A tailored solver for bifurcation analysis of ocean-climate models
Niet, Arie de; Wubs, Fred; Terwisscha van Scheltinga, Arjen; Dijkstra, Henk A.

Published in:
Journal of computational physics

DOI:
10.1016/j.jcp.2007.08.006

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Matthijs den Toom a,*, Fred W. Wubs b, Henk A. Dijkstra a

a Institute for Marine and Atmospheric Research Utrecht, Department of Physics and Astronomy, Utrecht University, Prin cqetonplein 5, 3584 CC Utrecht, The Netherlands
b Department of Mathematics and Computer Science, University of Groningen, Groningen, The Netherlands

This corrigendum contains a correction to some of the results in the article “A tailored solver for bifurcation analysis of ocean-climate models” [2], in which it was demonstrated how the specific mathematical structure of the equations governing oceanic flow can be exploited to build an efficient linear system solver for use in a continuation method. Compared to earlier work (e.g. [4]), an additional novelty was the implementation of the small slope approximation to Redi [3] isoneutral mixing in z-coordinate models than horizontal diffusion. Unfortunately, the formulation of Redi and GM mixing in [2, Section 2.2.] contains several errors, which were carried over to the numerical implementation. New computations that used the correct formulation revealed qualitative differences with some of the results given in [2, Section 4.2.2.], in particular Fig. 7 and Fig. 8. Therefore, a correction of these errors will be provided below.

For completeness, we first correct the typographical errors that appeared in [2, Section 2.1.]. In the second term of the momentum equations [2, (4a,b)] a factor of r_0^{-1}, where r_0 is the Earth’s radius, is missing. Furthermore, the inclusion of the constant τ_0 in the last term is inappropriate, given that the wind-stress field (τ^*, τ^u) is defined to have units of Pa. In the definitions of the operators $L_0(u,v)$ and $L_1(u,v)$ a factor $\cos 2\theta$ was omitted in the numerator of the first metric term. They should read

$$L_0(u,v) = \nabla_h^2 u + \frac{u \cos 2\theta}{r_0^2 \cos^2 \theta} - \frac{2 \sin \theta}{r_0^2 \cos^2 \theta} \frac{\partial v}{\partial \phi}$$

$$L_1(u,v) = \nabla_h^2 v + \frac{v \cos 2\theta}{r_0^2 \cos^2 \theta} + \frac{2 \sin \theta}{r_0^2 \cos^2 \theta} \frac{\partial u}{\partial \phi}$$

Finally, the terms $R_1(T,S)$ and $R_2(T,S)$ in [2, (4e,f)] should be replaced by $-R_1(T,S)$ and $-R_2(T,S)$, respectively, since these are defined as the convergences of the diffusive tracer fluxes. All equations in [2, Section 2.1.] were coded correctly and hence these typographical errors have no implication for the correctness of the results shown in [2].

For the implementation of tracer mixing it is convenient to strictly discriminate between horizontal and isoneutral mixing. Therefore, the definition in [2, (6a,b)] of the mixing operator $R_C(T,S)$, where C may be either the temperature (T) or the salinity (S), is rewritten as

$$R_C(T,S) = \nabla_h \cdot \left([(1 - \eta_m)K_H + \eta_m K_I]\nabla_h C + (\eta_m K_I - \eta_C \kappa) S \frac{\partial C}{\partial z} \right) + \frac{\partial}{\partial z} \left(\eta_m K_I + \eta_C \kappa \right) S \cdot \nabla_h C + \eta_m K_I S \cdot S \frac{\partial C}{\partial z}$$

$$+ \frac{\partial}{\partial z} \left(K_V \frac{\partial C}{\partial z} \right) .$$

(1)

Here K_H, K_I, and K_V are the horizontal, isoneutral and vertical diffusivity, and κ is the GM skew diffusive mixing coefficient. The two homotopy parameters η_m and η_C were introduced to facilitate smooth continuation between horizontal mixing ($\eta_m = 0$) and isoneutral mixing ($\eta_m = 1$), and between GM stirring disabled ($\eta_C = 0$) and enabled ($\eta_C = 1$). Specifically, when $\eta_m = \eta_C = 0$, tracer diffusion occurs only along geopotential directions with horizontal diffusion controlled by K_H; when

DOI of original article: 10.1016/j.jcp.2007.08.006
* Corresponding author.
E-mail address: m.dentoom@uu.nl (M. den Toom).

