Do ‘Liberal Market Economies’ Really Innovate More Radically than ‘Coordinated Market Economies’? Hall & Soskice Reconsidered

Akkermans, Dirk; Castaldi, Carolina; Los, Bart

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Do 'Liberal Market Economies' Really Innovate More Radically than 'Coordinated Market Economies'?
Hall & Soskice Reconsidered

Research Memorandum GD-91

Dirk Akkermans, Carolina Castaldi and Bart Los
Do ‘Liberal Market Economies’ Really Innovate
More Radically than ‘Coordinated Market Economies’?
Hall & Soskice Reconsidered

Research Memorandum GD-91

Dirk Akkermans, Carolina Castaldi en Bart Los

Groningen Growth and Development Centre
March 2007
Abstract
In their influential book *Varieties of Capitalism: The Institutional Foundations of Comparative Advantage*, Peter A. Hall and David Soskice argue that the technological specialization patterns of developed countries are largely determined by the “varieties of capitalism” prevailing in these countries. They hypothesize that “liberal market economies” (LMEs) specialize in radical innovation, while “coordinated market economies” (CMEs) focus more on incremental innovation. We argue that Hall and Soskice’s empirical test of this hypothesis is fundamentally flawed and propose a more appropriate and rigorous test of their conjecture, based on patent citation data. The manufacturing-wide industry-level results indicate that the hypothesis does not survive further scrutiny.

Keywords: varieties of capitalism, technological specialization, patent citations.
1. Introduction

In the extensive introduction to their influential edited volume, Peter A. Hall and David Soskice (H&S) argue that the technological specialization patterns of developed countries are largely determined by the “varieties of capitalism” prevailing in these countries (Hall & Soskice, 2001). In “liberal market economies” (LMEs), the activities of economic actors are mainly coordinated through market institutions, in an environment characterized by competition and formal contracting. In “coordinated market economies” (CMEs), however, strategic interaction between firms and other actors play a much more important role in determining the rate and direction of economic activities. Typical examples of LMEs are the U.S. and the UK. The group of CMEs contains Germany and Japan, among others.

H&S hypothesize that LMEs would specialize in radical innovation, while CMEs would focus more on incremental innovation. We believe that H&S’s empirical test of this hypothesis is fundamentally flawed. In this paper, we propose a more appropriate and rigorous test of their hypothesis, based on U.S. patent citation data.

To understand why we think that H&S’s empirical analysis yields unwarranted claims, we should first explain their testing procedure. They compared the innovation specialization patterns of two countries: the U.S. (an LME) and Germany (a CME). Data from the European Patent Office on patents granted in 1983-1984 and 1993-1994 were used to investigate in which technology classes these countries patented relatively heavily. Their results indicate that the U.S. patented relatively heavily in technology classes related to biotechnology, telecommunications and semiconductors. These are, according to H&S, technologies characterized by radical innovations. Germany, on the other hand, obtained relatively many patents in technology classes such as transport and mechanical engineering, which would experience more incremental innovation. These results are seen to confirm the hypothesis.

The approach of H&S can be criticized on many grounds, but we will focus on three. First, it is highly questionable to contend that a comparison of two countries yields evidence that supports a hypothesis about much larger groups of countries. Second, we agree that a technology class like semiconductors is much more susceptible to radical innovation than a class like transport, but would not be surprised if the few radical innovations in transport would cluster in a specific country. The evidence that innovations (irrespective of their radical or incremental nature) within a technology class tend to cluster in specific geographical locations is abundant. There is no reason to a priori
discard the contention that this localization can also be observed for radical innovations only, too. Third, scholars of technological change provided ample evidence of the existence of technology life cycles. Radical innovations occur relatively often during the early stages of the life cycle of a technology, while incremental innovations are much more common in later stages. Hence, H&S’s choice to denote specific technologies as characterized by radical innovations and others as characterized by incremental innovation is not without problems, if only because H&S adopt identical classifications for their 1983-1984 and 1993-1994 analyses. Some of the technologies with a strong emphasis on radical innovations in the early period might well have entered a stage in the technology lifecycle dominated by incremental innovations later on.

We propose a test that does not suffer from the problems sketched above, using data originating from the US Patent Office and obtained from the NBER Patent-Citations Data File. After having used a concordance to map patent classes to industry classes, we will construct industry-specific frequency distributions for several measures of basicness (or “radicality”) computed from patent citation data for the period 1975-1995. In doing so, we draw on previous work by Trajtenberg et al. (1997) who built on the basic idea that patented innovations that are often cited in subsequently issued patents are relatively more important. Next, the frequency distributions will be compared with similar frequency distributions constructed from patents granted to several LMEs and CMEs, to see whether LMEs really specialize in radical innovations or not. The non-parametric statistical testing procedures will also allow us to find out whether such a finding (if any) holds for all industries, or for a limited subset of industries only. Our industry-level analysis adds to Taylor (2004), who considered broad technology classes in investigating the validity of the H&S hypothesis. Moreover, in contrast to our study, Taylor (2004) only used raw numbers of patent citations to measure radicality.

The organization of the paper is as follows. In Section 2, we briefly discuss the broad background of the H&S distinction between LMEs and CMEs and H&S’s results on the prevailing types of innovation in these countries. Section 3 introduces the testing procedures advocated by us, as well as a detailed description of the variables that play a role in these tests. Section 4 is devoted to a discussion of the data. The actual tests of the H&S hypothesis are reported upon in Section 5. Section 6 concludes.

6 Utterback & Abernathy (1975) is the seminal contribution in this respect. Klepper (1996) provided a formal model explaining observed regularities.

7 Trajtenberg (1990) is generally seen as the genesis of this type of research, which focused solely on American issues for a long time. Maurseth & Verspagen (2002) is an example of a recent contribution addressing citation patterns across European regions. See Michel & Bettels (2001) for an account of differences in citation practices across international patent offices.
2. Innovation in Liberal and Coordinated Market Economies

The H&S hypothesis revolves around two distinctions that should be discussed more extensively. First, the most important differences between liberal market economies (LMEs) and coordinated market economies should be dealt with. Second, we should summarize how H&S look at the distinction between radical and incremental innovation. This section discusses these issues, describes the methodologies applied by H&S and finally interprets their main results.

The “Varieties of Capitalism” approach advocated by H&S stresses the notion that the way firms resolve many of the coordination problems they are confronted with varies across countries. LMEs and CMEs can be seen as two archetypes representing the extremes of a continuum. In LMEs, “…firms coordinate their activities primarily via hierarchies and competitive market arrangements. (…) Market relationships are characterized by the arm’s-length exchange of goods or services in a context of competition and formal contracting. In response to the price signals generated by such markets, the actors adjust their willingness to supply and demand goods or services (…).” (Hall & Soskice, 2001, p. 8)

In CMEs, on the other hand,

“... firms depend more heavily on non-market relationships to coordinate their endeavors with other actors and to construct their core competencies. These non-market modes of coordination generally entail more extensive relational or incomplete contracting, network monitoring based on the exchange of private information inside networks, and more reliance on collaborative, as opposed to competitive, relationships to build the competencies of the firm. (…) the equilibria on which firms coordinate in coordinated market economies are more often the result of strategic interaction among firms and other actors.” (Hall & Soskice, 2001, p. 8)

To operationalize the distinction between LMEs and CMEs for analytical purposes, H&S propose two indicators of institutional practices. These relate to corporate finance and labor markets. High levels of stock market capitalization (defined as the ratio of the market value of listed companies to GDP) and low levels of employment protection (measured by a composite index of the ease of ‘hiring and firing’) reflect reliance on markets. Informal cluster analysis leads H&S to the division of a set of 22 OECD countries documented in Table 1. The members of the third group, denoted as MMEs (“mixed market economies”) in the table, are sometimes referred to as the countries representing the ‘Mediterranean’ variety of capitalism.8

H&S (pp.20-21) show that LMEs and CMEs do not differ too much in terms of their economic performance. The levels of GDP per capita and the growth rates of GDP are in the same order of magnitude. Unemployment rates, though, are generally higher in LMEs. In general, the distribution of income is much more unequal in LMEs and average working hours are longer. These findings are derived from informal analysis of the performance of all countries listed in the first two

8 The ‘Mediterranean’ variety of capitalism features strong reliance on non-market mechanisms in corporate finance and a focus on market mechanisms in labor relations.
columns of Table 1. Unfortunately, the H&S hypothesis concerning the nature of innovation in the two varieties was tested using data for two countries only, as we will explain below.

