2 + v_2^2 + v_3^2) + cu_3 + \frac{1}{2} \left(\frac{1}{I_3} - \frac{1}{I_1} \right) a^2.$$
The set \mathcal{C} of critical values (h, a, b) of the map $\mathcal{E}M$. The domains with invariant tori of various dimensions of the three-degrees-of-freedom Hamiltonian H, see (7), are indicated. Unstable periodic solutions occur at the one-dimensional thread. The Hamiltonian Hopf bifurcation takes place at the two points $(1/(2I_1) + c/(2I_3), \pm 2\sqrt{c}, \pm 2\sqrt{c})$ in the section $a = b$, where stable and unstable periodic solutions are separated.

The symplectic structure on $SO(3) \times \mathfrak{so}(3)$ induces a symplectic 2-form ω_a on \mathbb{R}^a given by

$$\omega_a(u, v)((\hat{x}, \hat{y}), (\hat{p}, \hat{q})) = x \cdot q - y \cdot p + v \cdot (v \times p),$$

where $(\hat{x}, \hat{y}) = (x \times u, x \times v + y) \in T_{(u,v)}\mathcal{R}_a$ and $(\hat{p}, \hat{q}) = (p \times u, p \times v + q) \in T_{(u,v)}\mathcal{R}_a$, compare with [24, 65]. Here \times denotes the standard cross product of \mathbb{R}^3. The corresponding Hamiltonian vector field X^a to H_a with respect to the 2-form ω_a is given by

$$X^a(u, v) = \left(\frac{\partial H_a}{\partial v} \times u\right) \frac{\partial}{\partial u} + \left(\frac{\partial H_a}{\partial u} \times u + \frac{\partial H_a}{\partial v} \times v\right) \frac{\partial}{\partial v}. \quad (11)$$

Note that the points $p_\pm(a) = \pm(0, 0, 1, 0, 0, a) \in \mathcal{R}_a$ are two (isolated) equilibria of X_a, which are relative equilibria of the full Hamiltonian H, see (7). They correspond to a vertically spinning top. Finally, we notice that from the map $\mathcal{E}M$, one obtains the reduced energy-momentum map $\mathcal{E}M_a$ of the reduced Hamiltonian system H_a, where

$$\mathcal{E}M_a : (u, v) \in \mathcal{R}_a \mapsto (H_a(u, v), v_3) \in \mathbb{R}^2. \quad (12)$$

The singular foliation into the invariant tori in the Lagrange top can be reconstructed from the fibration of $\mathcal{E}M_a$, see [24] for details. For a sketch of this foliation see figure 7.

2.3. Gyroscopic stabilization

In view of the persistence problem announced in section 1.2, we need to know the local dynamics of the Lagrange top as the vertically upwards spinning motion becomes gyroscopically stabilized. According to [24, 28], this local behaviour is characterized by a supercritical Hamiltonian Hopf bifurcation [51]. In the following, we revisit this fact and show that the Floquet matrices of the periodic solutions (associated with the rotations about the figure axis) close to gyroscopic stabilization form a universal matrix unfolding. The latter claim is of importance for an application of [16] to our persistence problem. Observe that these periodic solutions correspond to the relative equilibria $p_\pm(a) = (0, 0, 1, 0, 0, a) \in \mathcal{R}_a$, where
\(\mathcal{R}_a \) is the once reduced phase space given by (8) and where the angular-momentum values \(a \) are close to a critical value \(a_0 \) for which the Lagrange top undergoes gyroscopic stabilization.

From now on, for simplicity we assume that \(I_1 = 1 \); this can always be realized by a time-scaling. Recall from section 2.1 that for the physical parameter \(c \), we have that \(c > 0 \). Furthermore, we denote by \(P_a \in SO(3) \times \mathfrak{o}(3) \) the periodic orbit of the full Hamiltonian \(H \), see (7), corresponding to the relative equilibria \(p_\ast(a) \).

2.3.1. Floquet matrix as a universal unfolding.

In this subsection, we show that the Floquet matrices of the periodic orbits \(P_a \), associated with relative equilibria \(p_\ast(a) \), form a universal matrix unfolding. By [24], there exist local symplectic coordinates \(z = (z_1, z_2, z_3, z_4) \) near the equilibrium \(p_\ast(a) \) in the reduced phase space \(\mathcal{R}_a \), in which

- the symplectic 2-form \(\sigma_a \) of \(\mathcal{R}_a \) takes the form \(dz_1 \wedge dz_3 + dz_2 \wedge dz_4 \);
- the once reduced Hamiltonian \(H_a \), see (9), has the local form

\[
H_a = \frac{1}{8} (a^2 - 4c)(z_1^2 + z_2^2) + \frac{1}{2}(z_3^2 + z_4^2) - \frac{1}{2}a(z_1z_4 - z_2z_3) + \frac{1}{8}(z_1z_4 - z_2z_3)^2
- \frac{1}{8}(z_1^2 + z_2^2)(z_3^2 - z_4^2) + \frac{1}{8}(a^2 + 8c)(z_1^2 + z_2^2)^2 + O(|z|^6),
\]

where the constant term is dropped.

By (13), the linear part of the Hamiltonian vector field corresponding to \(H_a \) (with respect to the 2-form \(dz_1 \wedge dz_3 + dz_2 \wedge dz_4 \)) is given by \(\dot{z} = \Omega_{a,c} z \), where

\[
\Omega_{a,c} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
-\frac{1}{2}a & 0 & 1 & 0 \\
-\frac{1}{2}a & 0 & 0 & 1 \\
\frac{1}{2} & 0 & -\frac{1}{2}a & 0
\end{pmatrix} \in \mathfrak{sp}(4, \mathbb{R}).
\]

This \(\Omega_{a,c} \) is a Floquet matrix of the periodic orbit \(p_a \) associated with the relative equilibrium \(p_\ast(a) \). In the following, we treat \(a \) and \(c \) as parameters and reparametrize to \((\mu_1, \mu_2) = (\frac{a}{2}, \frac{1}{2}a^2 - c) \). In these new parameters, the Floquet exponents of the periodic orbit \(p_a \), i.e. the eigenvalues of \(\Omega_{a,c} \), are given by

\[
\lambda_{\mu_1, \mu_2} = \pm i(\mu_1 \pm \sqrt{\mu_2}).
\]

As the parameter \(\mu_2 \) passes through zero a transition of stability of periodic orbits \(p_a \) takes place, compare with figure 1. In other words, a linear Hamiltonian Hopf bifurcation [51] takes place at \(\mu_2 = 0 \). The gyroscopic stabilization occurs at \(\mu_2 = 0 \), i.e. \(|a| = 2\sqrt{c} \). Since \(c > 0 \), the value \(|a| \approx 2\sqrt{c} \) is non-zero when the top is close to the gyroscopic stabilization.

Lemma 2.1. The once reduced Hamiltonian \(H_a \) is in non-semisimple 1 : −1 resonance as the parameter \(\mu_2 = \frac{1}{2}a^2 - c \) passes through zero. Moreover, the family of the Floquet matrices \(\Omega = \Omega_{\mu_1, \mu_2} \) of the periodic orbits \(p_a \), see (14), is a universal unfolding of \(\mathfrak{G}_{a_0,0}^1 \) where \(a_0 = 2\sqrt{c} \), in \(\mathfrak{sp}(4, \mathbb{R}) \) in the sense of [3, 36].

Proof. By (14) and (15), the Hamiltonian \(H_a \) is in 1 : −1 resonance, while the linear part of \(H_a \) is non-semisimple at \(\mu_2 = 0 \). This verifies the first part of the lemma. Let \(D_{(a_0/2,0)} \Omega \) denote the differential of the map

\[
\Omega : (\mu_1, \mu_2) \in \mathbb{R}^2 \mapsto \Omega_{\mu_1, \mu_2} \in \mathfrak{sp}(4, \mathbb{R})
\]
at \((\mu_1, \mu_2) = (a_0/2, 0)\). To prove the second claim, we have to show that the image
\[D_{(a_0/2,0)} \Omega(\mathbb{R}^2) \]
coincides with the kernel of the commutator \(\text{ad} \Omega^T_{a_0/2,0}\), where \(\Omega^T_{a_0/2,0}\)
denotes the transpose of the matrix \(\Omega_{a_0/2,0}\). A brief calculation shows that the subspace
\[D_{(a_0/2,0)} \Omega(\mathbb{R}^2) \subset \mathfrak{sp}(4, \mathbb{R}) \]
is spanned by
\[
\begin{pmatrix}
 0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0
\end{pmatrix}
\]
and
\[
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix},
\]
which is a basis of \(\text{ker} \text{ad} \Omega^T_{a_0/2,0}\).

\section{2.3.2. Nonlinear Hamiltonian Hopf bifurcation}
In the previous section we saw that a linear Hamiltonian Hopf bifurcation takes place. Since the coefficient \((a^2 + 8c)/96\) of
the 4th order term \((z_1^2 + z_2^2)^2\) is positive, the periodic solutions \(P_a\) of the full Hamiltonian
\(H\) undergo supercritical Hamiltonian Hopf bifurcations at the critical values \(a_0 = \pm 2\sqrt{c}\),
see [24, 28, 42, 52]. By [51], the local geometry of the set of critical values of the reduced
energy-momentum map \(\mathcal{E}M_a \equiv (H_a, m_a)\), see (12), near the critical point \((p_a, (a_0)\) is completely
determined by the 4-jet of \(H_a\), see (13). Depending on the sign of the coefficient of the 4th
order term \((z_1^2 + z_2^2)^2\) in the normal form (13), there are two possible kinds of geometry. In the
present supercritical case of positive coefficient, the local structure is a swallowtail without
the tail, compare with figure 4. By [51, p 79], each point at the smooth part of this swallowtail
surface represents an invariant 2-torus and each point above the surface an invariant 3-torus of
the full Hamiltonian \(H\) on \(SO(3) \times \mathfrak{so}(3)\). The ‘missing part’ of the swallowtail constitutes
the set of critical values in the subcritical case.

\section{2.3.3. Local description of the Lagrange top at gyroscopic stabilization}
For later use, we give a local Hamiltonian model for motions of the (unperturbed) Lagrange top close to the
gyroscopic stabilization. This is done by re-including the rotations about the figure axis (i.e.
the orbits of the right symmetry \(\Phi^r\)) into the reduced model (13). Indeed, let \(q_1\) and \(p_1\) denote
the rotation angle and the angular momentum about the figure axis. By [61, theorem 1.24,
p 37] the variables \((q_1, p_1) \in \mathbb{R}^4 \times \mathbb{R}\), together with the local coordinates \((z_1, z_2, z_3, z_4) \in \mathbb{R}^4\),
provide local symplectic coordinates in a neighbourhood of the critical point \((p_a, (a_0)\), such that

(i) the symplectic 2-form is given by \(dq_1 \wedge dp_1 + dz_1 \wedge dz_3 + dz_2 \wedge dz_4;\)
(ii) for each value \(a\), the periodic orbit \(P_a\) is given by
\[P_a = \{(q_1, p_1, z) : p_1 = 0, z = 0\}; \]
(iii) the full Hamiltonian \(H\) has near \(P_a\) the local form
\[
H_{loc} = \left(\frac{1}{2I_3} (a + p_1)^2 + c\right) + \frac{1}{8}((a + p_1)^2 - 4c)(z_1^2 + z_2^2) - \frac{1}{2}(a + p_1)(z_1z_4 - z_2z_3) + \frac{1}{2}(z_3^2 + z_4^2) + \frac{1}{6}(z_1z_4 - z_2z_3)^2 - \frac{1}{8}(z_1^2 + z_2^2)(z_1z_4 - z_2z_3) + \frac{1}{96}((a + p_1)^2 + 8c)(z_1^2 + z_2^2)^2 + O(|z|^6).
\]
3. Weakly forced Lagrange top

In this section, we consider the Lagrange top (near gyroscopic stabilization) weakly coupled with a Liouville-integrable quasi-periodic oscillator of \(n \geq 1 \) frequencies. Let \((\xi, \eta) \in \mathbb{T}^n \times \mathbb{R}^n\) denote angle-action variables for the Hamiltonian system of the oscillator and \(G = G(\eta) \) be the corresponding Hamiltonian. The Hamiltonian \(\mathcal{H}_\varepsilon \) of the coupled system between the Lagrange top and the oscillator, in the local coordinates \((q_1, p_1, z) \in \mathbb{T}^1 \times \mathbb{R} \times \mathbb{R}^4\), has the general form

\[
\mathcal{H}_\varepsilon(q_1, p_1, z, \xi, \eta) = H_{\text{loc}}(p_1, z) + G(\eta) + \varepsilon F(q_1, p_1, z, \xi, \eta, \varepsilon),
\]

where \(H_{\text{loc}} \) is the local Hamiltonian (16) of the Lagrange top near gyroscopic stabilization. Note that the frequencies of the oscillator are given by \(\delta_j(\eta) = \partial G/\partial \eta_j(\eta) \) for \(j = 1, \ldots, n \). For \(\varepsilon = 0 \), the unperturbed system \(\mathcal{H}_0 = H_{\text{loc}} + G \) possesses \((n+1)-, (n+2)-\) and \((n+3)-\) dimensional invariant tori, compare with section 2.3 and with figure 4(a). The main question is how many of these invariant tori survive when \(|\varepsilon|\) is small but non-zero. We mention a few special examples of the perturbation model (17).

Example 3.1.

(i) A vertical periodic oscillator \((n = 1)\) : the base point of the Lagrange top is coupled with a vertically vibrating table-surface by a spring, see figure 6. In this case, both the right and left symmetries are preserved.

(ii) A horizontal quasi-periodic oscillator \((n = 2)\) : the base point of the Lagrange top is attached to a two-dimensional oscillator which consists of two linear oscillators oriented perpendicularly to each other. Such a (quasi-periodic) oscillator describes a Lissajous figure in the horizontal plane. Here the right symmetry of the Lagrange top is not affected by the oscillator, while the left symmetry is broken.

(iii) A quasi-periodic ‘circular’ oscillator: a weak massless circular spring is placed on and around the figure axis, turning the rigid body into a gyrostat. We apply a quasi-periodic forcing on this spring to make it oscillate around the figure axis. In other words, the oscillation of the spring becomes a part of the spin motion of the top, which does not affect the mass distribution of the body. This means that such a ‘circular’ oscillator breaks the right symmetry but preserves the left one.

(iv) A parametrically forced Lagrange top: in the above models, the Lagrange top is coupled to an external quasi-periodic oscillator. Another way to perturb is by varying for instance the physical quantity \(c \) in the unperturbed Hamiltonian system (7) during the experiment. The perturbed Hamiltonian \(H_\varepsilon \) now reads

\[
H_\varepsilon = \frac{1}{2} \langle I(V), V \rangle + c(1 + \varepsilon f(t; \varepsilon)) \langle \text{Ad}_{\mathcal{Q}} E_3, E_3 \rangle.
\]

where \(f(t; \varepsilon) \) is a quasi-periodic function in \(t \), meaning that

\[
f(t; \varepsilon) = F(\delta_1 t, \ldots, \delta_n t; \varepsilon),
\]

where \(F : \mathbb{T}^n \times \mathbb{R} \to \mathbb{R} \) with rational independent frequencies \(\delta_1, \ldots, \delta_n \). By treating \(\xi = (\delta_1 t, \ldots, \delta_n t) \in \mathbb{T}^n \) as the angle variables of a certain Hamiltonian \(G \), we obtain a special case of the perturbation model (17). For an analysis of a parametrically forced pendulum see [4, 17, 18, 22, 59].