0021-9991/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
The definition of the neutral slope vector S in [2, (7)] incorrectly appeared without a minus sign. It should read

$$
S = -\left(-\frac{\alpha \nabla_{\parallel} T}{2} + 2 \frac{\nabla_{\parallel} S}{3} \right).
$$

Furthermore, application of the slope taper $f(x)$ given in [2, (8)] would inadvertently produce nonzero fluxes only in regions where isoneutral slopes are steep, whereas (1) is only valid for small slopes. In order to preserve numerical stability the taper should instead be defined as

$$
\begin{align}
\quad & f(x) = 1, \quad x \leq -\zeta - \delta, \\
\quad & f(x) = 1 - 3 \left(\frac{x + \zeta + \delta}{3} \right)^2 + 2 \left(\frac{x + \zeta + \delta}{3} \right)^3, \quad -\zeta - \delta \leq x \leq -\zeta, \\
\quad & f(x) = 0, \quad x \geq -\zeta,
\end{align}$$

where $\zeta = ||\nabla_{\parallel} \rho||/(\tan \theta_{\max})^{-1}$, $\delta = 0.05 \zeta$, and θ_{\max} is the maximum permissible slope. The isoneutral and GM fluxes are then limited by multiplying K_i and K in (1) with $f(\partial \rho / \partial z)$, i.e. $\{K_i, K\} \rightarrow \{K_i, K\} \times f(\partial \rho / \partial z)$.

In order to test the corrected code we consider the problem presented in [2, Section 4.2]. We use a $16 \times 16 \times 16$ grid and start from the solution shown in Fig. 5a of [2] for which $\eta_M = \eta_c = 0$. When η_M is increased from 0 to 1 keeping $\eta_c = 0$, a 4.5 Sv (1 Sv = 10^6 m3 s$^{-1}$) decrease in the overturning strength (Ψ_M) results (Fig. 1 left panel), in contrast with the slight increase reported in [2]. The resulting pattern of the streamfunction (Fig. 1 right panel) also differs significantly from that in Fig. 7b in [2]. Since the isoneutral flux of density is zero by definition, the flow field should not depend on the strength of the isoneutral diffusivity (K_i). The solution shown here indeed respects this property. By the same reasoning, the velocity is insensitive to the shape of the taper. The dependence of Ψ_M on η_M is therefore invariant to the value of $\tan \theta_{\max}$, different from what is shown in Fig. 7a in [2]. Unlike what is claimed in [2] the product of the flawed implementation was never compared to results from the GFDL Modular Ocean Model (MOM). Such test was only conducted for the experiment with horizontal mixing (Fig. 6 of [2]). Yet, comparison of the new results with an equilibrium solution obtained with

$$
\eta_M = 1 \text{ and } \eta_c = 0, \text{ diffusion is aligned with neutral directions with isoneutral diffusion controlled by } K_i; \text{ and when } \eta_c = 1 \text{ the diffusion is augmented by GM stirring with mixing coefficient } \kappa.
$$
the MOM shows good agreement in the pattern of the meridional overturning streamfunction and a less than 0.5 Sv difference in its strength.

When starting from the above solution \((\eta_M = 1, \eta_G = 0)\), continuation in \(\eta_G\) proves difficult due to slow convergence of the Newton–Raphson method. Instead, we prescribe \(\eta_G = 1, \kappa = K_M\) and \(\tan \alpha_M = 0.01\) and use implicit time stepping to obtain a steady state solution. The resulting meridional overturning streamfunction is shown in the right panel of Fig. 2. Rather than an increase in the overturning strength (as presented in Fig. 8a of [2]), activating GM stirring causes \(\Psi_M\) to decrease with 1.3 Sv. Comparison with a solution obtained with the MOM again results in a less than 0.5 Sv difference in overturning strength. Interestingly, continuation of steady states for decreasing values of \(\eta_G\) is feasible over a rather large range of \(\eta_G\) (Fig. 2 left panel). In addition, note the dependence of the shape of the branches on the maximum permissible slope angle \(\alpha_M\) for this case.

Acknowledgement

M. den Toom acknowledges personal support through a TOPTALENT grant by the Netherlands Organization for Scientific Research (NWO).

References