<table>
<thead>
<tr>
<th>LMEs</th>
<th>CMEs</th>
<th>MMEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Austria</td>
<td>France</td>
</tr>
<tr>
<td>Canada</td>
<td>Belgium</td>
<td>Greece</td>
</tr>
<tr>
<td>Ireland</td>
<td>Denmark</td>
<td>Italy</td>
</tr>
<tr>
<td>New Zealand</td>
<td>Finland</td>
<td>Portugal</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Germany</td>
<td>Spain</td>
</tr>
<tr>
<td>United States</td>
<td>Iceland</td>
<td>Turkey</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Netherlands</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switzerland</td>
<td></td>
</tr>
</tbody>
</table>

H&S (pp. 36-41) develop sensible arguments that LMEs should be relatively good at developing radical innovations. However, they do neither give a clear definition of radical innovations, nor of incremental innovation. They indicate that radical innovation “entails substantial shifts in product lines, the development of entirely new goods, or major changes to the production processes (...)” (Hall & Soskice, 2001, pp. 38-39), whereas incremental innovation is “marked by continuous but small-scale improvements to existing product lines and production processes” (Hall & Soskice, 2001, p.39). Although most economists of innovation will agree that these descriptions do at least reflect the most important aspects of widely accepted definitions of the two archetypes of innovation, only few will support the operationalization of these descriptions chosen by H&S.

H&S state that radical innovation is particularly important for dynamic technology fields, such as biotechnology, semiconductors, software, and telecommunications equipment. They associate incremental innovation with technology fields like machine tools, consumer durables, engines and specialized transport equipment. To test their hypothesis, H&S compare the technological specialization patterns of a typical LME (the United States) and a typical CME (Germany). They find that the European Patent Office granted relatively many patents in dynamic technology fields to U.S. inventors, and relatively many patents in technology fields associated to incremental innovations to German inventors. These findings are presented as evidence in favor of H&S’s central hypothesis.

One of the widely accepted facts about innovations is that their impacts are characterized by skewness. Even in technologically dynamic sectors, many innovations do not affect the profitability and/or stock market valuation of firms (see Scherer et al., 2000). An indication that many innovations do not have an impact in a technological sense was provided by Trajtenberg (1990). He showed that almost half of all patents ever granted up to 1982 in the once technologically dynamic field of computed tomography (CT) scanners were never cited in subsequent patents. As will be discussed below, this is a strong sign that such patents were not radical at all, even though they belong to a field that would most probably have been associated to radical innovation by H&S.
The Neo-Schumpeterian/evolutionary theory on innovation also stresses that technologies cannot be associated with radical innovations alone. Dosi (1982), for example, argues that technologies, like science, are sometimes subject to paradigm shifts. These shifts are characterized by the emergence and diffusion of one or a few radical innovations. Afterwards, bunches of minor innovations take place along the lines of the new technological trajectory. Together, these might yield substantial gains in terms of productivity, but they are of an incremental nature. Similar arguments can be found in Utterback & Abernathy (1975). H&S’s claim that specialization of LMEs in radical innovation is remarkably stable over time (they studied the 1983-1984 and 1993-1994 periods) is at odds with the literature, given that they studied technological specialization across fields rather than within fields. Although formal investigations into this issue are beyond the scope of this paper, we feel that H&S’s empirical analysis tells much more about economic specialization patterns than about technological specialization. Finally, ever since Schumpeter’s (1942) introduction of the term “creative destruction”, radical innovations have had a connotation of being very pervasive, i.e. affecting technological change and production processes in many different industries. This aspect of radicality cannot be appropriately addressed by the type of analysis H&S opted for.

In this section we introduced the reader to the main hypothesis in the influential piece by H&S. We do not question the arguments underlying this hypothesis. Nevertheless, we are not convinced by the empirical support for the hypothesis given by H&S. In the sections that follow, we propose and apply a different empirical approach that captures most of the above-mentioned flaws.
3. Tests Based on Patent Citation Indicators

This paper contributes to the relatively recent literature that attempts to capture the importance of innovations by means of patent citation data. In one of the pathbreaking articles in this tradition, the basic source of information is succinctly described as follows:

“If a patent is granted, a public document is created containing extensive information about the inventor, her employer, and the technological antecedents of the invention, all of which can be accessed in computerized form. Among this information are “references” or “citations”. It is the patent examiner who determines what citations a patents must include. The citations serve the legal function of delimiting the scope of the property right conveyed by the patent. The granting of the patent is a legal statement that the idea embodied in the patent represents a novel and useful contribution over and above the previous state of knowledge, as represented by the citations. Thus, in principle, a citation of Patent X by Patent Y means that X represents a piece of previously existing knowledge upon which Y builds.” (Jaffe et al., 1993, p. 580)

As was first confirmed by Trajtenberg (1990), patents that are often cited by later patents are more important than patents that are virtually never cited. Of course, this importance depends on the question whether inventors were really aware of the knowledge claimed in earlier patents. An affirmative answer to this question is not warranted, since it is not the patentee who includes citations, but an expert employee of the patent office. In a recent paper, however, Jaffe et al. (2000) use results of surveys among inventors to conclude that citations do give indications (although noisy ones) of spillovers from the cited invention to the citing invention.

3.a Indicators of Radicality

In this paper, we will use data contained in the NBER Patent-Citations Data File to distinguish between radical and incremental innovations. The general idea is that patents that are “important” according to a number of citation-based indicators are more likely to represent radical innovations than patents that report average or below-average importance. Three measures of importance will be studied, “number of citations received”, “measure of generality” and “measure of originality”. The first measure was introduced by Trajtenberg (1990), the latter two by Trajtenberg et al. (1997). Since the database also contains records for the variable “country of first inventor”, we can study which countries specialize in important patents and which not, for each of the definitions of importance.

We will denote the indicator “number of citations received” by NCITING, in line with the notation adopted by Trajtenberg et al. (1997). This indicator simply supposes that a patent that is cited more often than another one has had more impact on subsequent technological developments and can therefore be seen as more radical.

As was argued in the previous section, many notions of radical innovation stress its property of pervasiveness, i.e. the feature that many industries and/or technological fields are affected by the
innovation after the innovation itself and the knowledge associated with it has started to diffuse (see Lerner, 1994). This aspect of importance is captured by the indicator GENERAL, which was defined by Trajtenberg et al. (1997, p. 27) as follows:

\[
\text{GENERAL}_i = 1 - \sum_{k=1}^{N_i} \left(\frac{\text{NCITING}_{ik}}{\text{NCITING}_i} \right)^2
\]

Equation (1) cannot be used for patents that did not receive a single citation. In such cases we assigned a zero value to the indicator GENERAL.

Finally, we consider a measure that does not relate to the number or diversity of patents citing the patent under study, but the diversity of patents it is citing itself. If patents from several technological classes are cited in a patent, it is quite likely that many different types of knowledge had to be “combined” in order to come up with the patented innovation (see, e.g., Shane, 2001). Such fusion technologies can be seen as radical rather than incremental, because incremental innovations generally require improvements with respect to one or a few technological fields. In line with Trajtenberg et al. (1997, p. 29), we use the indicator ORIGINAL, which is also expressed in terms of a Herfindahl index:

\[
\text{ORIGINAL}_i = 1 - \sum_{k=1}^{N_i} \left(\frac{\text{NCITED}_{ik}}{\text{NCITED}_i} \right)^2
\]

where NCITED\textsubscript{k} represents the number of patents in technology class \(k \) cited by the patent for which the radicality is assessed. In line with our treatment regarding the GENERAL indicator of patents receiving no citations, we assign a zero value to the ORIGINAL indicator if a patent does not contain any reference to earlier patents.