4. Quasi-periodic bifurcation

The perturbation model (17) of the Lagrange top coupled with a quasi-periodic oscillator, introduced in section 3, involves a quasi-periodic Hamiltonian Hopf bifurcation. Motivated
by this example, we want to study the quasi-periodic dynamics of a nearly integrable family of Hamiltonian systems, considered as perturbation of an integrable one that has an invariant 1 : −1 resonant torus. Recalling from section 1.1, we are given the symplectic manifold $M = \mathbb{T}^m \times \mathbb{R}^m \times \mathbb{R}^d = \{ x, y, z \}$ with the standard 2-form $\sigma = \sum_{i=1}^m dx_i \wedge dy_i + \sum_{j=1}^d dz_j \wedge dz_{j+2}$. The phase space M admits the free \mathbb{T}^m-action given by $(\theta, (x, y, z)) \in \mathbb{T}^m \times M \mapsto (\theta + x, y, z) \in M$. We consider a p-parameter family of \mathbb{T}^m-symmetric Hamiltonian functions $H = H(x, y, z; \nu)$ in the form

$$H(x, y, z; \nu) = \langle \omega(v), y \rangle + \frac{1}{2} \langle Jz, \Omega(v)z \rangle + F(y, z, \nu),$$

where F denotes higher order terms and J is the standard symplectic 4×4-matrix, that is,

$$J = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}.$$

(20)

Observe that $\Omega(v) \in \mathfrak{sp}(4, \mathbb{R})$ for all v. The Hamiltonian vector field $X = X_H$ associated with H reads

$$X_v : \left\{ \begin{array}{l} \dot{x} = \omega(v) + \frac{\partial F}{\partial y}(y, z, v), \\ \dot{y} = 0, \\ \dot{z} = \Omega(v)z + J \frac{\partial F}{\partial z}(y, z, v). \end{array} \right.$$

In vectorial shorthand notation, we write

$$X_v(y, z) = \left[\omega(v) + \frac{\partial F}{\partial y}(y, z, v) \right] \frac{\partial}{\partial x} + \left[\Omega(v)z + J \frac{\partial F}{\partial z}(y, z, v) \right] \frac{\partial}{\partial z}. \quad (21)$$

We see that the union $T = \bigcup_v T_v$, where $T_v = \{(x, y, z, v) : (y, z) = (0, 0)\}$ is a p-parameter family of X_H-invariant m-tori. We recall that the torus T_{v_0} is in generic normal $1 : −1$ resonance, if the matrix $\Omega(v_0)$ has a double pair of purely imaginary eigenvalues with a non-trivial nilpotent part. Then, the Hamiltonian function $H = H(y, z, v)$ generically undergoes a quasi-periodic Hamiltonian Hopf bifurcation at $v = v_0$, see section 1.1. Next we study the local quasi-periodic dynamics of H near the bifurcation point, i.e. near the resonant torus T_{v_0}. Denoting by $\bar{\Omega}^s(v_0)$ the semisimple part of $\Omega(v_0)$, we notice that the quadratic term $S = \frac{1}{2} \langle Jz, \bar{\Omega}^s(v_0)z \rangle$ in H generates a free \mathbb{S}^1-action ϕ on the phase space M.

Ultimately, we are interested in the dynamics generated by a small perturbation of the \mathbb{T}^m-symmetric Hamiltonian H. This allows us to replace H by an approximation of H where this helps in the analysis. Now the z-dependent terms have the Birkhoff normal form (5), and hence we may assume that H is ϕ-invariant.

Fixing $a \in \mathbb{R}^m$ near the origin, the Hamiltonian H induces a Hamiltonian $H_a = H_a(z; \nu)$ given by

$$H_a(z; \nu) = H(a, z; \nu) = \langle \omega(v), a \rangle + \frac{1}{2} \langle Jz, \Omega(v)z \rangle + \cdots$$

on the reduced phase space $M_a = (M/\mathbb{T}^m) \cap \{ y = a \}$, identified with the space $\mathbb{R}^4 = \{ z_1, z_2, z_3, z_4 \}$. By the ϕ-invariance of H, the reduced Hamiltonian H_a is Liouville-integrable with the integral S where S is considered as a function on M_a. Now by [51], there are local symplectic coordinates $\tilde{z} = (\tilde{z}_1, \tilde{z}_2, \tilde{z}_3)$ of the reduced phase space M_a near $z = 0$, such that the quadratic part $(H_a)_{2\nu}$ of the reduced Hamiltonian H_a takes the shape

$$(H_a)_{2\nu}(\tilde{z}, \nu) = (\lambda_0 + \mu_1(v))(\tilde{z}_1 \tilde{z}_4 - \tilde{z}_2 \tilde{z}_3) + \frac{\lambda_2(v)}{2}(\tilde{z}_1^2 + \tilde{z}_2^2) + \frac{1}{2}(\tilde{z}_3^2 + \tilde{z}_4^2),$$
where \((\mu_1(v), \mu_2(v)) \in \mathbb{R}^2\) are determined by the Floquet exponents of the full Hamiltonian system \(H\) at the torus \(T_v\); more precisely, the Floquet exponents at \(T_v\) are given by

\[
\pm i(\lambda_0 + \mu_1(v) \pm \sqrt{\mu_2(v)}).
\]

Since the torus \(T_v\) is normally 1\(-1\) resonant we in particular have that \(\lambda_0 \neq 0\) and \(\mu_1(v_0) = 0 = \mu_2(v_0)\). Following [51], the higher order terms in the normal form of \(H_v\), with respect to \((H_v)_2(\hat{z}, \nu = v_0)\), are polynomials in \(\hat{S} = \hat{z}_1\hat{z}_2 - \hat{z}_2^2\hat{z}_3\) and \(M = \hat{z}_1^2 + \hat{z}_2^2\). Hence, at the relative equilibrium \(\hat{z} = 0\) the reduced system \(H_\nu\) has the following normal form:

\[
H_\nu(\hat{z}; \nu) = (H_\nu)_2 + \frac{1}{2}b(a, \nu)\hat{M}^2 + c_1(a, \nu)\hat{S}\hat{M} + c_2(a, \nu)\hat{S}^2 + \cdots,
\]

where \(b, c_1, \) and \(c_2\) are real coefficients and where the dots denote higher order terms, compare with (5). Now the (supercritical) quasi-periodic Hamiltonian Hopf bifurcation requires that \((\partial \mu_2 / \partial \nu)(v_0) \neq 0\) and \(b(0, v_0) > 0\). Denote by \(EM_\nu\) the (reduced) energy-momentum map given by \(EM_\nu(\hat{z}; \nu) = (H_\nu(\hat{z}; \nu), \hat{S}(\hat{z}))\) of the reduced Hamiltonian \(H_\nu\) and by \(C_v\) the set of the critical values of \(EM_\nu\) for each \(\nu\). Then, as shown in [51], the graph \((C_v, \mu_2(v))\) locally near \((\mu_2, \hat{S}, H_\nu) = (0, 0, 0)\) is a piece of the swallowtail surface without the tail, compare with figure 4(a). In this local picture the one-dimensional singular part of the surface is called the crease, and the isolated one-dimensional curve is referred to as the thread.

Now the graph \((C_v, \mu_2(v))\) provides a local stratification in the parameter space—associated with the singular foliation by tori near the normally resonant torus—as follows: the crease and the thread are associated with the elliptic and hyperbolic invariant \(m\)-tori \(T_v\) of the full Hamiltonian \(H\), respectively; the smooth part corresponds to the elliptic invariant \((m + 1)\)-tori; the open region above the surface gives Lagrangian \((m + 2)\)-tori. Our main goal is to study the persistence of these tori when the integrable Hamiltonian \(H\) is perturbed into a nearly integrable one.

4.1. Persistence of invariant resonant \(m\)-tori

We examine the persistence of the \(p\)-parameter family \(T = \bigcup_v T_v\),

\[
T_v = \{(x, y, z; v) : (y, z) = (0, 0)\} \subseteq M,
\]

of the invariant \(m\)-tori of the \((m + 2)\)-degrees-of-freedom Hamiltonian system \(H\) given by (19). This torus family \(T\) consists of elliptic and hyperbolic tori, separated by the resonant torus \(T_{v_0}\), compare with figure 4(a). The ‘standard’ KAM theory on the persistence of lower dimensional tori [19, 20, 34, 38, 44, 47, 56, 63, 67] yields the persistence only for subfamilies of the family \(T\), containing elliptic or hyperbolic tori. The problem is that the resonant torus \(T_{v_0}\) gives rise to multiple Floquet exponents, compare with figure 1. To deal with this problem, we need the normal linear stability theorem [16], as an extension of the ‘standard’ KAM theory.

4.1.1. Normal linear stability in the generic \(-1\) resonant case

We recall the KAM theory [16] for the \(p\)-parameter integrable Hamiltonian \(H = H(x, y, z, v)\) given by (19). The corresponding Hamiltonian vector field \(X = X_H\) to \(H\) has the form

\[
X_v(x, y, z) = [\omega(v) + O(|y|, |z|)]\frac{\partial}{\partial x} + [\Omega(v)z + O(|y|, |z|^2)]\frac{\partial}{\partial z},
\]

where \(\Omega(v) \in \mathfrak{sp}(4, \mathbb{R})\) and \(v\) is in a small neighbourhood \(U\) of \(v_0 \in \mathbb{R}^p\). To realize the persistence of the invariant \(m\)-torus family \(T = T_v\), given by (22), we need certain non-degeneracy and Diophantine conditions.
Non-degeneracy condition. We say that the family H of Hamiltonians given by (19) (or the corresponding family $X = X_H$ of Hamiltonian vector fields, see (23)) is Broer–Huitema–Takens (BHT) non-degenerate [16, 20, 21, 68] at the invariant torus T_{v_0}, if the following holds:

(a) the matrix $\Omega_0 = \Omega(v_0)$ is invertible;
(b) the map $\omega \times \Omega : \mathbb{R}^p \to \mathbb{R}^m \times \text{sp}(4, \mathbb{R})$ is transversal to the submanifold $\{\omega(v_0)\} \times O(\Omega_0)$ at $v = v_0$, where $O(\Omega_0)$ denotes the $Sp(4, \mathbb{R})$-orbit containing the matrix Ω_0, compare with [16].

Condition (b) means that the frequency map $\omega : \mathbb{R}^p \to \mathbb{R}^m$ is submersive at $v = v_0$ and the family $\Omega(v)$ simultaneously is a versal unfolding of Ω_0 inside $\text{sp}(4, \mathbb{R})$. Since the co-dimension of the submanifold $\{\omega(v_0)\} \times O(\Omega_0)$ in the space $\mathbb{R}^m \times \text{sp}(4, \mathbb{R})$ is equal to $m + 2$, to ensure BHT non-degeneracy condition, we need at least $m + 2$ parameters (i.e. $p \geq m + 2$).

Diophantine conditions. The components of the vector $\omega(v) \in \mathbb{R}^m$ are called the internal frequencies of the invariant torus T_v, and the positive imaginary parts of the eigenvalues of $\Omega(v)$ are said to be the normal frequencies, see [20]. The vector $\omega^N(v)$, consisting of the normal frequencies, is referred to as the normal frequency vector at the torus T_v. Recall that the Floquet matrix $\Omega(v_0)$ is in generic 1 : -1 resonance; in particular, $\Omega(v_0)$ has a pair of double eigenvalues on the imaginary axis, say $\pm i\lambda_0$ with $\lambda_0 \neq 0$, compare with figure 1. The number of the normal frequencies may depend on the parameter v in general, but we follow [16] and simply count ω^N twice where appropriate.

Lemma 4.1. There exists a reparametrization

$$\phi : v \in \mathbb{R}^p \mapsto (\omega(v), \mu(v), \rho(v)) \in \mathbb{R}^m \times \mathbb{R}^2 \times \mathbb{R}^{p-m-2}$$

near $v = v_0$ such that $\mu(v_0) = (0, 0)$ and the normal frequency vector $\omega^N(v)$ of the Hamiltonian $X_{\omega, \mu, \rho} = X_{\phi(v)}$ is given by

$$(24) \begin{cases} \omega^N = (\lambda_0 + \mu_1, \lambda_0 + \mu_1), & \text{for } \mu_2 \leq 0, \\ \omega^N = (\lambda_0 + \mu_1 + \sqrt{\mu_2}, \lambda_0 + \mu_1 - \sqrt{\mu_2}), & \text{for } \mu_2 > 0. \end{cases}$$

In particular, the family X always has two normal frequencies for all v in a sufficiently small neighbourhood of $v_0 \in \mathbb{R}^p$.

Proof. By the non-degeneracy condition and the inverse function theorem, there exists a reparametrization

$$\phi : v \in \mathbb{R}^p \mapsto (\omega(v), \mu(v), \rho(v)) \in \mathbb{R}^m \times \mathbb{R}^2 \times \mathbb{R}^{p-m-2}$$

such that the vector fields $X_{\omega, \mu, \rho} = X_{\phi(v)}$ read

$$X_{\omega, \mu, \rho} = [\omega + O(|y|, |z|^2)] \frac{\partial}{\partial x} + [\Omega(\mu)z + O(|y|, |z|^2)] \frac{\partial}{\partial z},$$

where $\Omega(\mu)$ is any universal unfolding of $\Omega_0 = \Omega(v_0)$. By [16, 51], the matrix family $\Omega(\mu)$ can be chosen as

$$(25) \Omega(\mu) = \begin{pmatrix} 0 & -\lambda_0 - \mu_1 & 1 & 0 \\ \lambda_0 + \mu_1 & 0 & 0 & 1 \\ -\mu_2 & 0 & 0 & -\lambda_0 - \mu_1 \\ 0 & -\mu_2 & \lambda_0 + \mu_1 & 0 \end{pmatrix}.$$

Now a direct calculation gives the normal frequencies (24) of the family $X_{\omega, \mu, \rho}$. □
The quasi-periodic Hamiltonian Hopf bifurcation

The frequency map $\mathcal{F} : \mathbb{R}^p \to \mathbb{R}^m \times \mathbb{R}^2$ is defined as $\mathcal{F}(v) = (\omega(v), \omega^N(v))$. We say that the frequency vector $\mathcal{F}(v)$ satisfies the (τ, γ)-Diophantine conditions if for a constant $\tau > m - 1$ and for a positive parameter γ, we have

$$|\langle \omega(v), k \rangle + \langle \omega^N(v), \ell \rangle| \geq \gamma |k|^{-\tau},$$

for all $k \in \mathbb{Z}^m \setminus \{0\}$ and for all $\ell \in \mathbb{Z}^2$ with $|\ell_1| + |\ell_2| \leq 2$. For a non-empty open (connected) neighbourhood U of $v_0 \in \mathbb{R}^p$, let $\Gamma_{\tau, \gamma}(U)$ denote the set of parameters $v \in U$ such that the internal and normal frequencies $(\omega(v), \omega^N(v))$ satisfy the Diophantine condition (26). Also we need the subset $\Gamma_{1, \gamma}(U')$, where the set $U' \subset U$ is given by

$$U' = \{ v \in U : \text{dist.}((\omega(v), \omega^N(v)), \partial \mathcal{F}(U)) > \gamma \}.$$

For γ sufficiently small, the set U' is still a non-empty open neighbourhood of v_0.

Remark 4.2. The set $\Lambda = \{(\omega, \omega^N) \in \mathbb{R}^m \times \mathbb{R}^2 \}$ subject to the Diophantine conditions (26) is a nowhere dense, uncountable union of closed half lines. The intersection $\Lambda \cap S^{m+1}$ with the unit sphere of $\mathbb{R}^m \times \mathbb{R}^2$ is a closed set, which by Cantor–Bendixson theorem [43] is the union of a perfect set and a countable set. The complement of $\Lambda \cap S^{m+1}$ contains the dense set of resonant vectors (ω, ω^N). Since all points in $\Lambda \cap S^{m+1}$ are separated by resonant hyperplanes, the perfect set is totally disconnected and hence a Cantor set. In S^{m+1} this Cantor set tends to full Lebesgue measure as $\gamma \downarrow 0$. We refer to the set of frequencies $(\omega(v), \omega^N(v))$ satisfying (26) as a ‘Cantor set’—a foliation of manifolds over a Cantor set.

Theorem 4.3 (Quasi-periodic Hamiltonian Hopf bifurcation: persistence of Diophantine m-tori). Let $H = H_\nu$ be the p-parameter real-analytic family of integrable Hamiltonians given by (19). Assume that

- the torus T_{v_0} is in generic normal $1 : -1$ resonance;
- the family H is non-degenerate at the invariant torus T_{v_0}.

Then, for γ sufficiently small and for any p-parameter real-analytic family \tilde{H} of Hamiltonians on (M, σ) sufficiently close to H in the compact-open topology on complex analytic extensions, there exists a neighbourhood U of $v_0 \in \mathbb{R}^p$ and a map

$$\Phi : M \times U \to M \times \mathbb{R}^p,$$

defined near the normally resonant tori T_{v_0}, such that

(i) Φ is a C^∞-near-identity diffeomorphism onto its image;
(ii) the image $\Phi(V)$, with $V = \mathbb{R}^m \times \{y = 0\} \times \{z = 0\} \times \Gamma_{1, \gamma}(U')$, is a Cantor family of X_ρ-invariant Diophantine tori, and the restriction of Φ to V induces a conjugacy between H and \tilde{H};
(iii) the restriction $\Phi|_V$ is symplectic and preserves the (symplectic) normal linear part $\mathcal{N}X = \omega(v)(\partial/\partial x) + \Omega(v)z(\partial/\partial z)$ of the family $X = X_H$ of Hamiltonian vector fields associated with H.

In [16, 21] the results of theorem 4.3 are referred to as normal linear stability. For the proof see [16]. We refer to the Diophantine tori V (also its diffeomorphic image $\Phi(V)$) as a Cantor family of invariant m-tori, as it is parametrized over a ‘Cantor set’.

Let us briefly discuss the geometrical pictures of the ‘Cantor set’ $\Gamma_{1, \gamma}(U')$. In view of lemma 4.1, we may assume that $v = (\omega, \mu, \rho)$ and that the normal frequencies are given

6 For a discussion on symplectic normal linearization, see [20, 44].
Figure 8. Sketch of the ‘Cantor sets’ $\Gamma_{\tau,\gamma}(U^+)$ and $\Gamma_{\tau,\gamma}(U^-)$ corresponding to $\mu_2 \geq 0$ and $\mu_2 < 0$, respectively. The total ‘Cantor set’ $\Gamma_{\tau,\gamma}(U)$ is depicted in \((c)\). The half planes in \((a)–(c)\) give continua of invariant m-tori. In \((d)\), a section of the ‘Cantor set’ $\Gamma_{\tau,\gamma}(U)$, along the μ_2-axis, is singled out: the above grey region corresponds to a half plane given in \((c)\)—a two-dimensional continuum of m-tori.

by (24). Moreover, we can suppress the parameter ρ, since the internal and normal frequencies do not depend on ρ. Denoting the subsets

$U^+ = \{ v \in U : \mu_2 > 0 \}$,

$U^- = \{ v \in U : \mu_2 \leq 0 \}$,

we have $\Gamma_{\tau,\gamma}(U) = \Gamma_{\tau,\gamma}(U^+) \cup \Gamma_{\tau,\gamma}(U^-)$. In the set $\Gamma_{\tau,\gamma}(U^-)$, the parameter μ_2 does not appear in the normal frequencies, so there are no Cantor gaps in the μ_2-direction. It is not hard to see that the set $\Gamma_{\tau,\gamma}(U^-)$ is the intersection of U^- and a union of closed half planes of the form $\{(t\omega, t(\lambda_0 + \mu_1)) : t \geq 1\}$, see figure 8(b). Similarly, from the Diophantine conditions (26) with $\omega^N = (\lambda_0 + \mu_1 + \sqrt{\mu_2}, \lambda_0 + \mu_1 - \sqrt{\mu_2})$, we see that the set $\Gamma_{\tau,\gamma}(U^+)$ is a union of closed half parabolae of the form $\{(t\omega, t(\lambda_0 + \mu_1), t^2\mu_2) : t \geq 1\}$, see figure 8(a).

Remark 4.4. To ensure that the BHT non-degeneracy condition holds, we need at least $m+2$ parameters. Since we only have m distinguished or internal parameters, we are forced to use external parameters to satisfy the non-degeneracy condition, see the stability theorem 4.5. However, if we only care about the existence of invariant tori in the perturbed system, but refrain from explicitly relating perturbed invariant tori to unperturbed ones, we can use a much weaker form of non-degeneracy, the so-called Bakhtin–Rüssmann conditions, for details see [5,19,67].
For such a weaker persistence result, no external parameters will be required, see section 5.1. Also compare with [21].

4.1.2. Application to the forced Lagrange top. Now we turn back to the Lagrange top and consider the perturbation model (17) of the Lagrange top (near gyroscopic stabilization) coupled with a quasi-periodic oscillator. The unperturbed Hamiltonian H_0, i.e. the Hamiltonian (17) with $\varepsilon = 0$, possesses invariant $(n+1)$-, $(n+2)$- and $(n+3)$-tori, see section 3. In this subsection, we investigate the persistence of the invariant $(n+1)$-tori of H_0 for $\varepsilon \neq 0$, applying theorem 4.3 with $m = n + 1$. From (17) and (16), the Hamiltonian H_ε has, in the local coordinates $((q_1, \xi), (p_1, \eta), z) \in T^{n+1} \times \mathbb{R}^{n+1} \times \mathbb{R}^4$, the form

$$
H_\varepsilon(q_1, \xi, p_1, \eta, z) = \left(\frac{1}{2I_3}(a + p_1)^2 + e \right) + \frac{1}{8}((a + p_1)^2 - 4c)(z_1^2 + z_2^2)
$$

$$
- \frac{1}{2}(a + p_1)(z_1z_4 - z_2z_3) + \frac{1}{2}(z_3^2 + z_4^2) + O(|z|^4) + G(\eta) + \varepsilon F(q_1, \xi, p_1, \eta, z, \varepsilon),
$$

(28)

where a/I_3 is the frequency of the periodic solution $\{(q_1, p_1, z) : p_1 = 0, z = 0\}$ in the unperturbed Lagrange top. The Hamiltonian vector field X_ε corresponding to (28), with respect to the 2-form $dq_1 \wedge dp_1 + d\xi \wedge d\eta + dz^2$, reads

$$
\dot{q}_1 = (a + p_1)/I_3 + O(|z|^2) + O(\varepsilon),
$$

$$\dot{p}_1 = O(\varepsilon),
$$

$$\dot{\xi}_1 = \delta_1(\eta) + O(\varepsilon),
$$

$$\dot{\eta}_1 = O(\varepsilon),
$$

$$\vdots
$$

$$\dot{\xi}_n = \delta_n(\eta) + O(\varepsilon),
$$

$$\dot{\eta}_n = O(\varepsilon),
$$

$$\dot{z} = \Omega_{a,c}z + O(|p_1|, |z|^3) + O(\varepsilon),
$$

(29)

where $\Omega_{a,c} \in \text{sp}(4, \mathbb{R})$ is the Floquet matrix given by (14), and the vector $(\delta_1(\theta), \ldots, \delta_n(\theta))$ gives the frequencies of the quasi-periodic oscillator with $\eta = \theta$. Near the invariant torus given by $(p_1, \eta, z) = (0, \theta, 0)$ of the unperturbed system X^0, we introduce the local coordinates $(x, y) \in T^{n+1} \times \mathbb{R}^{n+1}$ such that

$$
x = (q_1, \xi) \in T \times T^n \quad \text{and} \quad y = (p_1, \eta - \theta) \in \mathbb{R} \times \mathbb{R}^n.
$$

Also, we write

$$
\omega = \omega(a, \theta) = (a/I_3, \delta_1(\theta), \ldots, \delta_n(\theta)) \in \mathbb{R}^{n+1}
$$

(30)

as the frequency vector of the invariant $(n+1)$-torus

$$
\{(x, y, z) \in T^{n+1} \times \mathbb{R}^{n+1} \times \mathbb{R}^4 : (y, z) = (0, 0)\}
$$

of the unperturbed system X^0. In the new coordinates (x, y, z), the vector field X_ε obtains the form

$$
X_\varepsilon^x(x, y, z) = [\omega(a, \theta) + O(|y|, |z|^2) + O(\varepsilon)] \frac{\partial}{\partial x} + O(\varepsilon) \frac{\partial}{\partial y}
$$

$$
+ [\Omega_{a,c}z + O(|y|, |z|^3) + O(\varepsilon)] \frac{\partial}{\partial z}.
$$

(31)
For the family X^0 to be BHT non-degenerate, see section 4.1, we need at least $n+3$ parameters. Besides the distinguished parameters, i.e. conserved quantities $\Theta, a \in \mathbb{R}^n \times \mathbb{R}$, we can incorporate the physical quantity c and the principal moment of inertia I_3 as two extra parameters. In this way, the unperturbed system X^0 becomes an $(n+3)$-parameter family of vector fields on $\mathbb{T}^{n+1} \times \mathbb{R}^{n+1} \times \mathbb{R}^3$ parametrized by

$$v = (\theta, a, c, I_3) \in \mathbb{R}^{n+3}.$$

Under such circumstances, we have the following stability theorem on the X^0-invariant isotropic $(n+1)$-tori given by $(y, z) = (0, 0)$.

Theorem 4.5 (Forced Lagrange top: persistence of Diophantine $(n+1)$-tori). Let $v_0 = (\theta_0, \pm 2\sqrt{c_0}, c_0, I_3^0) \in \mathbb{R}^{n+3}$, where θ_0, c_0, I_3^0 are fixed and where $c_0, I_3^0 > 0$. Assume that the map

$$\delta : \eta \in \mathbb{R}^n \mapsto (\delta_1(\eta), \ldots, \delta_n(\eta)) \in \mathbb{R}^n$$

(32)

is a local diffeomorphism at $\eta = \theta_0$. Then, for γ and $|\varepsilon|$ sufficiently small, there exists a neighbourhood U of v_0 in the parameter space \mathbb{R}^{n+3} such that the following holds: the nearly integrable system X^ε has a Cantor family of invariant $(n+1)$-tori; these X^ε-invariant tori are C^∞-near-identity diffeomorphic image of the tori $\mathbb{T}^{n+1} \times \{y = 0\} \times \{z = 0\} \times \Gamma_{\gamma, \varepsilon}(U)$; on these tori the diffeomorphism conjugates X and X^ε and preserves the normal linear behaviour.

Proof. In view of theorem 4.3, we only need to check the non-degeneracy of the unperturbed system X^0 at $v_0 = (\theta_0, a_0, c_0, I_3^0)$, where $a_0 = \pm 2\sqrt{c_0}$. First, the normal matrix Ω_{a_0,c_0} is invertible for $a_0 \neq 0$ and is in non-semisimple $1 : -1$ resonance. By lemma 2.1, the matrix unfolding $\Omega = \Omega_{a_0,c_0}$ is a (uni)versal unfolding of $\Omega_{a_0,c_0} \in \text{sp}(4, \mathbb{R})$. Next, define the map $\phi : \mathbb{R}^{n+3} \rightarrow \mathbb{R}^{n+1} \times \text{sp}(4, \mathbb{R})$ by

$$\phi(\theta, a, c, I_3) = (\omega(a, \theta), \Omega_{a_0}),$$

then the derivative $D_{v_0} \phi : \mathbb{R}^{n+3} \rightarrow \mathbb{R}^{n+1} \times \text{sp}(4, \mathbb{R})$ of ϕ at v_0 is given by

$$D_{v_0} \phi(\theta, a, c, I_3) = ((I_3^0 a - a_0 I_3)/(I_3^0)^2, D_{v_0} \delta(\theta), \Omega_{a}(a, c)),$$

where

$$\hat{\Omega}(a, c) = \begin{pmatrix} 0 & a_0 & 0 & 0 \\ -\frac{a_0}{2} & 0 & 0 & 0 \\ -\frac{a_0}{2} & 0 & 0 & 0 \\ c_0 - \frac{a_0 a}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{a_0}{2} \end{pmatrix}.$$

Since the image satisfies $\hat{\Omega}(\mathbb{R}^2) = \text{ker ad} \Omega_{a_0,c_0}^T$, see also the proof of lemma 2.1, the map $\phi = \omega \times \Omega$ is transversal to the submanifold

$$\{\omega(a_0, \theta_0)\} \times \text{ad} \Omega_{a_0,c_0}(\text{sp}(4, \mathbb{R})) = \{\omega(a_0, \theta_0)\} \times O(\Omega_{a_0,c_0}).$$

□

Remark 4.6. Since the ‘Cantor set’ $\Gamma_{\gamma, \varepsilon}(U)$ has full measure for $\gamma \downarrow 0$, a majority of all invariant $(n+1)$-tori survives small perturbations for γ sufficiently small, see [20, 44, 62].
4.2. Persistence of the elliptic invariant \((m + 1)\)-tori

Let us go back to the real-analytic family \(H\) of Hamiltonians of the form (19) with \(X_\mu\)-invariant \(m\)-tori \(T = \bigcup_T T_v\), where

\[T_v = \{(x, y, z, \nu) \in \mathbb{T}^m \times \mathbb{R}^m \times \mathbb{R}^d : y = 0, z = 0\}. \]

It is assumed that this family undergoes a quasi-periodic Hamiltonian Hopf bifurcation at \(v = v_0\). This implies in particular that the torus \(T_{v_0}\) is normally 1 : -1 resonant. As said before, the phase space \(M = \mathbb{T}^m \times \mathbb{R}^m \times \mathbb{R}^d\), near this torus, is foliated by \(X_\mu\)-invariant \(m\)-, \((m + 1)\) and \((m + 2)\)-tori. This local singular foliation gives a local stratification in a suitable parameter space described by a piece of the swallowtail catastrophe set as sketched in figure 4(a), compare with section 4.1. Our present aim is to study the persistence of the \((m + 1)\)-tori ‘surrounding’ the invariant \(m\)-tori of the unperturbed integrable system \(H\) given by (19). Our strategy follows [11, 14]: we first normalize the perturbation of the system \(H = H(y, z, \nu)\) as in (19), to obtain a truncated integrable part up to a suitable order; we show that this integrable truncation possesses a family of elliptic invariant \((m + 1)\)-tori; considering the non-integrable remainder in the normal form as a perturbation of the truncated integrable part, we apply the ‘standard’ KAM theory [20, 44, 56, 63] to yield the persistence of invariant elliptic \((m + 1)\)-tori. Again, as an example we consider the Lagrange top weakly coupled with a quasi-periodic oscillator.

4.2.1. Nonlinear quasi-periodic Hamiltonian Hopf bifurcation. Let \(\tilde{H} = \tilde{H}_v\) be a \(p\)-parameter real-analytic family of non-integrable Hamiltonians on \(M = \mathbb{T}^m \times \mathbb{R}^m \times \mathbb{R}^d = \{x, y, z\}\) with the symplectic 2-form \(\sigma = \sum_{i=1}^m dx_i \wedge dy_i + \sum_{j=1}^d dz_j \wedge dz_{j+1}\). We investigate the quasi-periodic dynamics of the Hamiltonians \(\tilde{H}\) sufficiently close to the integrable family \(H\), where \(H = H_v\) is given by

\[H_v(y, z) = (\omega(v), y) + \frac{1}{2} (J_z, \Omega(v)z) + O(|y|^2, |z|^3), \]

where \(J\) is given by (20). First of all, by theorem 4.3, the family \(\tilde{H}\) possesses a Cantor family of invariant \(m\)-tori; moreover, by preservation of normal linear behaviour, we have the following low-order normal form

\[\tilde{H}_v(x, y, z) = (\omega(v), y) + \frac{1}{2} (J_z, \Omega(v)z) + F(x, y, z, v), \]

where the parameters \(v\) are restricted to the ‘Cantor set’ \(\Gamma_{1,p}(U')\) and where \(F = O(|y|^2, |z|^3)\). To investigate the existence of the elliptic \((m + 1)\)-tori in the nearly integrable family \(\tilde{H}\), we need to consider the higher order terms of \(\tilde{H}\); in other words, we need to normalize \(\tilde{H}\) up to higher orders. After applying the reparametrization \(v \mapsto (\omega(v), \mu(v), \rho(v))\) as given in lemma 4.1, without loss of generality we can assume that \(v = (\omega, \mu, \rho) \in \mathbb{R}^m \times \mathbb{R}^2 \times \mathbb{R}^{m-2}\). Then, following the proof of lemma 4.1—for a suitable change in coordinates—the family \(\tilde{H} = \tilde{H}_{\omega,\mu,\rho}(x, y, z)\) takes the form

\[\tilde{H}_{\omega,\mu,\rho}(x, y, z) = (\omega, y) + \frac{1}{2} (J_z, \Omega(\mu)z) + F(x, y, z, \omega, \mu, \rho), \]

where \(\Omega(\mu) \in \mathfrak{sp}(4, \mathbb{R})\) is given by

\[\Omega(\mu) = \begin{pmatrix} 0 & -\lambda_0 - \mu_1 & 1 & 0 \\ \lambda_0 + \mu_1 & 0 & 0 & 1 \\ -\mu_2 & 0 & 0 & -\lambda_0 - \mu_1 \\ 0 & -\mu_2 & \lambda_0 + \mu_1 & 0 \end{pmatrix}, \]

with constant \(\lambda_0 \neq 0\). Notice that the normal frequency vector \(\omega_N = \omega_N(\mu_1, \mu_2)\) of the Hamiltonian family \(\tilde{H}\) is given by (24). For simplicity we will drop the parameter \(\rho\) for
our discussion below, since it can be easily incorporated again. In this way, we have that
\[\nu = (\omega, \mu) \in \mathbb{R}^m \times \mathbb{R}^2. \]

As is done in [10, 11] for the (dissipative) quasi-periodic Hopf bifurcation, we start with
normalizing higher order terms of the perturbed systems \(\tilde{H}_\nu \). The idea is to remove non-
integrable terms from lower order terms by applying suitable coordinate transformations; these
transformations will be taken as the Hamiltonian time-one-flows generated by the Hamiltonian
functions of the form \(\text{ad} S(L) = [L, S] \), where \(S \) is the semisimple Hamiltonian

\[S = (\omega, y) + (\lambda_0 + \mu_1)(z_1 z_4 - z_2 z_3) \]

and \(L \) a certain Hamiltonian function, for details see appendix B. Here \([\cdot, \cdot]\) stands for the
Poisson bracket with respect to the standard 2-form \(\sigma \). Under the above setting, we have the
following nonlinear normal form theorem.