3.b Construction of Radicality Quantiles

We will define radical innovations using rankings of patents based on the three indicators discussed above. Patents that have a high score as compared to other patents will be considered as radical ones. At least two important caveats apply, however.

First, propensities to patent innovations vary strongly across industries, which consequently has implications for received citations (especially from subsequent patents granted to firms in the same industry). Using a European dataset, Verspagen & De Loo (1999) find average received citations-to-patents ratios ranging from 0.39 in the shipbuilding industry to 1.16 in the computer

9 In an early study, Albert et al. (1991) already offered evidence that NCITING and experts’ valuation of patented innovations correlate positively.

10 As is indicated in the appendix of Hall et al. (2002), this measure of generality is biased downwards if it is based on small numbers of citations. The data we use in this study have been corrected for this bias. This also holds for the originality indicator proposed below.
manufacturing industry. Hall et al. (2002) present qualitatively similar results for American patents. Substantial parts of these differences seem to be due to varying industry-specific abilities of patents to act as a way to prevent competitors from outright imitation, a way to force other firms into negotiations (often about cross-licensing) or a way to have potential competitors changing their technological strategies by fencing or blocking (see Cohen et al., 2000).

Second, not all citations are received at once. Verspagen & De Loo (1999) report that the (skewed) distribution of citations to patents issued by the European Patent Office applied for between 1979 and 1997 had a mean lag of 4.67 years. Based on citations to USPTO patents issued during a much longer period, Hall et al. (2002) even find mean lags of up to 16 years. The consequence of the often long lags is that relatively new patents will often have received fewer citations (and/or citations in fewer technological fields) than older patents. Another issue that precludes reasonable comparisons of citation-based indicators across years relates to observed increasing propensities to cite. As Hall et al. (2002) argue, increased computerization of the patent system led to less time-consuming queries by patent examiners, as a consequence of which the citations to patent ratios rose considerably in the 1980s.

To deal with these differences, we based our rankings on industry-specific cohorts of patents applied for in a given year. That is, we first constructed quantiles for patents associated with industry i applied for in year t. Now, we could define the patents in the 10th decile as radical innovations.11 We represent the number of these patents granted to inventors in country k by n_{it}^{**k}. Next, useful aggregations can be obtained by summing over appropriate indexes. The number of important innovations produced by country k in year t, for example, can be defined as $n_{t}^{**k} = \sum_{i=1}^{m} n_{it}^{**k}$ (with m standing for the number of industries), and the number of important innovations produced by industry i in country k over the entire period can be written as $n_{i}^{**k} = \sum_{t=1}^{T} n_{it}^{**k}$ (with T representing the number of years). For some analytical techniques described below, frequencies of incremental innovations are also required. The notation will be equivalent, but asterisks will be reserved for radical innovations. The number of patents related to incremental innovations granted to inventors in country k will thus be indicated by n_{it}^{k}.

3.c Analytical Techniques

We will basically use three techniques to analyze the question whether LMEs do indeed specialize in radical innovations, as was contended by H&S. The first two techniques mainly serve descriptive goals, the third one enables us to produce a statistically sound verdict. First, we will present “Revealed Comparative Technological Advantages” (RCTAs), which are defined in the same

11 Of course, it is rather arbitrary to define the bottom 90 percent of innovations as incremental and the top 10 percent as radical. Below, we will also report some analyses based on a 95/5 percent division. We will also use analytical techniques that take the whole set of quantiles into account, without an explicit borderline between incremental and radical innovations. In future work, it might be interesting to use analytical techniques that study distributional characteristics to discern radical innovations from incremental innovations. Techniques explored by Silverberg & Verspagen (2007) offer a good point of departure.
vein as Revealed Comparative Advantages used in empirical analyses of trade patterns. For industry i, country k’s RCTA is defined as

$$\text{RCTA}_i^k = \frac{n_i^k}{\sum_{k=1}^{C} n_i^k} / \frac{\sum_{k=1}^{C} (n_i^* + n_i^k)}{\sum_{k=1}^{C} (n_i^* + n_i^k)}$$

RCTAs can also be computed for specific time periods or for aggregate economies (and even groups of economies such as the class of CMEs) by choosing appropriate summations. RTAs defined as in equation (3) always yield nonnegative values. Values smaller than 1 indicate “negative specialization” in the generation of important patents, values greater than 1 point to specialization. A problem with this conventional way of presenting degrees of specialization is that negative specializations are compressed into the $[0,1]$ interval, while positive specialization are spread over $<1,\infty>$. To report degrees of specialization in a symmetric fashion, we will always present the natural logarithms of the RCTAs. This type of analysis is very comparable to what H&S used as their informal test. The fundamental difference between their reliance on patents by industry to define radical innovations and our reliance on citation indicators remains, however. The central H&S hypothesis suggests higher values of the logs of the RTAs for LMEs than for CMEs.

Our second technique to depict positive or negative specialization does not rely on a single boundary between incremental and radical innovations. We will present histograms like in Figure 1. On the horizontal axis, the quantiles of importance are depicted. The height of the bars indicate the relative frequencies of patents belonging to these quantiles as granted to inventors in the country or group of countries of interest. So, the heights of the bars for a country always add up to 1.

Figure 1: Hypothetical specialization patterns

If the country would show no specialization in innovations of a specific importance decile, all bars would be equally high (i.e. 0.10). In this case, the 10% least important patents issued by USPTO
to any inventor in the world would account for exactly 10% of the total number of patents awarded to
this country. In the highly stylized diagram in Figure 1, country A would be characterized by a strong
specialization in incremental innovations, since patents that belong to the world’s least important
patents are relatively frequent. The opposite story holds for country B. If the H&S hypothesis is true,
we would find patterns for LMEs with a more positively or less negatively sloping set of heights,
depending on the specialization of countries that got patents granted but are not included in the
analysis.

The RCTAs and diagrams with relative frequencies could tell interesting stories, but do not
provide us with opportunities to test whether observed differences between LMEs and CMEs are
statistically significant. In that respect, we would not gain anything in comparison to H&S. To test for
differences in the innovation specialization of two countries or groups of countries, we could use a
standard χ^2 test based on contingency tables. Such a test compares the actually observed frequencies
for all cells of the table (i.e. frequencies of patents included in the defined quantiles for the respective
countries) with the expected frequencies under the null hypothesis of no differences in specialization.
As is well known from the literature on categorical data analysis (see, e.g. Agresti, 2002) this test is
only appropriate if none of the two dimensions of the table can be ordered in any reasonable way. In
our case, however, the quantiles represent categories that can be measured on an ordinal scale: the
tenth decile is closer to the ninth decile than to the third. The statistical test we use to avoid this
problem was originally proposed by Bhapkar (1968). It is also based on observed and expected
frequencies in contingency tables. An example of such a table is given in Table 2.

<table>
<thead>
<tr>
<th>Quantiles</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country A</td>
<td>190</td>
<td>170</td>
<td>150</td>
<td>130</td>
<td>110</td>
<td>90</td>
<td>70</td>
<td>50</td>
<td>30</td>
<td>10</td>
<td>1000</td>
</tr>
<tr>
<td>Country B</td>
<td>5</td>
<td>15</td>
<td>25</td>
<td>35</td>
<td>45</td>
<td>55</td>
<td>65</td>
<td>75</td>
<td>85</td>
<td>95</td>
<td>500</td>
</tr>
<tr>
<td>Total (N_i)</td>
<td>195</td>
<td>185</td>
<td>175</td>
<td>165</td>
<td>155</td>
<td>145</td>
<td>135</td>
<td>125</td>
<td>115</td>
<td>105</td>
<td>1500</td>
</tr>
<tr>
<td>Score (a_i)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

The observed frequencies are chosen in line with those depicted in Figure 1. It is assumed that
country A got granted twice as many patents as country B. If we denote the unknown probability that
a random observation from the jth sample (j=country A, country B) belongs to the ith category (i=1,
..., 10) by π_{ij}, we might formulate our null hypothesis as H_0: $\sum_i a_i \pi_{ij}$ is independent of j. In this
expression is a_i the “score” assigned to category i.12 H_0 thus implies that the mean scores are identical
for the two countries or groups of countries.