Theorem 4.7 (Quasi-periodic normal form). Let \(H = H_0 \) be the real-analytic family of
integrable Hamiltonians given by (33). Assume that the assumptions of theorem 4.3 are
satisfied and that the parameters \(\nu = (\omega, \mu, \rho) \) are restricted to \(\Gamma_{\rho'}(U') \), see section 4.1,
where \(U \) is a small neighbourhood of the fixed parameter \(\nu_0 \). Then, for any real-analytic
Hamiltonian family \(\tilde{H} = \tilde{H}_\nu \) sufficiently close to \(H \) in the compact-open topology on complex
analytic extensions, there exists a family of symplectic maps

\[\Phi : T^m \times \mathbb{R}^m \times \mathbb{R}^4 \times U \longrightarrow T^m \times \mathbb{R}^m \times \mathbb{R}^4 \times \mathbb{R}^p \]

with the following properties. For fixed \(\nu \) the projection of \(\Phi \) is real-analytic in \((x, y, z)\) and \(\Phi \) is \(C^\infty \)-near-identity. The Hamiltonian \(\tilde{H} \circ \Phi = G + R \) is decomposed into an integrable
part \(G \) and a remainder \(R \). The former reads

\[G = (\omega, y) + (\lambda_0 + \mu_1)S + N + \mu_2 M + \frac{b}{2} M^2 + c_1 SM + c_2 S^2, \]

where \(S, N, M \) are the quadratic polynomials given by

\[S = z_1 z_4 - z_2 z_3, \quad N = \frac{1}{4}(z_1^2 + z_4^2) \quad \text{and} \quad M = \frac{1}{2}(z_1^2 + z_2^2) \] (37)

and where the coefficients \(b, c_1 \) and \(c_2 \) depend on the parameters \((\omega, \mu_1, \mu_2)\). The remainder \(R \) satisfies

\[\frac{\partial^{q+p+k} R}{\partial^q \mu_0 \partial^p y \partial^k z}(x, 0, 0, \omega, \mu_1, 0) = 0, \]

for all indices \((q, p, k) \in \mathbb{N}_0^3 \) with \(2q + 4|p| + |k| \leq 4 \).

A proof of theorem 4.7 is given in appendix B. For a similar nonlinear normal form theory in the
dissipative or non-conservative setting see [10, 11] and in the Hamiltonian setting see [14, 61].

Remark 4.8.

1. The special case of theorem 4.7 for \(m = 1 \) is considered in [61].
2. Theorem 4.7 holds in particular for the unperturbed system \(H \), that is, for \(\tilde{H} = H \). In
this integrable case, the remainder \(R \) will be independent of the angle coordinates \(x \); moreover, the parameters \(\nu = (\omega, v, \rho) \) are not required to be restricted to the ‘Cantor
set’ determined by the resonances.
3. The integrable part \(G \) in theorem 4.7 is said to be a normal form truncation of \(\tilde{H} \circ \Phi \) of
order 4.
As the next step, we show that the integrable part G has a family of elliptic invariant $(m+1)$-tori. The invariant $(m+1)$-tori of the vector field $X = X_G$, associated with the Hamiltonian function G, are determined by the cubic equation

$$F(S, M) := S^2 - 4bM^3 - 4\mu_2M^2 - 4c_1SM^2 = 0$$

in M and satisfy $M > 0$, compare with [28, 42, 51, 52]. This allows us to introduce the variable $Q = -\frac{1}{2} \ln M$ and the angle φ conjugate to S by means of

$$z_1 = \frac{\sqrt{2} \cos \varphi}{\exp Q}, \quad z_3 = \frac{S}{\sqrt{2}} \exp Q \sin \varphi + \frac{P}{\sqrt{2}} \exp Q \cos \varphi,$$

$$z_2 = \frac{\sqrt{2} \sin \varphi}{\exp Q}, \quad z_4 = -\frac{S}{\sqrt{2}} \exp Q \cos \varphi + \frac{P}{\sqrt{2}} \exp Q \sin \varphi.$$

In these variables the symplectic structure reads

$$dx \wedge dy + d\varphi \wedge dS + dP \wedge dQ,$$

and the Hamiltonian G becomes

$$G = (\omega, y) + (\lambda_0 + \mu_1)S + \frac{1}{4}e^{2Q}(P^2 + S^2) + \frac{b}{2}e^{-4Q} + \mu_2e^{-2Q} + c_1Se^{-2Q} + c_2S^2.$$

Proposition 4.9. The truncated integrable Hamiltonian G has an $(m+1)$-parameter family of elliptic invariant $(m+1)$-tori.

Proof. The associated vector field X_G of G obtains the form

$$\dot{x} = \omega,$$

$$\dot{\varphi} = \lambda_0 + \mu_1 + \frac{1}{2}Se^{2Q} + c_1e^{-2Q} + 2c_2S,$$

$$\dot{y} = 0,$$

$$\dot{S} = 0,$$

$$\dot{P} = \frac{1}{2}e^{2Q}[P^2 + F(S, e^{-2Q})],$$

$$\dot{Q} = -\frac{1}{2}Pe^{2Q}. $$

We see that the family $T = T_{s_0}$ given by

$$T_{s_0} = \{(x, \varphi), (y, S), P, Q) \in \mathbb{T}^m \times \mathbb{R}^{m+1} \times \mathbb{R}^2 : y = 0, S = s_0, P = 0 \text{ and } F(s_0, e^{-2Q}) = 0)$$

forms an $(m+1)$-parameter family of invariant $(m+1)$-tori of X_G. By the inverse function theorem, the equation $F(S, e^{-2Q}) = 0$ locally has a unique solution $Q = Q(S)$ for any given small S, provided that $b > 0$. The latter condition is always satisfied in the supercritical case.

Next, we consider the torus T_{s_0} given by $(y, S, P, Q) = (0, s_0, 0, q_0)$, where $F(s_0, e^{-2Q}) = 0$. The normal matrix of X_G at T_{s_0} is given by

$$\begin{pmatrix} 0 & 2e^{2Q}(s_0^2 + 2be^{-6Q}) \\ -\frac{1}{2}e^{2Q} & 0 \end{pmatrix},$$

which has only purely imaginary eigenvalues. This shows that the torus T_{s_0} is indeed of the elliptic type. □
Remark 4.10. In the above proof, we see again that the cubic equation (38) indeed determines elliptic invariant tori of G. The Floquet matrix of the vector field X_c at the torus T_{ν_0}: $(y, P, Q) = (0, s_0, 0, q_0)$ is given by (41). Hence, the normal frequency $\omega^N(s_0)$ of T_{ν_0} is given by

$$\omega^N(s_0) = \sqrt{s_0^2 e^{4\varrho} + 2 be^{-2\varrho}}. \quad (42)$$

Next we argue that the remainder term R in the normal form, as a function of (x, ρ, y, β, q), can be considered as a small perturbation of the truncated part G. First we localize near an invariant torus $(y, \beta, q, s, 0, q_0)$ and introduce coordinates $(\zeta_1, \zeta_2) = (P, Q - q_0)$ and $s = S - s_0$. This leads to a symplectic transformation by means of $q \mapsto q + P \cdot (\partial/\partial S)q_0$ and $x_1 \mapsto x_1 + P \cdot (\partial/\partial y)q_0$. In the new variables, we expand the Hamiltonian function G near the invariant torus $(y, s, \zeta_1, \zeta_2) = (0, 0, 0, 0)$ to the Taylor series,

$$G = (\omega, y) + \omega_{m+1} s + (\frac{1}{4} e^{2\rho} + 2) s^2 + \frac{1}{4} e^{2\rho} \zeta_1^2 + (s_0 e^{2\rho} + 2 be^{2\rho} s_0) \zeta_2^2, \quad (43)$$

where the constant part and higher order terms are dropped and where

$$\omega_{m+1} = \lambda_0 + \mu_1 + \frac{1}{4} s_0 e^{2\rho} + c_1 e^{-2\rho} + 2 c_2 s_0. \quad (44)$$

Furthermore, we write $s_0 = [\mu_2]^2 \delta$ whence μ_2 controls the approach to the origin in the (s_0, μ_2)-plane and can be used as a scaling parameter below. The next lemma gives an implicit dependence of q_0 on μ_2 when $\mu_2 \to 0$.

Lemma 4.11. For $\alpha = \frac{1}{4} e^{2\rho} \mu_2$ one has $\alpha = O(1)$ as $\mu \to 0$.

Proof. Recall that $F(s_0, e^{-2\rho}) = 0$, implying that

$$2\delta^2 \alpha^2 = b + 2\alpha + 2c\delta \sqrt{|\mu_2|} \alpha.$$

For $\mu_2 \to 0$, we have $2\delta^2 \alpha^2 - 2\alpha - b = 0$; it follows that the limit of α is independent of μ_2. \hfill \square

Theorem 4.12 (Quasi-periodic Hamiltonian Hopf bifurcation: persistence of Diophantine elliptic $(m + 1)$-tori). Let $H = \tilde{H}$ be the family of integrable Hamiltonians given by (33) such that the assumptions in theorem 4.7 are satisfied. Then for γ sufficiently small and any real-analytic Hamiltonian family $\tilde{H} = \tilde{H}_0$ sufficiently close to H in the compact-open topology on complex analytic extensions, there exists a map

$$\Phi : T^m \times \mathbb{R}^m \times \mathbb{R}^4 \times U \longrightarrow T^{m+1} \times \mathbb{R}^{m+1} \times \mathbb{R}^2 \times \mathbb{R}^p$$

changing coordinates near the normally resonant torus T_{ν_0}, such that

(i) Φ is a C^∞-near-identity diffeomorphism onto its image;

(ii) the Hamiltonian $\tilde{H} \circ \Phi^{-1}$ contains a Cantor family of elliptic invariant $(m + 1)$-tori \tilde{V};

(iii) on these tori \tilde{V} the normal linear part of the Hamiltonian vector fields associated with the family $\tilde{H} \circ \Phi^{-1}$ is symplectically conjugate to Hamiltonian vector fields given by the truncated Hamiltonian function (43), provided that the parameters $\nu = (\omega, \mu, \rho)$ and $(\omega, \omega_{m+1}, s_0)$ satisfy the Diophantine conditions

$$|\omega k + k_{m+1} \omega_{m+1} + \ell \alpha^N| \geq \gamma (|k| + |k_{m+1}|)^{-\tau}, \quad (45)$$

for all $(k, k_{m+1}) \in \mathbb{Z}^m \times \mathbb{Z} \setminus \{(0, 0)\}$ and $\ell = 0, \pm 1, \pm 2$.

7 Here the real parameter δ is of order one for $\mu_2 \to 0$.

The quasi-periodic Hamiltonian Hopf bifurcation

Proof. Writing \(\beta = 4\delta^2 \alpha + b\varepsilon^{-2} \), the coefficients of the terms \(\zeta_1^2 \) and \(\zeta_2^2 \) in the Taylor series (43) have the forms

\[
\frac{\alpha}{2\mu_2} \quad \text{and} \quad \frac{\mu_2^2 \beta}{2},
\]

respectively. By lemma 4.11, both the parameters \(\alpha \) and \(\beta \) are of order one as \(\mu_2 \) approaches zero. The normal frequency of the truncated part \(G \) is of order \(\sqrt{\mu_2} \), whence the scaling

\[
(x, y, q, s, \zeta_1, \zeta_2; \omega_{n+1}, \mu_2, \omega) \mapsto (x, \mu_2^{-\frac{1}{2}} y, \mu_2^{-\frac{1}{2}} q, \mu_2^{-\frac{1}{2}} s, \mu_2^{-\frac{1}{2}} \zeta_1, \mu_2^{-3} \zeta_2; \mu_2^{-\frac{1}{2}} \omega_{n+1}, \mu_2, \mu_2^{-\frac{1}{2}} \omega)
\]

together with a division of the integrable part \(G \) by \(\mu_2^\frac{1}{2} \) yields

\[
\mu_2^{-\frac{1}{2}} \cdot G(x, y, q, s, \zeta_1, \zeta_2) = \langle \omega, y \rangle + \omega_{n+1}s + \frac{\alpha}{2} \xi_1^2 + \frac{\beta \zeta_2^2}{2} + \cdots.
\]

As \(\mu_2 \to 0 \) the perturbation by both the higher order terms of \(G \) and the non-integrable remainder \(R \) is sufficiently small to yield the persistence of elliptic tori \((\zeta_1, \zeta_2) = (0, 0) \) that satisfy the Diophantine conditions (45) on the internal frequencies \(\bar{\omega} = (\omega, \omega_{n+1}) \in \mathbb{R}^n \times \mathbb{R} \) and the normal frequency \(\omega^N = \sqrt{\alpha \beta} \), see [19]. \(\square \)

4.2.2. Application to the forced Lagrange top. We go back to the Lagrange top coupled with a quasi-periodic oscillator. Recall that the Lagrange top becomes gyroscopically stabilized by the supercritical Hamiltonian Hopf bifurcation, see the discussion in section 2. In this section, we apply the nonlinear analysis of the quasi-periodic Hamiltonian Hopf bifurcation, discussed in section 4.2.1, to study the local (nonlinear) dynamics of the perturbation model \(\mathcal{H}_\varepsilon \) of the Lagrange top with oscillator, see (17). In particular, we concentrate on the persistence of the elliptic \((n + 2)\)-tori in the unperturbed system \(\mathcal{H}_0 \), associated with the smooth part of the critical value set of the energy-momentum map of the Lagrange top, see figure 7. Following the discussion in section 4.1.2, there are local canonical coordinates \((x, y, z) \in T^{n+1} \times \mathbb{R}^{n+1} \times \mathbb{R}^4\) such that

\[
\mathcal{H}_\varepsilon(x, y, z) = \langle \omega(a, I_3, \theta), y \rangle + \frac{1}{2} (Jz, \Omega_{a, c} z) + O(|y|, |z|^2) + O(\varepsilon),
\]

where \(\omega(a, I_3, \theta) = \langle a/I_3, \delta(\theta) \rangle \in \mathbb{R} \times \mathbb{R}^n \) and the Floquet matrix \(\Omega_{a, c} \in \mathfrak{sp}(4, \mathbb{R}) \) is given by (14). Recall that \(a \) and \(\theta = (\theta_1, \ldots, \theta_n) \in \mathbb{R}^n \) denote the angular-momentum values of the Lagrange top and of the (external) quasi-periodic oscillator, respectively; the \((I_3, c) \in \mathbb{R}^2\) are physical parameters in the Lagrange top, see also section 2.1.

For \(\varepsilon \) sufficiently small, theorem 4.5 provides the normal linear behaviour of the Hamiltonian system \(\mathcal{H}_\varepsilon \) at invariant Diophantine \((n + 1)\)-tori. However, the quasi-periodic dynamics of the nearly integrable Hamiltonian \(\mathcal{H}_\varepsilon \) near the \((n + 1)\)-torus in normal 1 : −1 resonance is not completely determined by the normal linear part obtained by theorem 4.5, compare with section 4.2.1. Indeed, to inspect the existence of invariant quasi-periodic Floquet \((n + 2)\)-tori in the perturbed system \(\mathcal{H}_\varepsilon \), we need to consider the fourth order terms in the (normalized) function \(\mathcal{H}_\varepsilon \).

Now a nonlinear description of \(\mathcal{H}_\varepsilon \) is obtained by theorem 4.7; by this theorem, the Hamiltonian \(\mathcal{H}_\varepsilon \) can be normalized into the form

\[
\mathcal{H}_\varepsilon = \langle \omega(v), y \rangle + N + \frac{a}{2} S + \left(\frac{1}{4} a^2 - c \right) M + \frac{b(v, c, \varepsilon)}{2} M^2 + c_1(v, c, \varepsilon) SM + c_2(v, c, \varepsilon) S^2 + R_\varepsilon(x, y, z, v, c, \varepsilon),
\]

where \(v = (a, I_3, \theta) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^n \) and where the remainder \(R_\varepsilon \) contains non-integrable terms—provided that the parameters \((\omega, \mu_1, \mu_2) = (\omega, \varepsilon^2 a, \varepsilon^{-2} a^2 - c)\) satisfy the Diophantine
conditions (26). The polynomials M, S, N are given by (37). The (unperturbed) Lagrange top undergoes the supercritical Hamiltonian Hopf bifurcation, i.e. the coefficient function $b(v, c, s) > 0$ for all physical values of (v, c) and s close to 0.

The normal form (47) holds in particular for the unperturbed integrable Hamiltonian \mathcal{H}_0, see remark 4.8(2). In this integrable case, no Diophantine conditions are required for the parameters (ω, μ, μ_2); the remainder R_0 consists of integrable terms being quasi-homogenous polynomials of degree $s > 4$ in (y, S, M, μ_2) with the weight $(\alpha_y, \alpha_S, \alpha_M, \alpha_{\mu_2}) = (2, 1, 1, 1)$.