The Bhapkar (1968) test involves the computation of a test statistic that should be compared
with a critical value from a χ^2 distribution with 1 degree of freedom (if two countries are compared, in
the general case the number of degrees of freedom is equal to the number of samples minus one). Let
$p_{ij}=n_{ij}/N_j$, that is, the observed frequencies divided by the row totals. Now, the sample analogs of the

12 The choice of scores is somewhat arbitrary. In the bottom row of Table 2, equidistant scores have been
indicated. In the analysis below, we will experiment with an alternative score setup, that stresses the importance
of observations in higher deciles to a substantial extent.
population means are $A_j = \sum a_i p_{ij}$. If we write $w_j = N_j / B_j$, with $B_j = \sum (a_i - A_j)^2 p_{ij}$, Bhapkar (1968, p.331) shows that the generalized least square technique now yields a large sample test statistic $X = \sum w_j A_j^2 - C^2 / w$, with $C = \sum w_j A_j$ and $w = \sum w_j$. If the null hypothesis of a common mean cannot be rejected, the corresponding estimate for this mean equals C / w.13

13 The hypothetical samples from country A and country B would yield an X-statistic of 656.7, which is well above the 5% critical value of 3.84 taken from the χ^2 distribution with 1 d.f. Thus, the assumption that the patents of country A and country B have an equal mean radicality should be rejected.
4. Data Issues

As mentioned above, our main source of data is the NBER Patent-Citations Data File, which contains data on patent citations in the period 1975-1999 to all utility patents granted by the U.S. Patent Office in the period 1963-1999. For the present analysis, we used the large subset of these patents applied for in the somewhat shorter period 1970-1995, to avoid possible problems concerning citation lags (see section 3.c). The dataset contains nearly 2.1 millions of patents, of which nearly 0.9 millions were granted to inventors outside the U.S. These patents include patents granted to individuals and governments, but more than 75% were awarded to non-governmental organizations (corporations and universities).14

The radicality indicators as taken in unchanged form from the same source are based on citations included in patents granted from 1975 and 1999. Hall et al. (2002) report that more than 16.5 millions of citations were involved in the underlying computations. Self-citations (i.e., citations to previous patents granted to the same organization) are included. The GENERAL and ORIGINAL indicators of radicality were constructed on the basis of citations from and to patents classified into 426 3-digit original patent classes. As we will see below, this classification is much more fine-grained than the 42-industry classification we use to study specialization patterns. This implies that it is very well possible that very general innovations did have technological consequences in one or only a few industries as defined below. We do not consider this as a problem, because patents with a high GENERAL indicator will have had a more widespread impact within such an industry than a patent with a low value for GENERAL. As such, the former patent can still be considered more radical than the latter.

We assign patents to industries by means of OTAF classification codes contained in U.S. patents. These codes are not contained in the NBER Patent-Citations Datafile, but we could easily match the industry codes in USPTO’s PATSIC-CONAME database to the citation data. The OTAF classification assigns patents to one or more industries that are most likely to use the patented process or to manufacture the patented invention. To this end, a concordance was set up that maps 124,000 USPC classes onto 41 fields, plus one “other industries” category. Thus, at the most detailed level, 42 industries are discerned.15 This is also the classification we use for the purpose of this paper. The full classification can be found in the Appendix.

An issue we had to deal with is that 30% of the patents examined by USPTO were assigned to multiple SIC codes. Actually, some patents got as many as seven codes. In studies like these, two approaches can be adopted. If the “whole counts” approach is chosen, the patent count for all z SICs concerned is increased by one. This approach emphasizes the nonrival nature of knowledge, in the sense that the usefulness of a patent for a given industry is not necessarily reduced if other industries could also benefit from it. A drawback is that if one would like to aggregate patent counts over industries, one ends up with more patents than have been granted to inventors in that country. This

14 See Hall et al. (2002, p. 413) for details.
15 See Hirabayashi (2003) for an overview of issues related to the principles underlying the PATSIC database. Griliches (1990, p. 1667) was quite critical about early versions of the OTAF classification, but improvements have been sizeable.
disadvantage is avoided by the second approach, “fractional counting”. This approach amounts to adding $1/z$ to patent counts of SICs assigned to the patent. This implies that the patent is “shared”. We opted for the fractional counting method, because we would encounter problems in assigning patents to radicality quantiles if a patent would fall in the xth quantile for one industry and in the yth quantile for another relevant one. Results for aggregate economies would be flawed, because either the recorded number of patents would be higher than the actual number, or the deciles would not be represented equally in the population of all patents granted by USPTO.\(^{16}\)

\(^{16}\) The latter problem would occur if we would decide to assign the patent to the highest decile found across the industries to which it is assigned by the PATSIC data.
5. Empirical Results

5.a Revealed Comparative Technological Advantages

As a first indication for the empirical validity of the H&S hypothesis, we consider the logarithms of the Revealed Comparative Technological Advantages (RCTAs) given by equation (3). We present two sets of results for each of the three radicality indicators. In Table 3, the columns in the left panel give specialization patterns for the case in which radical innovations are defined as belonging to the 10th deciles. The three columns in the right panel are computed for a stricter definition of radical innovation. Only those patented innovations that are among the top 5% of patents filed in a year for an industry in terms of importance are considered to be radical.

In general, the results are quite robust for the choice of upper quantiles defining radicality. Countries that are specialized in radical innovation in the left panel show a similar specialization in the right panel. Quite often, the specialization patterns are somewhat more pronounced if radical innovations are defined in a stricter sense. The results are also robust for the indicator of radicality chosen. Most countries appear to have experienced a negative specialization in radical innovation for NCITING, GENERAL and ORIGINAL. The only two countries for which the direction of specialization is dependent on the indicator are Ireland and Iceland. For Iceland, this result is more or less a statistical artefact, due to a very small number of patents granted to inventors residing in this country.

<table>
<thead>
<tr>
<th>Country</th>
<th>#Patents</th>
<th>10%<sup>b</sup></th>
<th>5%<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NCIT</td>
<td>GEN</td>
<td>ORI</td>
</tr>
<tr>
<td>LMEs</td>
<td>117.5</td>
<td>-0.22</td>
<td>-0.12</td>
</tr>
<tr>
<td>Australia</td>
<td>9.0</td>
<td>-0.45</td>
<td>-0.29</td>
</tr>
<tr>
<td>Canada</td>
<td>39.5</td>
<td>-0.15</td>
<td>-0.09</td>
</tr>
<tr>
<td>Ireland</td>
<td>0.9</td>
<td>-0.18</td>
<td>+0.13</td>
</tr>
<tr>
<td>New Zealand</td>
<td>1.1</td>
<td>-0.81</td>
<td>-0.36</td>
</tr>
<tr>
<td>UK</td>
<td>66.9</td>
<td>-0.23</td>
<td>-0.12</td>
</tr>
<tr>
<td>US</td>
<td>1,189.7</td>
<td>+0.16</td>
<td>+0.13</td>
</tr>
<tr>
<td>CMEs</td>
<td>615.9</td>
<td>-0.26</td>
<td>-0.22</td>
</tr>
<tr>
<td>Austria</td>
<td>7.9</td>
<td>-0.68</td>
<td>-0.40</td>
</tr>
<tr>
<td>Belgium</td>
<td>7.9</td>
<td>-0.31</td>
<td>-0.28</td>
</tr>
<tr>
<td>Denmark</td>
<td>4.7</td>
<td>-0.41</td>
<td>-0.30</td>
</tr>
<tr>
<td>Finland</td>
<td>5.5</td>
<td>-0.39</td>
<td>-0.33</td>
</tr>
<tr>
<td>Germany</td>
<td>167.5</td>
<td>-0.46</td>
<td>-0.29</td>
</tr>
<tr>
<td>Iceland</td>
<td>0.1</td>
<td>-0.66</td>
<td>+0.09</td>
</tr>
<tr>
<td>Japan</td>
<td>347.3</td>
<td>-0.14</td>
<td>-0.17</td>
</tr>
<tr>
<td>Netherlands</td>
<td>19.8</td>
<td>-0.44</td>
<td>-0.42</td>
</tr>
<tr>
<td>Norway</td>
<td>2.7</td>
<td>-0.56</td>
<td>-0.30</td>
</tr>
</tbody>
</table>
Besides the United States, Ireland is also the only country for which some indication of a specialization in radical innovation is found. For the set of LMEs, we find specialization in incremental innovations. It should be stressed, however, that we excluded the U.S. from the LME category, unlike H&S. We did this for two reasons. First, the decision to apply for a patent is likely to differ between the home market and foreign markets (see Jung & Imm, 2002). It could well be that inventors decide first to patent at the domestic patent office to get acknowledged as being a ‘technically capable inventor’. Applications for foreign patents are more often done after an evaluation of the potential commercial value of such a patent. Hence, domestic patents are often thought to be of an inferior quality, on average. Second, we feel that the validity of H&S’s hypothesis should not hinge on one country. The United States are often considered to be the world’s technological leader. This might of course be due to their early LME-character, but it appears sensible to us to consider the U.S. as a special case.17