Let X^0 be the corresponding Hamiltonian vector field to \mathcal{H}_0. Following section 4.2.1, the vector field X^0 has a family of elliptic invariant $(n + 2)$-tori, which in the canonical coordinates $(x, y, S, (P, Q)) \in \mathbb{T}^{n+1} \times \mathbb{T}^1 \times \mathbb{R}^{n+1} \times \mathbb{R} \times \mathbb{R}^2$, as introduced in section 4.2.1, read

$$T_0 = \{(x, y, S, (P, Q)) : (y, S, P, Q) = (0, s_0, 0, q_0), F(s_0, e^{-2q_0}) = 0\},$$

where F is the cubic polynomial (38), compare with (40). In the local variables $\bar{x} = (x, y) \in \mathbb{T}^{n+2}$, $\bar{y} = (y, S - s_0) \in \mathbb{R}^{n+2}$ and $\bar{z} = (P, Q - q_0) \in \mathbb{R}^2$ near the invariant tori T_{s_0}, the normal linear part NX^0 of X^0 at the invariant $(n + 2)$-tori T_{s_0} obtains the form

$$NX^0 = \tilde{\omega}(v, a, s_0) \frac{\partial}{\partial x} + \tilde{\Omega}(s_0) \frac{\partial}{\partial z},$$

where $\tilde{\omega} = (\omega(v), \omega_{n+2}(a, s_0))$ with $\omega_{n+2} = -\frac{1}{q} a + \frac{1}{2} s_0 e^{2q} + c_1 e^{-2q} + 2c_2 s_0$ and where the Floquet matrix $\tilde{\Omega}$ is given by

$$\tilde{\Omega}(s_0) = \begin{pmatrix} 0 & 2e^{2q}(s_0^2 + 2be^{-6q}) \\ -\frac{1}{q} e^{2q} & 0 \end{pmatrix} \in \mathfrak{sp}(2, \mathbb{R}),$$

see also the proof of proposition 4.9. Notice that, in the new local variables $(\bar{x}, \bar{y}, \bar{z})$, the $(n+2)$-tori T_{s_0} are given by $(\bar{y}, \bar{z}) = (0, 0)$. Considering $(a, I_3, \theta) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ as parameters, we write T_{a, I_3, θ, s_0} for the torus $T_{s_0} : (\bar{y}, \bar{z}) = (0, 0)$. Writing $\nu = (a, I_3, \theta, s_0)$, we use the parameters (a, I_3, θ) to control the internal frequencies $\tilde{\omega}(v) = (\omega(v), \omega_{n+2}(a, s_0))$, while let s_0 keep track of the normal frequency $\omega^N = \sqrt{s_0^2 e^{6q} + 2be^{-2q}}$ at the torus T_{a, I_3, θ, s_0}. Recall that the frequencies of the quasi-periodic oscillator are given by $\delta(\theta) = (\delta_1(\theta), \ldots, \delta_n(\theta))$, see section 3. Now suppose that the frequencies δ depend diffeomorphically on the momentum value θ, then the persistence of the $(n + 2)$-torus family $\bigcup T_{a, I_3, \theta, s_0}$ is ensured by theorem 4.12 for the frequency vector $(\omega, \omega_{n+2}, \omega^N)$ satisfying the Diophantine conditions (45). More precisely, we have the following theorem.

Theorem 4.13 (Forced Lagrange top: persistence of Diophantine elliptic $(n + 2)$-tori). Let $v_0 = (a_0, I_0^3, I_0^0, s_0^0) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}$ be fixed, where $s_0^0 \neq 0$ and $I_0^3 > 0$, $a_0 > 0$. Assume that the map $\delta : \theta \in \mathbb{R} \rightarrow \delta(\theta) \in \mathbb{R}^n$ is a local diffeomorphism at $\theta = \theta_0$. Then, for any sufficiently small γ and $|s|$, there exists a neighbourhood U of v_0 in the parameter space \mathbb{R}^{n+1} such that the following holds: the nearly integrable perturbation X^ε has a Cantor family of invariant $(n + 2)$-tori; these X^ε-invariant tori are C^∞-near-identity diffeomorphic image of the X^0-invariant tori

$$\bigcup_{v \in \Gamma_\varepsilon(v_0)} (\mathcal{T}_v \times \{v\});$$

on these tori the diffeomorphism conjugates X^0 and X^ε and preserves the normal linear behaviour.

Remark 4.14. Instead of using a to control the internal frequency ω_{n+2} and s_0 to control the normal frequency ω^N, we could have interchanged their roles. As in the case of the $(n + 1)$-tori, see section 4.1.2, we need at least $n + 3$ parameters to ensure non-degeneracy.
classical KAM theory \cite{2,46,62} and the global version \cite{13}. The Kolmogorov non-degeneracy of the open region (excluding the thread) above the surface. To yield the persistence, we apply the condition—required for the KAM theory—on the Lagrangian tori near the resonant torus is (i.e. submersivity) of the frequency map. Since we only have \(n + 2 \) distinguished parameters which are \((a, \theta, z_0) \in \mathbb{R} \times \mathbb{R}^d \times \mathbb{R} \), we need the external parameter \(I_1 \) or \(c \) as the extra parameter to obtain the persistence by theorem 4.12. Nevertheless, following \cite{19,20}, we can get rid of the external parameter \(I_1 \) or \(c \) by a rescaling in time, i.e. we do not need external parameters at all, thereby weakening our stability result: conjugacy between quasi-periodic dynamics on the invariant tori is replaced by equivalence. Here equivalence means diffeomorphisms mapping orbits into orbits with preservation of the time direction.

4.3. Persistence of the invariant Lagrangian \((m + 2)\)-tori

In the previous two sections, we considered the persistence of the invariant \(m \)- and \((m + 1)\)-tori of the integrable Hamiltonian \(H \) given by (19) from the singular torus foliation near the normally \(1 \) : \(-1 \) resonant torus. Next to these tori we have invariant Lagrangian \((m + 2)\)-tori in the local foliation. In this section, we investigate the persistence of these Lagrangian \((m + 2)\)-tori. In the swallowtail stratification as sketched in figure 4, these tori are located at the open region (excluding the thread) above the surface. To yield the persistence, we apply the classical KAM theory \cite{2,46,62} and the global version \cite{13}. The Kolmogorov non-degeneracy condition—required for the KAM theory—on the Lagrangian tori near the resonant torus is provided by the presence of non-trivial monodromy, compare with \cite{31,57,66}. As before we discuss the Lagrangian tori in the coupled system of the Lagrange top and an oscillator.

4.3.1. Classical KAM theory. We briefly recall the setting we work with. The phase space \(M \) is given by \(M = \mathbb{T}^m \times \mathbb{R}^n \times \mathbb{R}^4 = \{ x, y, z \} \) with the 2-form \(\sigma = \sum dx_i \wedge dy_i + \sum dz_j \wedge dz_{j+1} \). The space \(M \) admits a free \(\mathbb{T}^m \)-action, see section 1.1. We consider the integrable (i.e. \(\mathbb{T}^m \)-symmetric) Hamiltonian function \(H \) of the form

\[
H(y, z, v) = \langle \omega(v), y \rangle + \frac{1}{2} \langle Jz, \Omega(v)z \rangle + F(y, z, v),
\]

see also (19). The invariant torus \(T_{I_0} \) given by \((y, z, v) = (0, 0, v_0)\) is in non-semisimple \(1 \) : \(-1 \) resonance. For later use, we furthermore require that the derivative \(\partial F/\partial y \) has a maximal rank at the torus \(T_{I_0} \).

As before we assume that \(H \) is invariant under the free \(S^1 \)-action generated by the polynomial \(S = \langle Jz, \Omega(v_0)z \rangle \), where \(\Omega(v_0) \) denotes the semisimple part of \(\Omega(v_0) \). Then, by the invariance with respect to this circle-action, the Hamiltonian \(H \) is Liouville-integrable with the \(m + 2 \) first integrals \(EM = (H, \Sigma, I) \), where \(I = \{ y_1, \ldots, y_m \} \). Recall from section 1.1, for each value \(a \in \mathbb{R}^n \), that the Hamiltonian \(H \) induces a two-degrees-of-freedom Hamiltonian function \(H_a \) on the reduced phase space \(M_a = I^{-1}(a)/\mathbb{T}^m \), identified with the space \(\mathbb{R}^4 = \{ z_1, z_2, z_3, z_4 \} \). Associated with this reduced system, we have the reduced energy-momentum map \(EM_a : M_a \to \mathbb{R}^2 \) defined by \(EM_a = \langle H_a, \hat{S} \rangle \), where \(\hat{S} = z_1 z_4 - z_2 z_3 \). It is known from \cite{24,51} that the regular \(EM_a \)-bundle—consisting of Lagrangian 2-tori—has non-trivial monodromy. This gives rise to non-triviality of the regular bundle. More precisely, let \(D \) be a punctured disc in the regular values set of \(EM_a \) which transversely intersects the thread (corresponding to the hyperbolic \(m \)-tori, see figure 4). Then, the foliation by \(EM_a \)-fibres over the boundary \(\partial D \cong S^1 \) of \(D \) forms a non-trivial bundle.

Theorem 4.15 (Quasi-periodic Hamiltonian Hopf bifurcation: persistence of Diophantine Lagrangian \((m + 2)\)-tori). Let \(H = H_v \) be the real-analytic family of Hamiltonians given by (49). Suppose that the Hessian of the higher order term \(F \) with respect to \(y \) is non-zero at the resonant torus \(T_{I_0} \). Then there exists a neighbourhood \(U \subset \mathbb{R}^p \) of \(v_0 \) such that for any real-analytic Hamiltonian \(\tilde{H} \) sufficiently close to \(H \) (with \(v \in U \)) in the
compact-open topology on complex analytic extensions the following holds: the perturbed Hamiltonian \(\tilde{H} \) has a Cantor family of invariant \((m+2)\)-tori; this family is a \(C^\infty \) near-identity diffeomorphic image of the family of maximal tori of \(H \) restricted to a ‘Cantor set’ (determined by the Diophantine conditions on the internal frequencies); on these tori, the diffeomorphism conjugates \(H \) and \(\tilde{H} \).

Proof. The Lagrangian \((m+2)\)-tori of the integrable Hamiltonian \(H \) are the regular fibres of the energy-momentum map \(EM : M \to \mathbb{R}^{m+2} \). Our concern is with the persistence of these Lagrangian tori near the thread, see figure 4(a), when \(H \) is perturbed into a nearly integrable Hamiltonian family \(\tilde{H} \). In view of the classical KAM theory \([2, 46]\), most of these Lagrangian tori survive the perturbation in Whitney-smooth Cantor families. In the supercritical ((quasi)-periodic) Hamiltonian Hopf bifurcation, Kolmogorov non-degeneracy near the thread is a consequence of the non-trivial monodromy\(^8\). Indeed, non-degeneracy follows by an application of \([31, 57, 66, 71]\) to the reduced two-degrees-of-freedom system \(H_\theta \) and the assumption that \(\det(\partial F/\partial y) \neq 0 \) at the resonant torus \(T_\nu \). We conclude that, for sufficiently small perturbation, the Lagrangian tori survive in a Whitney-smooth Cantor family of positive measure \([23, 62]\).\(\square \)

The corresponding KAM-conjugacies, which are only defined on locally trivial sub-bundles, can be glued together to provide a globally Whitney-smooth conjugacy from the integrable to the nearly integrable Cantor torus family \([13]\). Moreover, for sufficiently small perturbation this allows a proper extension of the non-trivial monodromy for the nearly integrable case. This may be of interest for semiclassical quantum mechanics, compare with \([25, 26, 29, 32, 33, 69]\).

Remark 4.16. In two degrees of freedom the stable and unstable manifolds of a hyperbolic equilibrium with eigenvalue configuration as in figure 1 (also called a focus–focus point) often form a pinched 2-torus. A pinched 2-torus is homeomorphic to a one-point compactification of the cylinder \(S^1 \times \mathbb{R} \), see figure 9. The normally hyperbolic \(m \)-tori along the thread similarly lead to pinched \((m+2)\)-tori.

4.3.2. Application to the forced Lagrange top. Now we apply the above ideas to the coupled system of the Lagrange top and a quasi-periodic oscillator, see the Hamiltonian model \((17)\). Recall that the Lagrange top is a completely Liouville-integrable Hamiltonian system, giving rise to a lot of invariant 3-tori in the six-dimensional phase space. Indeed, by the Liouville–Arnold theorem \([1, 4]\), each regular fibre of the energy-momentum map \(EM = (H, \mathcal{M'}, \mathcal{M}) \),

\(^8\) For more details on monodromy see \([24, 30, 58]\).
see section 2, is a regular 3-torus. Recall that in the image space \(\mathbb{R}^3 = \{(h, a, b)\) of the map \(\mathcal{E}M \), see figure 7, the regular values (associated with the regular 3-tori) of \(\mathcal{E}M \) form the open set (excluding the thread) above the two-dimensional critical surface \(\mathcal{C} \).

Adding the quasi-periodic oscillator with \(n \) frequencies, the invariant regular 3-tori of the top become invariant regular \((n + 3)\)-tori, which are Lagrangian tori of the integrable Hamiltonian system \(\mathcal{H}_0 = H_{\text{loc}} + G \), see (17). As usual, the persistence of these tori will be our main issue. To this end, we need to check the Kolmogorov condition in the Hamiltonian system \(\mathcal{H}_0 \). Recall that close to gyroscopic stabilization, regular 3-tori of the top live next to the singular (or pinched) 3-tori of the top associated with critical values at the thread, compare with figure 7. These pinched 3-tori are related to the focus–focus singularities of the once reduced Hamiltonian \(H_0 \), see (9).

Let \(B \) be a Lagrangian torus bundle over a smoothly contractible open domain \(U \) (close to the thread) in the regular values set of \(\mathcal{E}M \), compare with figure 10(a). Then, this bundle contains no non-trivial monodromy, see [30]. By the Liouville–Arnold theorem [1, 4], in the whole neighbourhood \(B \) of an invariant regular \((n + 3)\)-torus, one can introduce angle-action coordinates \((x, y) \in T^{n+3} \times \mathbb{R}^{n+3}\) such that the symplectic form is given by \(dx \wedge dy \) and \(y_1, \ldots, y_{n+3} \) are commuting first integrals of \(\mathcal{H}_0 \). Moreover, the function \(\mathcal{H}_0 \) depends only on the action variable \(y \) and the frequencies of the system are given by \(\omega_1 = \partial \mathcal{H}_0 / \partial y_1(y), \ldots, \omega_{n+3} = \partial \mathcal{H}_0 / \partial y_{n+3}(y) \). Local dynamics of \(\mathcal{H}_0 \) on the regular \((n + 3)\)-tori in \(B \) determined by the level sets

\[
\{(y_1, \ldots, y_{n+3}) = \text{const}\}
\]

is given by the trajectories of the vector field

\[
X(x, y) = \sum_{i=1}^{n+3} \omega_i \frac{\partial}{\partial x_i}.
\]

Now by the classical KAM theory [2, 46, 62], a Cantor subfamily (of full measure) of these tori is persistent under a small non-integrable perturbation, if the Jacobian matrix

\[
\begin{bmatrix}
\frac{d\omega_i}{dy_j} & 1 \leq i, j \leq n
\end{bmatrix}
\begin{bmatrix}
\frac{\partial^2 \mathcal{H}_0}{\partial y_i \partial y_j} & 1 \leq i, j \leq n
\end{bmatrix}
\]

is non-singular (i.e. the Kolmogorov non-degeneracy condition holds). This condition implies that the frequencies \(\omega_1, \ldots, \omega_{n+3} \) are fully (at least locally) controlled by the action variable \(y \). In such a case, the latter serves as distinguished parameter of our system.
For the coordinates \((x, y)\), we may write
\[
\begin{align*}
x &= (q_1, q_2, q_3, \xi_1, \ldots, \xi_n) \in T^{n+3}, \\
y &= (p_1, p_2, p_3, \eta_1, \ldots, \eta_n) \in \mathbb{R}^{n+3},
\end{align*}
\]
where \((q, p) \in T^3 \times \mathbb{R}^3\) and \((\xi, \eta) \in T^n \times \mathbb{R}^n\) denote the action-angle variables in the Lagrange top and in the quasi-periodic oscillator, respectively. In particular, the variables \(q_1\) and \(p_1\), as before, are the rotation angle and the angular momentum about the figure axis of the top, respectively, while \((q_2, q_3, p_2, p_3)\) are action-angle coordinates of the once reduced system \(H_a\), see section 2.

Remark 4.17. One of the action-variables \(p_2\) and \(p_1\) can be chosen to be the angular momentum map \(m_a : (u, v) \in \mathcal{R}_a \mapsto v_3 \in \mathbb{R}\) being induced by the angular momentum \(\mathcal{M}'\) (to the once reduced phase space \(\mathcal{R}_a\)) along the vertical axis, see section 2. In this case, we have \(p_1 = a = \mathcal{M}', p_2 = b = \mathcal{M}'\) and \(p_3 = p_3(\mathcal{H}_{\text{loc}}, \mathcal{M}', \mathcal{M}')\). Notice that \(\partial \mathcal{H}_{\text{loc}}/\partial p_3 = \omega_3 \neq 0\); it follows that the values of \((p_1, p_2, p_3)\) are (locally) completely determined by the distinguished parameters \((h, a, b) = (\mathcal{H}_{\text{loc}}, \mathcal{M}', \mathcal{M}')\).

We assume that the frequency map \(\delta = \partial \mathcal{H}_{0}/\partial \eta : \mathbb{R}^n \to \mathbb{R}\) is a diffeomorphism. In this case, it remains to check the Kolmogorov condition for the three-degrees-of-freedom Hamiltonian \(\mathcal{H}_{\text{loc}}\), see (16), of the Lagrange top near gyroscopic stabilization. Notice that the rotation frequency \(\omega_1 = a/I_1\), see section 2; it follows that the values of \((p_1, p_2, p_3)\) are (locally) completely determined by the distinguished parameters \((h, a, b) = (\mathcal{H}_{\text{loc}}, \mathcal{M}', \mathcal{M}')\).