Before looking at the three varieties of capitalist economies as discerned by H&S, it is useful to assess the effects of the U.S. on the results. This country shows a specialization in radical innovation, which runs counter to the Jung & Imm argument discussed above. Given the large fraction of all patents granted by USPTO to inventors in the US (see the first column of Table 3), it is to be expected that most other countries will appear to be specialized in incremental innovation. This appears to hold for the group of LMEs as well. The negative values are closer to zero, however, than the RCTAs found for the group of CMEs. This can be seen as provisional evidence in favor of H&S. The mixed type of capitalist economies appear to be most strongly specialized, in incremental innovation.

Inspection of the RCTAs for individual countries leads us to conclude that the specialization patterns vary quite a bit across countries belonging to a given type of economy. Among the LMEs, New Zealand and, to a lesser extent, Australia are outliers. These countries turn out to have a specialization pattern that is closer to that of a typical CME. The opposite holds for CME Japan. It might be that this is due to an argument put forward by Archibugi & Pianta (1992), who contended

17 One could also invoke their unequalled government-sponsored defence-related technological activities as an argument to consider the U.S. as a non-representative LME.
that large economies tend to be less specialized in specific technology fields than small countries, because the latter do not have the resources to diversify their activities to the same extent. We feel, though, that this argument is much weaker in the present context. A small country with a strong specialization in communication technology, for example, would not waste resources by pursuing radical and incremental innovations simultaneously.\(^{18}\) The heterogeneity within varieties of capitalism is a first indication against the H&S hypothesis.

Before turning to results for methods that view the radical vs. incremental innovation distinction not as a binary issue but as a matter of gradual differences, we would like to stress that the RCTAs presented in Table 3 are computed for aggregate economies. Similar indicators can also be calculated at the industry level. For reasons of brevity, we will not document all results here, but restrict the exposition to a few selected industries (that can be seen as covering substantial parts of the manufacturing sector), the top 10% definition and the NCITING indicator only. The results are documented in Table 4.

Table 4: Revealed Comparative Technological Advantages (in logarithms), selected industries.

<table>
<thead>
<tr>
<th>Industry</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastics</td>
<td>-0.093</td>
<td>-0.219</td>
<td>-0.132</td>
<td>-0.193</td>
<td>-0.172</td>
<td>-0.008</td>
<td>-0.229</td>
<td>-0.390</td>
</tr>
<tr>
<td>Drugs</td>
<td>-0.267</td>
<td>-0.482</td>
<td>-0.420</td>
<td>-0.082</td>
<td>0.052</td>
<td>-0.469</td>
<td>-0.143</td>
<td>0.172</td>
</tr>
<tr>
<td>Nonferrous metals</td>
<td>-0.193</td>
<td>-0.219</td>
<td>-0.193</td>
<td>-0.172</td>
<td>-0.008</td>
<td>-0.229</td>
<td>-0.390</td>
<td></td>
</tr>
<tr>
<td>Metal working machinery</td>
<td>-0.082</td>
<td>-0.082</td>
<td>0.052</td>
<td>-0.469</td>
<td>-0.143</td>
<td>0.172</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous machinery</td>
<td>-0.008</td>
<td>-0.229</td>
<td>-0.390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Misc. electrical machinery</td>
<td>-0.229</td>
<td>-0.390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMEs</td>
<td>-0.093</td>
<td>-0.219</td>
<td>-0.132</td>
<td>-0.193</td>
<td>-0.172</td>
<td>-0.008</td>
<td>-0.229</td>
<td>-0.390</td>
</tr>
<tr>
<td>CMEs</td>
<td>-0.267</td>
<td>-0.482</td>
<td>-0.420</td>
<td>-0.082</td>
<td>0.052</td>
<td>-0.469</td>
<td>-0.143</td>
<td>0.172</td>
</tr>
</tbody>
</table>

\(^{a}\) Results for the full set of industries can be obtained from the authors.

Although we will postpone formal statistical analysis concerning differences among populations based on samples until subsection 5.c, we can infer from Table 4 that LMEs do not systematically show RCTAs that indicate a weaker specialization in incremental innovation. In three (non-ferrous metals, miscellaneous non-electrical machinery, and aircraft) of the eight selected industries, CMEs tend to be more directed towards generating radical innovations.

5.b Histograms for Radicality Distributions

To describe more general patterns of technological specialization patterns, we present three histograms along the lines of Figure 1. The relative frequencies of patents belonging to deciles of the entire population of all patents granted by USPTO defined using the NCITING indicator are depicted in Figure 2.

\(^{18}\) An effect of size is clearly present for Portugal. This country did not produce a single patent that belonged to the 5% most important USPTO patents in terms of generality. Consequently, its specialization in such innovations appears to be minus infinity.
The four (groups of) economies exhibit specialization patterns that are quite similar in shape to the stylized distributions depicted in Figure 1 for the hypothetical countries A and B, in the sense that the heights of the bars are either monotonically increasing or decreasing. The specialization in more radical innovations by the U.S. already apparent from Table 3 is strongly confirmed by the graph. The U.S. are not only ‘overrepresented’ in the top 10% and top 5% patents, but also in less outspoken radical innovations. The opposite holds for economies of the Mediterranean variety of capitalism. Figure 2 indicates that the LMEs (excluding the U.S.) and the CMEs considered as groups have rather similar specialization patterns. LMEs did obtain relatively many very unimportant patents, but also many very important patents. In the intermediate deciles, CMEs are relatively strongly represented. Although visual inspection indicates some differences in specialization patterns between LMEs and CMEs, we do not find strong evidence in favor of the H&S hypothesis.

Figures 3 and 4 present similar distributions as Figure 2, but for the GENERAL and ORIGINAL indicators, respectively.
Figure 3: Technological specialization patterns (Radicality indicator:GENERAL)

Figure 4: Technological specialization patterns (Radicality indicator:ORIGINAL)

The distributions indicate that there are noticeable differences between importance measured according to the three proposed indicators. With regard to ORIGINAL, LMEs seem to be much more specialized in radical innovation than CMEs. Concerning the GENERAL indicator, the distributions for the LMEs and CMEs group is much more alike Figure 2 for NCITING. The distributions for MMEs and the U.S. are not sensitive in a qualitative sense to the indicator type chosen.