Next, we recall some basics of focus–focus singularities from [35, 58]: a critical point of an energy-momentum map \((H_a, m_a) : \mathcal{R}_a \to \mathbb{R}^2\) contains a singular fibre of focus–focus or complex-saddle type, then the Kolmogorov condition holds for \(H_a\) in a full neighbourhood of this singular fibre.

Lemma 4.18. For a given angular momentum value \(a\) with \(0 < |a| < 2\sqrt{c}\), let \(h_a = c + a^2/(2I_1)\). Then, the fibre \(\mathcal{E}\mathcal{M}_a^{-1}(h_a, a)\) is a singular focus–focus fibre. Hence, under such a circumstance, the Kolmogorov non-degeneracy condition holds on the invariant regular 2-tori close to the singular fibre \(\mathcal{E}\mathcal{M}_a^{-1}(h_a, a)\).

Proof. Since \(\mathcal{E}\mathcal{M}_a(p_*(a)) = (h_a, a)\), where \(p_*(a) = (0, 0, 1, 0, 0, a) \in \mathcal{R}_a\) is a critical point of \(\mathcal{E}\mathcal{M}_a\), the fibre \(\mathcal{E}\mathcal{M}_a^{-1}(h_a, a) \subseteq \mathbb{R}^4\) is singular: a pinched 2-torus, compare with figure 9. Moreover, the point \(p_*(a)\) is the only singularity in \(\mathcal{E}\mathcal{M}_a^{-1}(h_a, a)\). It remains to show that \(p_*(a)\) is a focus–focus singularity of \(\mathcal{E}\mathcal{M}_a\). To this end, we use the local forms of \(H_a\) and \(m_a\) at the singularity \(p_*(a)\), introduced in section 2. Recall that in suitable Darboux coordinates \(z \in \mathbb{R}^4\) near \(p_*(a)\), the quadratic part of \(H_a\) is given by the 2-jet in (13), while that of \(m_a\),
The quasi-periodic Hamiltonian Hopf bifurcation

Figure 11. Critical value set of the reduced energy-momentum map EM_a, where $0 < |a| < 2\sqrt{c}$. The isolated critical value is located at $(h, b) = (h_a, a) = (c + (1/2I_3)a^2, a)$.

is given by $z_1 z_4 - z_2 z_3$. These two quadratic parts generate a Cartan subalgebra of the Lie algebra of quadratic forms under Poisson bracket, which can be verified by identifying the Lie algebra of quadratic forms with the matrix Lie algebra $\mathfrak{sp}(4, \mathbb{R})$. By [73] and the fact that the eigenvalues of the quadratic part in (13) are hyperbolic for $0 < |a| < 2\sqrt{c}$, there exists a linear symplectic change of coordinates such that the quadratic parts of H_a and m_a obtain the forms (51) with $\alpha_1 = \frac{1}{2} \sqrt{4c - a^2}$, $\beta_1 = \frac{1}{2} a$, $\alpha_2 = 0$ and $\beta_2 = 1$. □

The critical value set of the map EM_a, for a given value a, is the intersection of the plane $a = \text{const}$ and the critical value set of the energy-momentum map EM, see figure 7. In the case where $0 < |a| < 2\sqrt{c}$, such a section is sketched in figure 11. Observe that the isolated critical value (h_a, a) corresponds to the point $(h_a, a, a) \in \mathbb{R}^3$ at the thread. Now by lemma 4.18, the three-degrees-of-freedom Hamiltonian function H_{loc} satisfies the Kolmogorov non-degeneracy condition on regular 3-tori close to each point at the thread with $|a| < 2\sqrt{c}$. Since the model H_{loc} of the Lagrange top is real-analytic and the determinant of (50) is not constant, the latter condition can be continued to the case where $|a| \geq 2\sqrt{c}$.

To formulate the persistence, we need to impose Diophantine conditions on the frequencies $\omega = (\omega_1, \ldots, \omega_{n+3})$: for fixed $\tau > n + 2$ and a parameter $\gamma > 0$, we require that

$$|\langle \omega, k \rangle| \geq \gamma |k|^{-\tau}$$

(52)

for all $k \in \mathbb{Z}^{n+3} \setminus \{0\}$. As before we denote for an open set V of frequencies by $\Gamma_{\tau, \gamma}(V') \subseteq V$ the subset of $\omega \in V$ satisfying (52) and bounded away from the boundary ∂V. Once the Kolmogorov non-degeneracy holds, the internal frequency vector $\omega = \omega(h, a, b, \theta)$ is completely determined by the distinguished parameters (h, a, b, θ). Now a direct application of the standard KAM theory [2, 19, 23, 62] yields the following.

Theorem 4.19 (Forced Lagrange top: persistence of Diophantine Lagrangian $(n+3)$-tori).

Let the parameter $v_0 = ((h_0, a_0, b_0), \theta_0) \in \mathbb{R}^3 \times \mathbb{R}^n$ be fixed, where (h_0, a_0, b_0) is a regular value of the energy-momentum map EM. Assume that the map

$$\eta \in \mathbb{R}^n \mapsto (\delta_1(\theta), \ldots, \delta_n(\theta)) \in \mathbb{R}^n$$

(53)

is a local diffeomorphism at $\eta = \theta_0$. Then for sufficiently small $|v|$ there exists a neighbourhood U of v_0 in $\mathbb{R}^3 \times \mathbb{R}^n$ such that the following holds: the family X^v has a Cantor family of invariant $(n + 3)$-tori which is a C^∞-near-identity diffeomorphic image of \mathbb{X}^0-invariant $(n + 3)$-tori

$$\bigcup_{\omega(v) \in \Gamma_{\tau, \gamma}(V')} (T^{n+3} \times \{y = v\}),$$

where $v = (a, b, h, \eta) \in U$ and $V = \omega(U)$; restricted to these tori the diffeomorphism conjugates X^0 and X^v and preserves the normal linear behaviour.
Remark 4.20.

1. While theorems 4.5 and 4.13 only address invariant tori near the gyroscopic stabilization, the present results hold for all regular Lagrangian tori near the thread and thus exceed a mere application of theorem 4.15.

2. Theorem 4.19 deals with the persistence of Lagrangian tori as fibres of a trivial sub-bundle of \((n + 3)\)-tori. This is associated with the situation in figure 10(a). The question is what happens to regular fibres of non-trivial sub-bundles, compare with the situation sketched in figure 10(b), after small perturbations. As said before, by [13] local KAM-conjugacies obtained by theorem 4.19 can be glued together to yield a global conjugacy. This allows an extension of non-trivial monodromy in the integrable Lagrangian torus bundle to the non-integrable one. In this sense, we may say that the non-trivial monodromy in the integrable torus bundle survives a nearly integrable perturbation.

5. Conclusions

We considered a family of \(T^m\)-symmetric Hamiltonians on the phase space \(M = T^m \times \mathbb{R}^n \times \mathbb{R}^4\) with an invariant normally 1 : \(-1\) resonant torus. As the parameter varies, the torus changes from (normally) hyperbolic to (normally) elliptic. This generically gives rise to a quasi-periodic Hamiltonian Hopf bifurcation, see section 1.1. Near the normally resonant torus the phase space \(M\) is the union of elliptic \(m\)-tori, elliptic \((m + 1)\)-tori, Lagrangian \((m + 2)\)-tori and the pinched \((m + 2)\)-tori formed by the (un)stable manifolds of hyperbolic \(m\)-tori. This singular torus foliation gives a stratification in a suitable parameter space: the strata are determined by the dimension of the tori. The local geometry of this stratification is a piece of the swallowtail catastrophe set: the \(m\)-tori are located at the one-dimensional part (the crease and the thread), \((m + 1)\)-tori at the regular part of the surface and \((m + 2)\)-tori at the open region above the surface, see figure 4(a). By the previous KAM results [2, 20, 44, 46, 56, 62, 63] and the normal linear stability [16], these tori survive in Whitney-smooth Cantor families, under small nearly-integrable perturbations, compare with figure 4(b).

In view of the global KAM theory [13], the non-trivial monodromy in the integrable Lagrangian torus bundle can be extended to the nearly integrable case. Concerning the parameter domains regarding the Diophantine tori of the different dimensions \(m, m + 1\) and \(m + 2\), these are attached to one another in a Whitney-smooth way, as suggested by the integrable approximation. Following [15] we speak of a Cantor stratification. Here the stratum of the \((m + 1)\)-tori consists of density points of \((m + 2)\)-quasi-periodicity of large \((2m + 4)\)-dimensional Hausdorff measure. Similarly, the stratum of the \(m\)-tori consists of density points of \((m + 1)\)-quasi-periodicity of large \((2m + 2)\)-dimensional Hausdorff measure. Compare also with [19].

As a leading example we studied the Lagrange top near gyroscopic stabilization weakly coupled to a quasi-periodic oscillator. In particular, we considered the existence of quasi-periodic invariant tori in the perturbed Hamiltonian \(\mathcal{H}_\varepsilon\) given by (17). Our setting was rather general, since we allowed for all forms of perturbations (i.e. couplings). In such a general case where both rotational symmetries \(\Phi^r\) and \(\Phi^l\) of the top were broken, we found Cantor families of invariant Diophantine tori of dimensions \(n + 1, n + 2\) and \(n + 3\) in the perturbed systems, which are slight deformations of the unperturbed tori.

Next, we make some remarks about the reduction in the number of parameters. In addition, we give a few comments on the models of the special perturbations given in section 3. Finally, we address two open problems.
5.1. Fewer parameters

For the persistence of invariant isotropic tori, that is, for theorems 4.5, 4.12 and 4.19, we required the BHT non-degeneracy conditions as formulated in section 4.1. On the other hand, such conditions yield rather strong persistence: not only the ‘majority’ of the invariant tori survives small perturbations, but also the corresponding normal linear data of the unperturbed system H_0 survives. In particular, the preservation of internal and normal frequencies holds. On the other hand, these generic conditions require a lot of parameters. This causes a lack of distinguished (or internal) parameters available in our system (e.g. a, b, h and θ) and forces us to use external parameters (e.g. I_3 and c), compare with remarks 4.4 and 4.14. To avoid using external parameters, we may ask for a weaker persistence result, in which we are only interested in the existence of a Whitney-smooth Cantor family of invariant tori in the perturbed system, compare with $[19,67]$. Notice that for the persistence of the Lagrangian $(n+3)$-tori, we did not need any external parameters. Next, we consider the reduction in the (external) parameters in the persistence of the invariant $(n+1)$-tori and the invariant $(n+2)$-tori. Recall that in the latter case, the unperturbed family X^0 is parametrized by the $n+3$ parameters (θ_0, s_0, a, I_3), where $(\theta_0, s_0, a) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}$ are distinguished parameters, while the parameter $I_3 \in \mathbb{R}$ is the only external one. Instead of wishing to control all (internal and normal) frequencies as required by the BHT non-degeneracy condition, here we just want to keep track of the frequency ratios. The least number of parameters controlling these ratios is $n+2$, implying that we can get rid of one of the parameters, which we choose to be the external parameter I_3. Following $[19,20,44]$, a similar (but weaker) persistence result such as theorem 4.12 holds for the unperturbed Hamiltonian system X^0 considered as an $(n+2)$-parameter family parametrized over (θ_0, s_0, a), compare with remark 4.14. For this weaker persistence, the stable $(n+2)$-tori projected into the frequency space form a Cantor set of large measure, compare with $[19,20,44]$.

To achieve the stability theorem 4.5 of the invariant $(n+1)$-tori, we are forced to use the two external parameters (I_3, c) to ensure the BHT non-degeneracy condition. As said before in remark 4.4, we can get rid of these two parameters by using the weaker non-degeneracy condition of Bakhtin–Rüssmann $[5,19,21,67,68]$, thereby weakening the stability theorem 4.5. Let us consider the unperturbed system X^0 as the family parametrized over $(a, \theta_0) \in \mathbb{R} \times \mathbb{R}^n$, that is, only (a, θ_0) are considered as parameters. Recall from section 4.2 that the internal frequencies of the invariant tori $\eta = \theta$ are given by $\omega(a, \theta) = (a/I_3, \delta(\theta))$, see (30), and the two parameters in the linear centralizer unfolding are $\lambda_0 + \mu_1 = \frac{1}{2}a$ and $\mu_2 = c - \frac{1}{4}a^2$.

The family $X^0 = X^0_{a, \theta_0}$ would satisfy the Bakhtin–Rüssmann condition at $(a, \theta) = (a_0, \theta_0)$, if the following were satisfied: there exists a neighbourhood $U \subset \mathbb{R}^{n+1}$ of (a_0, θ_0) in the parameter space and a positive integer N such that the image of the map $(\omega, \mu) : U \longrightarrow \mathbb{R}^{n+3}$ does not lie in any $(n+2)$-dimensional subspace. Since both ω_0 and μ_1 depend only linearly on a, this cannot be achieved. In this sense the Lagrange top is a degenerate integrable system.

5.2. Extra symmetries

In this subsection, we discuss Cantor families of surviving invariant Diophantine tori under perturbations where at least one of the two symmetries Φ' and Φ' still remains, compare with the models listed in section 3. In the general case, the Cantor families of stable KAM-tori contain continua of tori (the projection of these continua into the parameter space has no Cantor gaps). We refer to these projections as continuous structures in the Cantor family of surviving tori. In the special cases of symmetry-preserving perturbations, it seems natural to expect extra continuous structures. We distinguish between three special cases as mentioned
in section 3: the Lagrange top with a horizontal oscillator, with a ‘circular’ oscillator about the figure axis and with a vertical oscillator.

(i) With a horizontal oscillator: the base point of the top is attached to two linear oscillators which are placed in a horizontal plane. In this case, the perturbation term F in the perturbed system (17) is independent of the angle variable $q_1 \in \mathbb{R}/(2\pi \mathbb{Z})$ denoting the rotational angle about the figure axis. Notice that the left symmetry Φ^l is not preserved. Dividing out the circle symmetry Φ^r about the figure axis reduces the number of the degree of freedom in the perturbed system H_ε by one. Consequently, we are left with two internal frequencies to be controlled. Hence, the (external) parameter I_3 which is used for keeping track of the internal frequency $\omega_1 = a/I_3$, see (30), is no longer of importance in the stability theorems 4.5 and 4.12. This means in particular that we can get rid of the parameter I_3 without weakening our stability results, which is not always possible under a general perturbation, compare with section 5.1. If we still keep I_3 as a parameter, then the Cantor family of surviving Diophantine tori continues along the I_3-direction, that is, there are no Cantor gaps in the I_3-direction. This corresponds to the fact that any rotation of any frequency about the figure axis is independent of a horizontal forcing. Finally, following the discussion of section 5.1, we can in theorem 4.5 also eliminate the parameter c by a time-scaling, resulting in a weaker stability result that, however, no longer needs external parameters.

(ii) With a ‘circular’ oscillator: in this case, the top is coupled via a circular spring to a quasi-periodic oscillator. Here the right symmetry (about the figure axis) is affected, while the left one (of the vertical axis) is preserved under perturbation. For the present discussion, however, it is convenient to have a local Hamiltonian model based on the reduction of the left symmetry. As is done in [24], using this left reduction, we end up with a slightly different local model. We will not discuss this in detail and only point out the main differences. First of all, the internal frequency ω_1 becomes b/I_3 instead of a/I_3, where b denotes the value of the angular momentum along the vertical axis. Secondly, the Floquet matrix Ω reads

$$\Omega = \begin{pmatrix}
0 & b(I_3^{-1} - \frac{1}{2}) & 1 & 0 \\
-b\left(I_3^{-1} - \frac{1}{2}\right) & 0 & 0 & 1 \\
c - \frac{b^2}{4} & 0 & 0 & b\left(I_3^{-1} - \frac{1}{2}\right) \\
0 & c - \frac{b^2}{4} & -b\left(I_3^{-3} - \frac{1}{2}\right) & 0
\end{pmatrix}. \tag{54}\$$

compare with Floquet matrix (14). Now we can repeat the arguments given in (i), thereby concluding that the parameter I_3 can be ignored in our consideration of the persistence results. In particular, for a circular forcing where the left symmetry is preserved, the Cantor families of Diophantine tori have continuous structure in the I_3-direction.

(iii) A vertical oscillator: the top is coupled to a quasi-periodic oscillator which acts vertically. In this case, both the left and the right symmetries are preserved under perturbation. Hence, we can reduce the perturbed system H_ε to a system with $n + 1$ degrees of freedom by carrying out two divisions of the symmetries Φ^r and Φ^l, where n denotes the number of frequencies of the oscillator. This suggests that the number of parameters which is at least needed for our persistence results is $n + 1$. Indeed, following (i) and (ii), we can get
rid of \(I_3 \) from the right symmetry and \(c \) from the left symmetry. Consequently, all Cantor families of surviving invariant tori are continuous with respect to the external parameters \(I_3 \) and \(c \).