5.3 Statistical tests on equality of distributions
So far, we used descriptive statistics to study the validity of the H&S hypothesis. In this subsection, we turn to the results for Bhapkar’s (1968) test outlined in Section 3. Table 5 presents results for pairwise comparisons of radicality distributions for the aggregates of the four groups of countries for which the distributions were depicted in Figures 2-4. As we mentioned in our discussion of the test, results might be sensitive to the scores assigned to each decile (see Agresti, 2002). Therefore, we
present results for two sets of scores. The left panel is obtained by using a “linear” (or “equidistant”) set of scores. That is, we assigned a score $a_i = i$ to each of the deciles. For the rightmost panel, we adopted a scoring system that weights patents in the very important deciles more heavily. We assigned scores $a_i = i^2$ to decile i. Cells in the table contain the letters referring to the (group of) countries that turned out to be the most radical of the countries corresponding to the rows and columns, respectively. Significance levels are indicated by the number of asterisks. Thus, C*** in the upper left cell indicates that CMEs were more specialized in radical innovation than LMEs at a significance level of 1%, if linear scores are used and the radicality indicator is NCITING.

<table>
<thead>
<tr>
<th></th>
<th>Citations received</th>
<th>Linear scores</th>
<th>Quadratic scores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CMEs</td>
<td>MMEs</td>
<td>US</td>
</tr>
<tr>
<td>LMEs</td>
<td>C**</td>
<td>L***</td>
<td>U***</td>
</tr>
<tr>
<td>CMEs</td>
<td>C***</td>
<td>U***</td>
<td>C***</td>
</tr>
<tr>
<td>MMEs</td>
<td>U***</td>
<td>U***</td>
<td></td>
</tr>
<tr>
<td>Generality</td>
<td>CMEs</td>
<td>MMEs</td>
<td>US</td>
</tr>
<tr>
<td>LMEs</td>
<td>L***</td>
<td>U***</td>
<td>L***</td>
</tr>
<tr>
<td>CMEs</td>
<td>C***</td>
<td>U***</td>
<td>C***</td>
</tr>
<tr>
<td>MMEs</td>
<td>U***</td>
<td>U***</td>
<td></td>
</tr>
<tr>
<td>Originality</td>
<td>CMEs</td>
<td>MMEs</td>
<td>US</td>
</tr>
<tr>
<td>LMEs</td>
<td>L***</td>
<td>U***</td>
<td>L***</td>
</tr>
<tr>
<td>CMEs</td>
<td>M***</td>
<td>U***</td>
<td>M***</td>
</tr>
<tr>
<td>MMEs</td>
<td>U***</td>
<td>U***</td>
<td></td>
</tr>
</tbody>
</table>

Cells in the table contain the letters referring to the (group of) countries that turned out to be the most radical innovators of the countries corresponding to the rows and columns, respectively. *: significant at 10%, **: significant at 5%, ***: significant at 1%.

Overall, the results are rather robust for alternative sets of scores. Furthermore, the differences are highly significant. The U.S. turns out to be most strongly specialized in radical innovation, irrespective of the radicality indicator considered. MMEs are consistently found to be least specialized in radical innovation, with one major exception: if the ORIGINAL indicator is chosen, MMEs are significantly more radical innovators than CMEs.

Of course, the results for comparisons between LMEs and CMEs are the most interesting from the perspective of this paper. In general, the results seem to confirm H&S hypothesis. For the GENERAL and ORIGINAL indicators, LMEs are clearly more specialized in producing radical innovations. A different picture is found for NCITING, however. In our discussion of Figure 2, we already indicated that LMEs showed high relative frequencies (as compared to CMEs) for very unimportant and very important patents. This phenomenon is reflected in the test results. If very important patents weight very heavily (like in the quadratic set of scores) LMEs appear as more specialized in radical innovations than CMEs, although significance is weaker than for other
comparisons in Table 5. Using linear scores, we find that CMEs are significantly more specialized in radical innovation. Our result is a bit inconclusive in this respect.

We now turn to Bhapkar tests for comparisons of specialization patterns for individual industries. Our discussion of RCTAs already indicated that results for aggregate economies (or groups of them) could well hide strongly heterogeneous patterns at a lower level of aggregation. Table 6 presents results for comparisons of specialization patterns of LMEs and CMEs for all 42 industries that we can distinguish. To save space, we report results for the linear set of scores. For an overwhelming majority of comparisons, application of quadratic scoring yielded qualitatively identical results.

The results for ORIGINAL are very clear. In many industries, the group of LMEs is more specialized in radical innovation than the group of CMEs. Apparently, inventors in LMEs draw on a much broader base of technologies in producing new innovations. If radicality of innovations is defined in this way, strong support is found for the H&S hypothesis. This result does not carry over to the NCITING and GENERAL indicators, however. For these indicators, the results could best be described as a “mixed bag”. Generalizing the results somewhat, we find that LMEs are relatively more specialized in radical innovation in industries that produce chemicals and related products as well as in electronics industries. CMEs, however, appear to have an edge over LMEs in radical innovation concerning metals, machinery and transport equipment industries. Relative differences in the degree to which industries innovate and/or patent their innovations are thus responsible for the result that LMEs specialize more strongly in radical innovation (cf. the results for GENERAL in Table 5).

Table 6: Differences in Radicality between LMEs and CMEs (by Industry)

<table>
<thead>
<tr>
<th>Industry</th>
<th>NCIT</th>
<th>GEN</th>
<th>ORI</th>
<th>NCIT</th>
<th>GEN</th>
<th>ORI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>L***</td>
<td></td>
<td>L***</td>
<td></td>
<td>C***</td>
<td></td>
</tr>
<tr>
<td>Textiles</td>
<td></td>
<td>L**</td>
<td>L***</td>
<td>22</td>
<td>C***</td>
<td></td>
</tr>
<tr>
<td>Inorg. chemistry</td>
<td></td>
<td>L***</td>
<td></td>
<td>23</td>
<td>C***</td>
<td></td>
</tr>
<tr>
<td>Org. chemistry</td>
<td></td>
<td>L***</td>
<td></td>
<td>24</td>
<td>L***</td>
<td></td>
</tr>
<tr>
<td>Plastics</td>
<td></td>
<td></td>
<td>L***</td>
<td>25</td>
<td>C***</td>
<td></td>
</tr>
<tr>
<td>Agr. chemicals</td>
<td></td>
<td>L***</td>
<td></td>
<td>26</td>
<td>L***</td>
<td></td>
</tr>
<tr>
<td>Soaps</td>
<td></td>
<td>L***</td>
<td>L***</td>
<td>27</td>
<td>C***</td>
<td></td>
</tr>
<tr>
<td>Paints</td>
<td></td>
<td></td>
<td>L***</td>
<td>28</td>
<td>C***</td>
<td>L***</td>
</tr>
<tr>
<td>Misc. chemicals</td>
<td>C**</td>
<td>L***</td>
<td></td>
<td>29</td>
<td>C***</td>
<td>L***</td>
</tr>
<tr>
<td>Drugs</td>
<td>L***</td>
<td>L***</td>
<td>L***</td>
<td>30</td>
<td>L***</td>
<td></td>
</tr>
<tr>
<td>Oil and gas</td>
<td>C***</td>
<td></td>
<td></td>
<td>31</td>
<td>L***</td>
<td></td>
</tr>
<tr>
<td>Rubber</td>
<td>L***</td>
<td></td>
<td></td>
<td>32</td>
<td>C***</td>
<td>L***</td>
</tr>
<tr>
<td>Stone and glass</td>
<td>C*</td>
<td>L***</td>
<td></td>
<td>33</td>
<td>L***</td>
<td></td>
</tr>
<tr>
<td>Primary ferrous prod.</td>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td>L***</td>
<td></td>
</tr>
<tr>
<td>Non-ferrous metals</td>
<td>C***</td>
<td></td>
<td>L***</td>
<td>35</td>
<td>L***</td>
<td></td>
</tr>
<tr>
<td>Fabr. metal prod.</td>
<td>C***</td>
<td>L***</td>
<td></td>
<td>36</td>
<td>C***</td>
<td></td>
</tr>
<tr>
<td>Engines</td>
<td></td>
<td>C***</td>
<td>L***</td>
<td>37</td>
<td>C***</td>
<td>L***</td>
</tr>
<tr>
<td>Farm machinery</td>
<td></td>
<td>C***</td>
<td>L***</td>
<td>38</td>
<td>C***</td>
<td>L***</td>
</tr>
<tr>
<td>Construction mach.</td>
<td></td>
<td>C***</td>
<td></td>
<td>39</td>
<td>C***</td>
<td>L***</td>
</tr>
<tr>
<td>Metal working mach.</td>
<td></td>
<td>C***</td>
<td>L***</td>
<td>40</td>
<td>C***</td>
<td>L***</td>
</tr>
<tr>
<td>Office mach.</td>
<td></td>
<td>L***</td>
<td>L***</td>
<td>41</td>
<td>C***</td>
<td>L***</td>
</tr>
</tbody>
</table>
| Blank cells indicate no significant difference in radicality between LMEs and CMEs. *: significant at 10%, **: significant at 5%, ***: significant at 1%.
To conclude our discussion of the empirical analysis, we feel that it offers much evidence against the H&S hypothesis. We found that countries belonging to a common variety of capitalism are very heterogeneous in their technological specialization patterns, and we also found that LMEs and CMEs tend to reflect very heterogeneous specialization patterns at the level of industries. The only piece of strong evidence in favor of the H&S hypothesis was found for the indicator that regards innovations that merge knowledge from relatively many technological fields as radical.
6. Conclusions

This paper addressed the question whether Hall & Soskice’s (2001) hypothesis that ‘Liberal Market Economies’ specialize in radical innovation while ‘Coordinated Market Economies’ specialize in incremental innovation is true or not. We first indicated why we feel that H&S’s empirical analysis is flawed in several ways. Next, we used U.S. data on patent citations for an analysis that we consider to be more rigorous. We found that the hypothesis should be rejected. Not only do LMEs and CMEs constitute varieties of economies that represent quite diverse patterns of specialization, results also turned out to be quite heterogeneous across industries.

The present analysis could well be broadened and deepened in future work. It should, for instance, be kept in mind that we only considered outputs of innovation processes, like Hall & Soskice did. Specialization in radical innovation does not necessarily mean that these countries are relatively good at producing such innovations. Theory might predict that we would find such a relation, but it might well be that governments play an important role in choices by private organizations to aim at radical innovations. In such cases, countries specialized in radical innovations could have relatively unproductive R&D processes, in terms of the number of radical innovations per unit of input.

Another interesting issue relates to the identification of radical innovations. In the computations of our Relative Comparative Technological Advantages (RCTAs), we used manufacturing-wide cutoff-points to assign innovations to either the class of incremental innovations or the class of radical innovations. This is a rather crude method. Recent advances in extreme value statistics might prove valuable in devising methods to come up with distribution-dependent cut-off points that also make sense from the viewpoint of the economics of innovation.
References

Appendix

The table below contains the industry classification used, the OTAF and SIC codes, all taken from USPTO’s PATSIC-CONAME datafile on CD-ROM.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Product description</th>
<th>OTAF code</th>
<th>SIC code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Food and kindred products</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Textile mill products</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>Industrial inorganic chemistry</td>
<td>281</td>
<td>281</td>
</tr>
<tr>
<td>4</td>
<td>Industrial organic chemistry</td>
<td>286</td>
<td>286</td>
</tr>
<tr>
<td>5</td>
<td>Plastics materials and synthetic resins</td>
<td>282</td>
<td>282</td>
</tr>
<tr>
<td>6</td>
<td>Agricultural chemicals</td>
<td>287</td>
<td>287</td>
</tr>
<tr>
<td>7</td>
<td>Soaps, detergents, cleaners, perfumes, cosmetics and toiletries</td>
<td>284</td>
<td>284</td>
</tr>
<tr>
<td>8</td>
<td>Paints, varnishes, lacquers, enamels, and allied products</td>
<td>285</td>
<td>285</td>
</tr>
<tr>
<td>9</td>
<td>Miscellaneous chemical products</td>
<td>289</td>
<td>289</td>
</tr>
<tr>
<td>10</td>
<td>Drugs and medicines</td>
<td>283</td>
<td>283</td>
</tr>
<tr>
<td>11</td>
<td>Petroleum and natural gas extraction and refining</td>
<td>1329</td>
<td>13, 29</td>
</tr>
<tr>
<td>12</td>
<td>Rubber and miscellaneous plastics products</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>13</td>
<td>Stone, clay, glass and concrete products</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>Primary ferrous products</td>
<td>331+</td>
<td>331, 332, 3399, 3462</td>
</tr>
<tr>
<td>15</td>
<td>Primary and secondary non-ferrous metals</td>
<td>333+</td>
<td>333-336, 339 (except 3399), 3463</td>
</tr>
<tr>
<td>16</td>
<td>Fabricated metal products</td>
<td>34-</td>
<td>34 (except 3462, 3463, 348)</td>
</tr>
<tr>
<td>17</td>
<td>Engines and turbines</td>
<td>351</td>
<td>351</td>
</tr>
<tr>
<td>18</td>
<td>Farm and garden machinery and equipment</td>
<td>352</td>
<td>352</td>
</tr>
<tr>
<td>19</td>
<td>Construction, mining and material handling machinery and equipment</td>
<td>353</td>
<td>353</td>
</tr>
<tr>
<td>20</td>
<td>Metal working machinery and equipment</td>
<td>354</td>
<td>354</td>
</tr>
<tr>
<td>21</td>
<td>Office computing and accounting machines</td>
<td>357</td>
<td>357</td>
</tr>
<tr>
<td>22</td>
<td>Special industry machinery, except metal working</td>
<td>355</td>
<td>355</td>
</tr>
<tr>
<td>23</td>
<td>General industrial machinery and equipment</td>
<td>356</td>
<td>356</td>
</tr>
<tr>
<td>24</td>
<td>Refrigeration and service industry machinery</td>
<td>358</td>
<td>358</td>
</tr>
<tr>
<td>25</td>
<td>Miscellaneous machinery, except electrical</td>
<td>359</td>
<td>359</td>
</tr>
<tr>
<td>26</td>
<td>Electrical transmission and distribution equipment</td>
<td>361+</td>
<td>361, 3825</td>
</tr>
<tr>
<td>27</td>
<td>Electrical industrial apparatus</td>
<td>362</td>
<td>362</td>
</tr>
<tr>
<td>28</td>
<td>Household appliances</td>
<td>363</td>
<td>363</td>
</tr>
<tr>
<td>29</td>
<td>Electrical lighting and wiring equipment</td>
<td>364</td>
<td>364</td>
</tr>
<tr>
<td>30</td>
<td>Miscellaneous electrical machinery, equipment and supplies</td>
<td>369</td>
<td>369</td>
</tr>
<tr>
<td>31</td>
<td>Radio and television receiving equipment except communication types</td>
<td>365</td>
<td>365</td>
</tr>
<tr>
<td>32</td>
<td>Electronic components and accessories and communications equipment</td>
<td>366+</td>
<td>366, 367</td>
</tr>
<tr>
<td>33</td>
<td>Motor vehicles and other motor vehicle equipment</td>
<td>371</td>
<td>371</td>
</tr>
<tr>
<td>34</td>
<td>Guided missiles and space vehicles and parts</td>
<td>376</td>
<td>376</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
<td>Code 1</td>
<td>Code 2</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>35</td>
<td>Ship and boat building and repairing</td>
<td>373</td>
<td>373</td>
</tr>
<tr>
<td>36</td>
<td>Railroad equipment</td>
<td>374</td>
<td>374</td>
</tr>
<tr>
<td>37</td>
<td>Motorcycles, bicycles and parts</td>
<td>375</td>
<td>375</td>
</tr>
<tr>
<td>38</td>
<td>Miscellaneous transportation equipment</td>
<td>379-</td>
<td>379 (except 3795)</td>
</tr>
<tr>
<td>39</td>
<td>Ordinance except missiles</td>
<td>348+</td>
<td>348, 3795</td>
</tr>
<tr>
<td>40</td>
<td>Aircraft and parts</td>
<td>372</td>
<td>372</td>
</tr>
<tr>
<td>41</td>
<td>Professional and scientific instruments</td>
<td>38-</td>
<td>38 (except 3825)</td>
</tr>
<tr>
<td>42</td>
<td>All other SICs</td>
<td>99</td>
<td>99</td>
</tr>
</tbody>
</table>
Papers issued in the series of the Groningen Growth and Development Centre