5.3. Quasi-periodic response solutions

Here we consider the Lagrange top with a quasi-periodic forcing of \(n \geq 2 \) frequencies. As before we are interested in the situation where the top is close to gyroscopic stabilization, compare with section 3. We assume that the perturbed system remains Hamiltonian and is given by the Hamiltonian function

\[
H_\varepsilon = H_0 + \varepsilon f (\delta_1 t, \ldots, \delta_n t, \ldots),
\]

where \(H_0 \) denotes the Hamiltonian of the unperturbed Lagrange top and \(f \) is a quasi-periodic function in \(t \) with the frequencies \(\delta = (\delta_1, \ldots, \delta_n) \in \mathbb{R}^n \). The function \(f \) may depend on the perturbation parameter \(\varepsilon \) and other variables as well. The quasi-periodicity of \(f \) means that the frequencies \(\delta_1, \ldots, \delta_n \) of the forcing are rationally independent.

Let us briefly reconsider the unperturbed Lagrange top near gyroscopic stabilization. Following section 2.3, there are suitable symplectic coordinates \((q_1, p_1, z) \in S^1 \times \mathbb{R} \times \mathbb{R}^4\) such that the unperturbed Hamiltonian \(H_0 \) takes the local form

\[
H_0(q_1, p_1, z) = \left(\frac{1}{2 I_3} (a + p_1)^2 + c \right) + \frac{1}{8} ((a + p_1)^2 - 4c)(z_1^2 + z_2^2)
- \frac{1}{2} (a + p_1)(z_1 z_4 - z_2 z_3) + \frac{1}{2} (z_3^2 + z_4^2) + O(|z|^4),
\]

compare with (16). Recall that the parameter \(a \) is the angular momentum value associated with the rotation about the figure axis; the constant \(I_3 \) is a principal moment of inertia of the Lagrange top and \(c > 0 \) is a physical constant depending on the position of the centre of mass. We remark that near gyroscopic stabilization \(|a|\) is close to the critical value \(a_0 = 2\sqrt{c} \), see section 2.3.1. In the local coordinates mentioned above, the perturbed Hamiltonian \(H_\varepsilon \) now takes the form

\[
H_\varepsilon = H_0(q_1, p_1, z) + \varepsilon f (\zeta, q_1, p_1, z; \varepsilon),
\]

where the variables \(\zeta = (\delta_1 t, \ldots, \delta_n t) \in \mathbb{T}^n \). Next we consider the function \(H_\varepsilon \) as a Hamiltonian on the phase space \(M = \mathbb{T}^n \times \mathbb{R}^n \times S^1 \times \mathbb{R} \times \mathbb{R}^4 = \{ \zeta, \eta, q_1, p_1, z \} \), where \(\eta = (\eta_1, \ldots, \eta_n) \in \mathbb{R}^n \) denote the action-variables conjugated to the angle variables \(\zeta \). Now the \((n + 3)\)-degrees-of-freedom Hamiltonian vector field \(X = X_{H_\varepsilon} \) associated with \(H_\varepsilon \), with respect to the symplectic 2-form \(\sigma = d\zeta \wedge d\eta + dq_1 \wedge dp_1 + dz_1 \wedge dz_3 + dz_2 \wedge dz_4 \), reads

\[
X = \begin{cases}
\dot{\zeta} = \delta, \\
\dot{\eta} = O(\varepsilon), \\
\dot{q}_1 = a/I_3 + O(|p_1|^2, |z|^2) + O(\varepsilon), \\
\dot{p}_1 = O(\varepsilon), \\
\dot{z} = \Omega_{a,c} z + O(|p_1|^2, |z|^2) + O(\varepsilon),
\end{cases}
\]

compare with the vector field (21). Recalling from section 4, the integrable unperturbed system \(X^0 \) undergoes a quasi-periodic Hamiltonian Hopf bifurcation as the angular momentum value \(a \) passes through the critical value \(a_0 \). At the bifurcation we have an \(X^0 \)-invariant normal 1 : −1 resonant \((n + 1)\)-torus given by \(\eta = \text{const}, \ p_1 = 0 \) and \(z = 0 \). Near this torus, the phase space locally is singularly foliated by \(X^0 \)-invariant hyperbolic and elliptic \((n + 1)\)-tori, elliptic \((n + 2)\)-tori and Lagrangian \((n + 3)\)-tori, compare with section 4. As before, we ask for
the persistence of the invariant tori of all dimensions in this singular foliation for small ε; but now we keep the frequencies $\delta_1, \ldots, \delta_n$ of the forcing fixed. We refer to this as a quasi-periodic response problem of the Lagrange top, compare with [10, 14, 19, 56, 70]. As usual, we need to require Diophantine conditions on the internal and normal frequencies of the unperturbed Hamiltonian system X^0, see section 4.1.

Let us first consider the multi-frequency δ of the forcing as a parameter. Then the present problem is a special case of the perturbation model (21) studied in section 4. Hence, the invariant $(n + 1)$-, $(n + 2)$- and $(n + 3)$-tori of the singular foliation near the resonant torus survive in Whitney-smooth Cantor families. These surviving tori give a Cantor stratification9 in a suitable parameter space, see figure 4(b).

It turns out that the mentioned conclusions remain true for the response problem mentioned above, where the frequencies $\delta_1, \ldots, \delta_n$ of the forcing are constant. Indeed, the proof of the normal linear stability [16] in the symplectic setting shows that for the perturbation X^ε the parameter-shifting in the δ-direction can be chosen as the identity map, compare also with [10, 14]. As mentioned before, the unperturbed Lagrange top has two rotational symmetries associated with the rotations about the figure axis and the vertical axis. Since the preservation of these symmetries depends only on the way of acting by the forcing on the Lagrange top and not on the frequencies of the forcing, the discussion in section 5.2 remains valid in this response problem. Finally, we observe that the ‘Cantor set’ of parameters associated with the stable Diophantine tori differs from that in the varying forcing-frequencies case: fixing the frequencies amounts to intersecting the full ‘Cantor set’ with the affine subspace $\eta = \text{const}$.

5.4. Open problems

In this final subsection, we address two problems related to the quasi-periodic Hamiltonian Hopf bifurcation and the Lagrange top.

5.4.1. Subcritical case. So far we have considered the supercritical case of quasi-periodic Hamiltonian Hopf bifurcations, regarding the persistence of the local singular foliation by invariant isotropic tori near the bifurcation point, see section 4. Our analysis showed that such a foliation survives small perturbations. For similar persistence results in the subcritical case see [41]. This is important for a better understanding of the hydrogen atom in crossed electric and magnetic fields [32, 33], where the subcritical bifurcation occurs. The singular torus foliation for this case is described by the tail of the swallowtail surface10. The approach for the supercritical case also works in the subcritical case, where furthermore a subordinate quasi-periodic centre-saddle bifurcation occurs.

5.4.2. Downwards spinning top. As an example of the supercritical Hamiltonian Hopf bifurcation, we concentrated on a local perturbation problem of a vertically upwards spinning top close to gyroscopic stabilization. The same problem can be considered for a vertically downwards spinning top and a similar approach can be developed. Since this motion is always (Lyapunov) stable, the local dynamics of such a top is less involved. Indeed, let us go back to the once reduced Hamiltonian H_ε and to the phase space \mathcal{R}_ε, see section 2. A vertically downwards spinning top is associated with the critical point $p_- = (0, 0, -1, 0, 0, -a) \in \mathcal{R}_\varepsilon$.

9 The strata are determined by the dimension of invariant tori.

10 Complementary to the part of figure 4(a).
There exist local canonical coordinates \(z = (z_1, z_2, z_3, z_4) \) near \(p_- \) in which the Hamiltonian function \(H_a \) obtains the form:

\[
H_a(z) = \frac{1}{8I_1} [(9a^2 + 4cI_1)(z_1^2 + z_2^2) + 12(z_1z_4 - z_2z_3) + 4(z_3^2 + z_4^2)] + \cdots ,
\]

where we dropped the constant term and where the dots denote the higher order terms. As before, we assume that \(I_1 = 1, c > 0 \) and \(a \neq 0 \). In the local coordinates \(z \in \mathbb{R}^4 \), the linear part of the Hamiltonian \(H_a \) is given by:

\[
\Omega = \frac{1}{4} \begin{pmatrix} 0 & -\mu_1 & 4 & 0 \\
\mu_1 & 0 & 0 & 4 \\
-\mu_2 & 0 & 0 & -\mu_1 \\
0 & -\mu_2 & \mu_1 & 0 \end{pmatrix},
\]

where \(\mu_1 = 6a \) and \(\mu_2 = 9a^2 + 4c \). The eigenvalues of \(\Omega \) are of the forms \(\pm i(\mu_1 \pm 2\sqrt{\mu_2}) \), which are purely imaginary and simple. Hence, for the perturbation problem where the Lagrange top is parametrically forced (with \(n \) frequencies in the forcing), see section 3, ‘classical’ KAM theory is expected to yield the persistence of the elliptic invariant \((n + 1)\)-tori.

It is known from, e.g. [4,22,59] that the lower equilibrium of a 2D pendulum with a parametric forcing is destabilized by a parametric resonance. Similarly, this resonance may destroy the stable downwards spinning motions of a top. We ask the following question: does parametric resonance occur in the gaps in the ‘Cantor set’ given by KAM theory? Knowing [22, 59], we expect a positive answer. However, in contrast to [22, 59] where destabilization of an equilibrium is considered, here we deal with periodic solutions.

Acknowledgments

The authors are grateful to Floris Takens for helpful comments. This work was supported by grant MB-G-b of the Dutch FOM program Mathematical Physics and by grant HPRN-CT-2000-00113 of the European Community funding for the Research and Training Network MASIE.

Appendix A. Proof of theorem 4.7

In this section, we give a proof of theorem 4.7. Let us recall the setting from section 4.2.1 briefly. Our phase space is the symplectic manifold \(M = \mathbb{T}^m \times \mathbb{R}^m \times \mathbb{R}^4 = \{x, y, z\} \) with the canonical 2-form \(\sigma = \sum_{i=1}^m dx_i \wedge dy_j + \sum_{j=1}^2 dz_j \wedge dz_{j+2} \). We consider a \(p \)-parameter family \(\tilde{H} = \tilde{H}(x, y, z, \nu) \) of nearly integrable Hamiltonian functions of the form

\[
\tilde{H}(x, y, z, \nu) = \langle \omega(\nu), y \rangle + \frac{1}{2} \langle Jz, \Omega(\nu)z \rangle + F(x, y, z, \omega, \mu),
\]

(56)

where \(\omega(\nu) \in \mathfrak{sp}(4, \mathbb{R}) \), \(J \) is as in (20) and \(F \) denotes the higher order terms. Moreover, the Floquet matrix \(\Omega_0 = \Omega(\nu_0) \) is in non-semisimple \(1 : -1 \) resonance and the family \(\tilde{X} = \tilde{X}_H \) of Hamiltonian vector fields associated with \(\tilde{H} \) satisfies the BHT non-degeneracy condition, see section 4.1.1. Then, following the discussion in section 4.2.1, we can assume that \(\nu = (\omega, \mu) \in \mathbb{R}^m \times \mathbb{R}^2 \) and that the Floquet matrices \(\Omega(\nu) \) are given by (25). Under such circumstances, the family \(\tilde{H} \) takes the following shape:

\[
\tilde{H}_c(x, y, z) = \langle \omega, y \rangle + N + \mu_1 S + \mu_2 M + F(x, y, z, \omega, \mu),
\]

(57)

where \(N = \frac{1}{2}(z_3^2 + z_4^2), S = (z_1z_4 - z_2z_3), M = \frac{1}{2}(z_1^2 + z_2^2) \). Recall that the normal frequency vector \(\omega^N(\nu) \) of the Hamiltonian system \(\tilde{H}_c \) is given by (24) and that the parameters
We introduce the complex variables \((\zeta, \eta) \in \mathbb{C}^2\) as follows:
\[
\zeta = \frac{1}{\sqrt{2}}(z_1 + iz_2) \quad \text{and} \quad \eta = \frac{1}{\sqrt{2}}(z_3 - iz_4),
\]
compare with [11, 51, 61]. Notice that the symplectic form \(\sigma\) now becomes \(\sigma = dz \wedge dy + d\zeta \wedge d\eta + d\xi \wedge d\bar{\eta}\). We first fix the parameters \((\omega, \mu_1)\) and write \(\tilde{z} = (\zeta, \bar{\eta}, \eta, \bar{\eta})\). Developing the Hamiltonian \(\tilde{H}\) into the Taylor–Fourier series as in (58) but quasi-homogeneous with degree \(\{\omega, \mu_2\}\), we obtain
\[
\tilde{H} = \sum_{k \in \mathbb{Z}^+} \sum_{p,q} \tilde{H}_{k,p,q} \mu_1^k y^p \zeta^q \bar{\eta}^p \eta^q e^{i(x,k)},
\]
(58)
where \(k \in \mathbb{Z}^{+}\), \(p = (p_1, \ldots, p_m) \in \mathbb{Z}^m_{>0}, q = (q_1, q_2, q_3, q_4) \in \mathbb{Z}^4_{>0}\) and where \(y^p = y_1^{p_1} \cdots y_m^{p_m}\). In the following, we refer to the integer \(r = 2\ell + 4|p| + 4q|\) as the degree of a function of the form \(f(x,y,\tilde{z},\mu_2) = f_0(x,\mu_2^4y^p\tilde{z}_q)\). We denote by \(\mathcal{F}\) the space of the Taylor–Fourier series in \((x, y, \tilde{z}, \mu_2)\) of the form (58) and \(\mathcal{F}_r \subset \mathcal{F}\) the subspace consisting of the Taylor–Fourier series as in (58) but quasi-homogeneous with degree \(r\). For later use, we also introduce, for the given non-negative integers \((\alpha, \beta)\), the subspaces
\[
\mathcal{F}_{\alpha,\beta}^{k,\ell,p} = \left\{ F \in \mathcal{F}_r : F = \sum_{(\alpha,\beta) \in \mathbb{N}_0} \mathcal{F}_{\alpha,\beta}^{k,\ell,p} \right\},
\]
where the indices \((k, \ell, p)\) are fixed, compare with [61]. Observe that \(\mathcal{F}_{\alpha,\beta}^{k,\ell,p}\) is a subspace of \(\mathcal{F}_{\alpha,\beta}^{k,\ell,p} = \sum_{j \geq 2} \mathcal{F}_j\), with \(\mathcal{F}_j = \bigoplus_{k \in \mathbb{N}_0} \mathcal{F}_{\alpha,\beta}^{k,\ell,p}\).

It is known from e.g. [1, 4, 12] that the set of all Hamiltonian functions on \((M, \sigma)\) equipped with the standard Poisson bracket \(\{\cdot, \cdot\}\) (with respect to the 2-form \(\sigma\)) forms a Lie algebra. For a given function \(F\), the adjoint operator \(\text{ad} F : \mathcal{F} \to \mathcal{F}\) is defined as \(\text{ad} F(G) = \{G, F\}\).

Next we will focus on the map \(\text{ad} \tilde{H}_2\) associated with the function
\[
\tilde{H}_2(x, y, \tilde{z}; \omega, \mu_1) = \langle \omega, y \rangle + i\mu_1(\zeta \eta - \tilde{\zeta} \bar{\eta}),
\]
(60)
since we will use this function to perform the normalization procedure on \(\tilde{H}_2\). Notice that
\[
\text{ad} \tilde{H}_2 = \frac{\partial}{\partial x} \bigg(\frac{\partial}{\partial \zeta} + \frac{\partial}{\partial \bar{\eta}} \bigg) + i\mu_1 \bigg(\frac{\partial}{\partial \xi} - \zeta \frac{\partial}{\partial \bar{\zeta}} - \eta \frac{\partial}{\partial \bar{\eta}} + \bar{\eta} \frac{\partial}{\partial \bar{\eta}} \bigg).
\]
(61)
In the following, for any given \(F \in \mathcal{F}_2\), the restriction of \(\text{ad} F\) to the subspace \(\mathcal{F}_r\) is denoted by \(\text{ad} F\) for \(r \geq 2\).

Lemma A.1. The subspaces \(\mathcal{F}_r\) and \(\mathcal{F}_{\alpha,\beta}^{k,\ell,p}\) are invariant under both \(\text{ad} \tilde{H}_2\) and \(\text{ad} \tilde{S}\), where \(\tilde{S} = \langle \omega, y \rangle + i\mu_1(\zeta \eta - \tilde{\zeta} \bar{\eta})\). Moreover, the eigenvalues of the operator \(\text{ad} \tilde{S}\) are of the form
\[
i\langle \omega, k \rangle + i\mu_1(\alpha - \beta)
\]
for all \(k \in \mathbb{Z}^n\) and all non-negative integers \(\alpha\) and \(\beta\).
Proof. Let F be a polynomial in $\mathcal{F}_{k,\ell,p}^{\alpha,\beta}$. Without loss of generality, we can assume that $F = \mu_1^2 y^p \xi^\ell \eta^\beta \tilde{\eta}^{\alpha-\beta} e^{i(k,x)}$. A brief calculation gives

$$\text{ad} \tilde{H}_2(F) = \left[i(\ell, \omega) + i\mu_1(\alpha - \beta) + \left(\frac{s}{\xi} + t \frac{\eta}{\xi} \right) \right] F$$

and

$$\text{ad} \hat{S}(F) = [i(\ell, \omega) + i\mu_1(\alpha - \beta)] F,$$

which belong to $\mathcal{F}_{k,\ell,p}^{\alpha,\beta}$. In view of the decompositions (59), the spaces \mathcal{F}_{r} are $\text{ad} \tilde{H}_2$- and $\text{ad} \hat{S}$-invariant. The eigenvalues of $\text{ad} \hat{S}$ are read off from (62).