Papers marked * are also available in pdf-format on the internet: http://www.ggdc.net/
Hardcopies of other papers can be ordered (as long as available) from ggdc@eco.rug.nl

536 (GD-1) Maddison, Angus and Harry van Ooststroom, The International Comparison of Value Added, Productivity and Purchasing Power Parities in Agriculture (1993)
538 (GD-3)* Szirmai, Adam, Comparative Performance in Indonesian Manufacturing, 1975-90 (1993)
549 (GD-4) de Jong, Herman J., Prices, Real Value Added and Productivity in Dutch Manufacturing, 1921-1960 (1993)
550 (GD-5) Beintema, Nienke and Bart van Ark, Comparative Productivity in East and West German Manufacturing before Reunification (1993)
567 (GD-6)* Maddison, Angus and Bart van Ark, The International Comparison of Real Product and Productivity (1994)
571 (GD-10)* van Ark, Bart and Remco D.J. Kouwenhoven, Productivity in French Manufacturing: An International Comparative Perspective (1994)
573 (GD-12)* Albers, Ronald, Adrian Clemens and Peter Groote, Can Growth Theory Contribute to Our Understanding of Nineteenth Century Economic Dynamics (1994)
577 (GD-16) Gales, Ben, In Foreign Parts: Free-Standing Companies in the Netherlands around the First World War (1994)
578 (GD-17) Mulder, Nanno, Output and Productivity in Brazilian Distribution: A Comparative View (1994)

GD-21 Fremdling, Rainer, Anglo-German Rivalry on Coal Markets in France, the Netherlands and Germany, 1850-1913 (December 1995)

GD-22* Tassenaar, Vincent, Regional Differences in Standard of Living in the Netherlands, 1800-1875, A Study Based on Anthropometric Data (December 1995)

GD-23* van Ark, Bart, Sectoral Growth Accounting and Structural Change in Postwar Europe (December 1995)

GD-24* Groote, Peter, Jan Jacobs and Jan Egbert Sturm, Output Responses to Infrastructure in the Netherlands, 1850-1913 (December 1995)

GD-26* van Ark, Bart and Herman de Jong, Accounting for Economic Growth in the Netherlands since 1913 (May 1996)

GD-29* Kouwenhoven, Remco, A Comparison of Soviet and US Industrial Performance, 1928-90 (May 1996)

GD-30 Fremdling, Rainer, Industrial Revolution and Scientific and Technological Progress (December 1996)

GD-31 Timmer, Marcel, On the Reliability of Unit Value Ratios in International Comparisons (December 1996)

GD-32 de Jong, Gjalt, Canada's Post-War Manufacturing Performance: A Comparison with the United States (December 1996)

GD-33 Lindlar, Ludger, “1968” and the German Economy (January 1997)

GD-34 Albers, Ronald, Human Capital and Economic Growth: Operationalising Growth Theory, with Special Reference to The Netherlands in the 19th Century (June 1997)

GD-35* Brinkman, Henk-Jan, J.W. Drukker and Brigitte Slot, GDP per Capita and the Biological Standard of Living in Contemporary Developing Countries (June 1997)

GD-36 de Jong, Herman, and Antoon Soete, Comparative Productivity and Structural Change in Belgian and Dutch Manufacturing, 1937-1987 (June 1997)

GD-37 Timmer, M.P., and A. Szirmai, Growth and Divergence in Manufacturing Performance in South and East Asia (June 1997)

GD-39* van der Eng, P., Economics Benefits from Colonial Assets: The Case of the Netherlands and Indonesia, 1870-1958 (June 1998)

van Ark, Bart, Economic Growth and Labour Productivity in Europe: Half a Century of East-West Comparisons (October 1999)

Smits, Jan Pieter, Herman de Jong and Bart van Ark, Three Phases of Dutch Economic Growth and Technological Change, 1815-1997 (October 1999)

Fremdling, Rainer, Historical Precedents of Global Markets (October 1999)

van Ark, Bart, Lourens Broersma and Gjalt de Jong, Innovation in Services. Overview of Data Sources and Analytical Structures (October 1999)

Sleifer, Jaap, Separated Unity: The East and West German Industrial Sector in 1936 (November 1999)

Rao, D.S. Prasada and Marcel Timmer, Multilateralisation of Manufacturing Sector Comparisons: Issues, Methods and Empirical Results (July 2000)

Vikström, Peter, Long term Patterns in Swedish Growth and Structural Change, 1870-1990 (July 2001)

Mulder, Nanno, Sylvie Montout and Luis Peres Lopes, Brazil and Mexico's Manufacturing Performance in International Perspective, 1970-98 (January 2002)

Szirmai, Adam, Francis Yamfwa and Chibwe Lwamba, Zambian Manufacturing Performance in Comparative Perspective (January 2002)

Fremdling, Rainer, European Railways 1825-2001, an Overview (August 2002)

Fremdling, Rainer, Foreign Trade-Transfer-Adaptation: The British Iron Making Technology on the Continent (Belgium and France) (August 2002)

Sleifer, Jaap, A Benchmark Comparison of East and West German Industrial Labour Productivity in 1954 (October 2002)

Szirmai, A., M. Prins and W. Schulte, Tanzanian Manufacturing Performance in Comparative Perspective (November 2002)

Hill, Robert J., Constructing Price Indexes Across Space and Time: The Case of the European Union (May 2003)
GD-63* Stuivenwold, Edwin and Marcel P. Timmer, Manufacturing Performance in Indonesia, South Korea and Taiwan before and after the Crisis; An International Perspective, 1980-2000 (July 2003)

GD-67* Timmer, Marcel, Gerard Ypma and Bart van Ark, IT in the European Union, Driving Productivity Divergence?

GD-69* van Ark, Bart and Marcin Piatkowski, Productivity, Innovation and ICT in Old and New Europe (March 2004)

GD-70* Dietzenbacher, Erik, Alex Hoen, Bart Los and Jan Meist, International Convergence and Divergence of Material Input Structures: An Industry-level Perspective (April 2004)

GD-73* Hill, Robert and Marcel Timmer, Standard Errors as Weights in Multilateral Price Indices (November 2004)

GD-74* Inklaar, Robert, Cyclical productivity in Europe and the United States, Evaluating the evidence on returns to scale and input utilization (April 2005)

GD-75* van Ark, Bart, Does the European Union Need to Revive Productivity Growth? (April 2005)

GD-79* Inklaar, Robert and Bart van Ark, Catching Up or Getting Stuck? Europe’s Troubles to Exploit ICT’s Productivity Potential (September 2005)

GD-80* van Ark, Bart, Edwin Stuivenwold and Gerard Ypma, Unit Labour Costs, Productivity and International Competitiveness (August 2005)

GD-83* Timmer, Marcel and Gerard Ypma, Productivity Levels in Distributive Trades: A New ICOP Dataset for OECD Countries (April 2005)
GD-86*	Frankema, Ewout, and Jutta Bolt, Measuring and Analysing Educational Inequality: The Distribution of Grade Enrolment Rates in Latin America and Sub-Saharan Africa (April 2006)
GD-87*	Azeez Erumban, Abdul, Lifetimes of Machinery and Equipment. Evidence from Dutch Manufacturing (July 2006)
GD-88*	Castaldi, Carolina and Sandro Sapio, The Properties of Sectoral Growth: Evidence from Four Large European Economies (October 2006)
GD-89*	Inklaar, Robert, Marcel Timmer and Bart van Ark, Mind the Gap! International Comparisons of Productivity in Services and Goods Production (October 2006)
Groningen Growth and Development Centre Research Monographs

Monographs marked * are also available in pdf-format on the internet: http://www.ggdc.net/

No. 3 Hofman, André, Latin American Economic Development. A Causal Analysis in Historical Perspective (1998)
No. 4 Mulder, Nanno, The Economic Performance of the Service Sector in Brazil, Mexico and the United States (1999)