Remark A.2. The function \hat{S} is the semisimple part of \tilde{H}_2, while the nilpotent part is $\hat{N} = \eta \bar{\eta}$.

For any given order $r \geq 2$, by lemma A.1 and the Diophantine conditions (26), the subspace $\ker \text{ad} \hat{S} \subseteq \mathcal{F}_{r}$ is given by

$$\ker \text{ad} \hat{S} = \bigoplus_{2|s|+4|\ell|+2r=\alpha+\beta} \mathcal{F}_{\alpha,\beta}^{\ell,p}.$$

Under these circumstances, we have the direct sum decomposition

$$\mathcal{F}_{r} = \ker \text{ad} \hat{S} \oplus \text{im} \text{ad} \hat{S}. \tag{64}$$

Denote by \mathcal{R} the subspace of \mathcal{F} containing all real valued power series, i.e.

$$\mathcal{R} = \{ F \in \mathcal{F} : \bar{F} = F \}.$$

Similarly, we introduce real linear subspaces $\mathcal{R}_{r}, \mathcal{R}_{\ell,p,k}^{\alpha,\beta}$ corresponding to $\mathcal{F}_{r}, \mathcal{F}_{\alpha,\beta}^{\ell,p,k}$, respectively. It is readily checked that $\mathcal{R}, \mathcal{R}_{r}$ and $\mathcal{R}_{\ell,p,k}^{\alpha,\beta}$ all are invariant under ad \hat{S}, implying that decompositions (63) and (64) also hold when ad \hat{S} is restricted to \mathcal{R}_{r}.

Lemma A.3. Suppose that the internal frequencies ω and the normal frequency μ_1 satisfy the Diophantine conditions (26). Then, for any given integer $r \geq 2$ and for any $R \in \text{im} \text{ad} \hat{S}$, there exists a unique formal solution $F \in \text{im} \text{ad} \hat{S}$ such that $\text{ad} \tilde{H}_2(F) = R$. In particular, we have $\text{im} \text{ad} \hat{S} \subseteq \text{im} \text{ad} \tilde{H}_2$.

Proof. Each set \mathcal{F}_{r} is decomposed into ad \tilde{H}_2-invariant subspaces $\mathcal{F}_{\alpha,\beta}^{\ell,p}$, where $2\ell+4|\ell|+\alpha+\beta = r$; we may restrict everything to such a subspace $\mathcal{F}_{\alpha,\beta}^{\ell,p}$ for fixed indices (ℓ, p, α, β). Hence, without loss of generality, we assume that R has the quasi-homogeneous form

$$R = \sum_{(\alpha, \beta)} \sum_{(s,t) = (0,0)} R_{s,t}^{\ell,p} \mu_1^s y^p \xi^\ell \eta^\beta \tilde{\eta}^{\alpha-\beta} e^{i(k,x)} \tag{65}$$

and look for F in that same form. Then,

$$\text{ad} \tilde{H}_2(F) = \sum_{(\alpha, \beta)} \sum_{(s,t) = (0,0)} \left[\lambda_k + \left(\frac{s}{\xi} + t \frac{\eta}{\xi} \right) \right] F_{s,t} \mu_1^s y^p \xi^\ell \eta^\beta \tilde{\eta}^{\alpha-\beta} e^{i(k,x)},$$

where $\lambda_k = i(\omega, k) + i\mu_1(\alpha - \beta)$. By splitting (64) and the fact that ker ad \hat{S} is ad \tilde{H}_2-invariant, the solution F of the equation ad $\tilde{H}_2(F) = R$ can be chosen in im ad \hat{S}. Now the equation
ad $\hat{H}_2(F) = R$ gives

$$R_{s,t} = \lambda_k F_{s,t} + (s + 1) F_{s+1,t} + (t + 1) F_{s,t+1},$$

$$0 \leq s \leq \alpha - 1, 0 \leq t \leq \beta - 1;$$

$$R_{s,\beta} = \lambda_k F_{s,\beta} + (s + 1) F_{s+1,\beta}, \quad s = 0, \ldots, \alpha;$$

$$R_{\alpha,t} = \lambda_k F_{\alpha,t} + (t + 1) F_{\alpha,t+1}, \quad t = 0, \ldots, \beta;$$

$$R_{\alpha,\beta} = \lambda_k F_{\alpha,\beta}. \quad (70)$$

By the Diophantine conditions (26), we have that $\lambda_k \neq 0$. Consequently, the above linear equations can be recursively solved, starting with the solution $F_{\alpha,\beta} = \lambda R_{\alpha,\beta}$. Indeed, writing $u_s = (F_s, 0, \ldots, F_{s,\beta})$ and $v_s = (R_s, 0, \ldots, R_{s,\beta})$, equation (66) gives

$$v_s = (\lambda_k I_{\beta+1} + A) u_s + (s + 1) I_{\beta+1} u_{s+1}, \quad (71)$$

where $I_{\beta+1}$ denotes the identity matrix of order $\beta + 1$ and the matrix $A \in gl(\beta + 1, \mathbb{C})$ with $A_{ii} = i$ for $i = 1, \ldots, \beta$ and $A_{ij} = 0$ elsewhere. By equations (69) and (70) and the Diophantine conditions, the components of u_s are uniquely determined by R. Now the recurrence relation (71) gives all u_s for $s = \alpha - 1, \ldots, 0$. \qed

Remark A.4. After replacing F_r by the subspace R_r of real power series in the above proof, we see that lemma A.3 also holds when ad \hat{S} and ad \hat{H}_2 are restricted to the subspace R_r.

A.2. Non-linear normal form theory

In this subsection, we carry out a normalization procedure for $H = H_\omega, \mu$ as in (57), with respect to the lowest order term \hat{H}_2 as in (60), up to terms of degree r. Roughly speaking, such a normalization kills non-integrable terms that appear in the lower order terms in \hat{H}, by using time-one flows generated by Hamiltonian functions in im ad \hat{H}_2. We fix the parameters (ω, μ_1), which satisfy the Diophantine conditions (26). For simplicity, we work in the real-analytic setting; that is, everything is assumed to be real analytic. Under such circumstances, we have the following theorem.

Theorem A.5 (Quasi-periodic normal form). Let $H = H_\nu$ be the real-analytic family of integrable Hamiltonians given by (33). Assume that the assumptions of theorem 4.3 are satisfied and that the parameter $\nu = (\omega, \mu, \rho) \in \Gamma_1(\mathbb{U})$, see section 4.1, where \mathbb{U} is a small neighbourhood of the fixed parameter ν_0. Then, for any given even integer $r \geq 6$, any fixed (ω, μ_1) satisfying the Diophantine conditions (26) and for any real-analytic Hamiltonian \hat{H} sufficiently close to H in the compact-open topology, there exists a family of symplectic maps

$$\Phi : T^m \times \mathbb{R}^n \times \mathbb{R}^4 \times \mathbb{R} \rightarrow T^m \times \mathbb{R}^n \times \mathbb{R}^4 \times \mathbb{R},$$

being real-analytic in (x, y, z) and C^∞-near-the-identity map, such that the Hamiltonian $\hat{H} \circ \Phi$ is decomposed into $G_{\text{int}} + R$, where the integrable part G_{int} takes the form

$$G_{\text{int}} = \langle \omega, y \rangle + \mu_1 S + N + \mu_2 M + \frac{1}{2} b M^2 + c_1 S M + c_2 S^2 + \sum_{\ell, p, q, s, t = 3}^{r/2} c_{\ell, p, s, t} \mu_2^s y^p S^t M^q,$$

while the non-integrable remainder $R = R(x, y, z, \mu_2)$ has the Taylor-expansion of the form

$$R = \sum_{2(\ell + 4|p| + |q|) > r} f_{\ell, p, q}(x) \mu_2^s y^p z^q.$$
Remark A.6.

(1) Observe that the integrable parts in this normal form are always of even order in z, which has to do with the special shape of ker $ad_1 \hat{S}$, see (63).

(2) If the internal and normal frequencies (ω, μ_1) are considered as parameters, then the normalization map Φ as well as the coefficients $c_{\ell,p,t,l}$ and $f_{\ell,p,q}$ depend on (ω, μ_1). By construction of the map $\Phi = \Phi(x, y, z, \omega, \mu_1, \mu_2)$ as a composition of Hamiltonian time-one flows and the fact that the parameters (ω, μ_1, μ_2) satisfy the Diophantine conditions (26), one can show, using the 'standard' arguments as given in [11, section 2c], that Φ depends on (ω, μ_1, μ_2) in a Whitney-smooth way.

Proof. We show the claim by an induction argument. To begin with, we complexify the Hamiltonian function \hat{H} by using complex coordinate $\hat{z} = (\zeta, \xi, \eta, \tilde{\eta})$ for $z = (z_1, z_2, z_3, z_4)$. In the following, we use the same notation \hat{H} for its complexified counterpart. To obtain a real valued normalization map Φ and a real valued normal form for \hat{H}, we must work in the real subspace \mathcal{R} instead of in the whole space \mathcal{F}. For $r = 2$, there is nothing to prove, since \hat{H} is already in normal form up to degree two. Now suppose that $\hat{H} \in \mathcal{R}$ is normalized up to (even) degree $r \geq 2$ and has the form

$$\hat{H} = \sum_{j=1}^{r/2} Z_{2j} + R_{r+1} + R_{r+2} \left(\text{mod} \prod_{j \not\equiv r+3} \mathcal{R}_j \right),$$

where Z_{2j} for $j = 1, \ldots, r/2$ are given by

$$Z_{2j} = \sum_{(s_2|p|s_2=0)} c_{\ell,p,t,l}^2 y^p S^t M^t$$

and where $R_{r+1} \in \mathcal{R}_{r+1}$ and $R_{r+2} \in \mathcal{R}_{r+2}$. Since $r + 1$ is an odd integer, because of the splitting of (63) and (64), R_{r+1} must belong to im $ad_{r+1} \hat{S}$. Then, by lemma A.3, there is an $F_{r+1} \in \im ad_{r+1} \hat{S}$ such that $ad \hat{H}_2(F_{r+1}) = R_{r+1}$. Now the time-one map $e^{ad F_{r+1}}$ of the Hamiltonian F_{r+1} transforms\(^{11}\) the normal form H into

$$\hat{H} \circ e^{ad F_{r+1}} = \sum_{j=1}^{r/2} Z_{2j} + R_{r+2} \left(\text{mod} \prod_{j \not\equiv r+3} \mathcal{R}_j \right).$$

This implies that all odd degree terms in \hat{H} can be removed, compare with remark A.6(1). Next we claim that we can find an $F_{r+2} \in \im ad_{r+2} \hat{S}$, such that

$$\hat{H} \circ e^{ad F_{r+1}} \circ e^{ad F_{r+2}} = \sum_{j=1}^{r/2} Z_{2j} + Z_{r+2} \left(\text{mod} \prod_{j \not\equiv r+3} \mathcal{R}_j \right),$$

where $Z_{r+2} \in \mathcal{R}_{r+2}$ of the form

$$Z_{r+2} = \sum_{(s_2|p|s_2=0,r/2+1)} c_{\ell,p,t,l}^2 y^p \tilde{S}^t \tilde{M}^t,$$

where $\tilde{S} = \zeta \eta - \tilde{\xi} \tilde{\eta}$ and $\tilde{M} = \zeta \tilde{\xi}$. In other words, we ask for a function $F_{r+2} \in \mathcal{R}_{r+2}$ such that

$$ad_{r+2} \hat{H}_2(F_{r+2}) + Z_{r+2} = R_{r+2}. \quad (72)$$

Write $F_{r+2} = F^0 + F^1$ and $R_{r+2} = R^0 + R^1$, where

$$F^0, R^0 \in \ker ad_{r+2} \hat{S} \quad \text{and} \quad F^1, R^1 \in \im ad_{r+2} \hat{S}.$$
Again by lemma A.3, the function F^1 can be chosen so that $\text{ad}_{r+2} \hat{H}_2(F^1) = R^1$; so the equation (72) is reduced to
\[
\text{ad}_{r+2} \hat{H}_2(F_0) + Z_{r+2} = R^0,
\]
in the unknowns F^0 and Z_{r+2} for a given R^0 in the space $\ker \text{ad}_{r+2} \hat{S}$. In view of (63), we can restrict equation (73) to the $\text{ad} \hat{H}_2$-invariant subspace $\mathcal{R}^{0,\ell,p}_{\alpha,\alpha}$ for fixed indices (ℓ, p, α), where $\ell + 2|p| + \alpha = (r/2) + 1$. Let $\pi : \mathcal{R}^{0,\ell,p}_{\alpha,\alpha} \to \mathcal{R}^{0,0,0}_{\alpha,\alpha}$ be the projection defined by
\[
\pi \left(\sum_{(\alpha,\beta)} F_{s,t} \mu_s \lambda_t \xi^s \eta^t \bar{\xi}^{s-\ell} \bar{\eta}^{t-\ell} \right) = \sum_{(\alpha,\beta)} F_{s,t} \xi^s \eta^t \bar{\xi}^{s-\ell} \bar{\eta}^{t-\ell}.
\]
Observe that $P_{2\alpha} = \mathcal{R}^{0,0,0}_{\alpha,\alpha}$ is the space of all homogeneous polynomials in $(\xi, \bar{\xi}, \eta, \bar{\eta})$ of degree 2α. Following [51, 61], we have
\[
P_{2\alpha} = (\text{im } \hat{H}_2) P_{2\alpha} \oplus (\ker \text{ad } \hat{M} | P_{2\alpha}),
\]
which induces the direct sum splitting
\[
\mathcal{R}^{0,\ell,p}_{\alpha,\alpha} = (\text{im } \hat{H}_2 \mathcal{R}^{0,\ell,p}_{\alpha,\alpha}) \oplus (\ker \text{ad } \hat{M} \mathcal{R}^{0,\ell,p}_{\alpha,\alpha}).
\]
Moreover, $\ker \text{ad } \hat{M} | P_{2\alpha}$ as a real subspace is generated by monomials $\hat{S}^t \hat{M}^s$, where $s + t = \alpha$, see again [51, 61], implying that $\ker \text{ad}_{r+2} \hat{M} \subseteq \mathcal{R}_{r+2}$ (as a real subspace) is generated by $\mu_s \lambda_t \bar{S}^t \hat{M}^s$, where $\ell + 2|p| + \alpha = (r/2) + 1$. Decompose $R^0 = R^0_0 + R^1_0$, where $R^0_0 \in \ker \text{ad } \hat{M} \mathcal{R}^{0,\ell,p}_{\alpha,\alpha}$ and $R^1_0 \in \text{im } \hat{H}_2 \mathcal{R}^{0,\ell,p}_{\alpha,\alpha}$; there exists an F^0 such that $\text{ad}_{r+2} \hat{H}_2(F^0) = R^1_0$. Such an F^0 and $Z_{r+2} = R^0_0$ are desired solutions of the linear equation (73). Now the proof is complete by noting that Z_{r+2} is a quasi-homogeneous polynomial in $(\mu_{2\alpha}, y, \bar{S}, M)$ of degree $(r/2) + 1$, with the weight $(\alpha_{\mu}, \alpha_y, \alpha_{\bar{S}}, \alpha_M) = (1, 2, 1, 1)$.

References

The quasi-periodic Hamiltonian Hopf bifurcation

[27] Cushman R H and Sadovskii D A 2004 Monodromy in the hydrogen atom in crossed fields Physica D 142 166–96

[33] Goldstein H 1950 Classical Mechanics (Reading, MA: Addison-Wesley)

[37] Hanßmann H 2007 Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems—Results and Examples (Lecture Notes in Mathematics vol 1893) (Berlin: Springer)

460 H W Broer et al

[49] Li Y and Yi Y 2005 Persistence of lower dimensional tori of general types in Hamiltonian systems Trans. AMS 357 1565–600

[51] van der Meer J-C 1985 The Hamiltonian Hopf Bifurcation (Lecture Notes in Mathematics vol 1160) (Berlin: Springer)

[52] van der Meer J-C 1990 Hamiltonian Hopf bifurcation with symmetry Nonlinearity 3 1041–56

[61] Poston T and Stewart I 1978 Catastrophe Theory and its Applications (Surveys and Reference Works in Mathematics, No 2) (Boston, MA: Pitman) (with an appendix by D R Olsen, S R Carter and A Rockwood)

[63] Rink B W 2004 A Cantor set of tori with monodromy near a focus-focus singularity Int. J. Bifurcation Chaos 14 2311–34

[69] Whittaker E T 1944 A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (New York: Dover)

