Skin autofluorescence in cardiovascular disease
Mulder, Douwe Johannes

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Skin Autofluorescence is Elevated in Patients with Stable Coronary Artery Disease and is Associated with Serum Levels of Neopterin and the Soluble Receptor for Advanced Glycation Endproducts

Douwe J. Mulder¹
Paul L. van Haelst²
Sascha Gross¹
Karina de Leeuw¹
Johan Bijzet¹
Reindert Graaff³
Rijk O. Gans¹
Felix Zijlstra²
Andries J. Smit¹

¹Department of Internal Medicine, ²Department of Cardiology, ³Department of BioMedical-Engineering, University Medical Center Groningen, The Netherlands.

Atherosclerosis 2007; [Epub ahead of print].
Abstract

Aims To investigate whether skin autofluorescence (AF), a non-invasive marker for Advanced Glycation Endproducts (AGEs), is elevated in stable coronary artery disease (sCAD) and to investigate its relationship with serum levels of the soluble receptor for AGEs (sRAGE), neopterin, and C-reactive protein (CRP).

Methods and results Skin AF and serum levels of sRAGE, neopterin, and CRP were assessed in 63 sCAD patients (mean age: 64.7±10.5 years), comprising 78% males, 19% subjects with diabetes, and 22% current smokers and in 33 (mean age: 63.4±10.0 years) healthy non-diabetic and non-smoking age and gender matched controls. Skin AF was significantly increased in sCAD compared with controls, irrespective of diabetes, current smoking and renal function. Levels of sRAGE (standardized β: 0.43 (explaining 17% of variance in skin AF); P<0.001), neopterin (β: 0.36 (11%); P=0.003), and glucose (β: 0.29 (8%); P=0.0011) as well as current smoking (β: 0.26 (6%); P=0.024) were independently associated with skin AF (R² 0.42), whereas the association of gender, former smoking, body mass index, C-reactive protein, lipids, creatinine clearance, and pulse pressure with skin AF was insignificant in this model.

Conclusion These data demonstrate that skin AF is elevated in sCAD, and is related to sRAGE and neopterin, making it an easily applicable tool to improve our understanding of inflammatory and oxidative stress in cardiovascular disease.
Introduction

It has recently been established that in addition to classical mechanisms, oxidative modification of carbohydrates and lipids enhances the formation of reactive carbonyl species, which are capable of transforming proteins to irreversible highly stable compounds, generally referred to as Advanced Glycation Endproducts (AGEs). Although classically associated with diabetes and renal failure, these compounds also appear to play a pivotal role in acute and chronic atherosclerotic disease, by means of structural protein changes in the vascular wall, but also by activation of cellular receptors, such as the receptor for AGEs (RAGE) leading to activation of several oxidative and inflammatory pathways.

We have recently introduced the AGE-Reader, a device that rapidly and non-invasively assesses accumulation of AGEs, making use of their fluorescence characteristics. It measures autofluorescence emitted from the human skin (skin AF) and has been validated to specific AGEs measured in human skin biopsy samples in several patient groups and healthy controls. Skin AF is elevated in patients with diabetes or renal failure, especially in those with atherosclerotic disease. We hypothesized that skin AF is elevated in patients with stable coronary artery disease (sCAD) and aimed to investigate the association of skin AF with serum levels of the soluble isoform of RAGE (sRAGE), and with two well validated inflammatory markers, neopterin (as an index of monocyte activation) and C-Reactive Protein (CRP; as a general marker of systemic inflammation).

Methods

Subjects

This cross-sectional study was performed between January 2005 and November 2005, and included 63 patients with sCAD admitted for elective coronary angiography (CAG) and 33 age and gender matched healthy controls. sCAD was defined as typical chest pain, or a history of an acute coronary syndrome (ACS), or vascular intervention, combined with the presence of at least one coronary artery with mild stenosis (>30% luminal narrowing) on CAG. Healthy controls had normal femoral and carotid arteries on echo duplex. The following exclusion criteria applied for all subjects: recent ACS (<3 months), known renal disease or serum creatinine >150 μmol/l, current inflammatory or malignant disease, and skin photo type V or VI (i.e. coloured skin) or skin reflectance <12%. Clinical data were obtained by chart review and questionnaires, and all measurements were performed at admission before CAG for sCAD subjects. Diabetes mellitus was defined by criteria from the American Diabetes Association. Hypertension and dyslipidemia were not categorized because of a frequent use of antihypertensives and lipid lowering drugs in sCAD patients for treatment of angina. Smoking was defined as smoking at least 5 cigarettes daily. Creatinine clearance (CrCl) was estimated using the Cockcroft-Gault formula. This study complied with the Declaration of Helsinki and was approved by the local ethics committee; all subjects gave written informed consent.

Assessment of skin AF

Skin AF was assessed on the ventral site of the lower arm with a prototype of the current AGE-
Reader (DiagnOptics BV, Groningen, The Netherlands). This method has been extensively described elsewhere. In short, the AGE-Reader consists of a 29 x 13 x 9 cm (length x width x height) box, containing an excitation light source (4-Watt blacklight, Philips) emitting light with wavelengths of 300-420 nm (peak ~360 nm). Light is transmitted through a 4 cm² large window on the upper side of the box, directly illuminating the skin. Only light reflected and emitted from the skin is measured with an integrated spectrometer (Avantes Inc, Eerbeek, The Netherlands) in a 300-600 nm range, using a 50 µm glass fiber (Avantes Inc, Eerbeek, The Netherlands). Additionally, dark and white reference measurements are performed before every measurement to correct for dark current background light and to calculate reflectance, respectively. All actions are performed automatically. Each AF measurement is composed of the average of 50 (individual) scans, each of approximately 200 milliseconds, depending on skin reflectance. The entire AF measurement takes approximately 30 seconds to be performed. To correct for differences in light absorption, skin AF is calculated by dividing the mean value of the emitted light intensity per nm between 420-600 nm by the mean value of the excitation light intensity per nm between 300-420 nm, expressed as arbitrary units (AU). The intra-individual percent Altman error is 5.0% on a single day and 5.9% for seasonal changes.

Laboratory assessments
Venous blood was collected in the morning after an overnight fast. Lipid concentrations (total, high density lipoprotein (HDL) and low density lipoprotein (LDL) cholesterol and triglycerides), glucose and creatinine were measured by routine techniques from fresh plasma.

Serum biomarkers
For measurement of biomarkers, blood was centrifuged at 2700 rpm for 10 minutes and serum was stored in 2 ml cryotubes at -20 degrees Celsius until batch laboratory assessment. Serum levels of neopterin (Brahms, Henningsdorf, Germany) and sRAGE (R&D Systems, Minneapolis, USA) were measured using commercially available enzyme linked immunosorbent (ELISA) techniques, according to manufacturer’s instructions. CRP was determined in a high sensitive sandwich ELISA using unconjugated and horseradish peroxidase conjugated polyclonal antibodies (DakoCytomation, Glostrup, Denmark). Details have been described elsewhere. All methods had an inter- and intra-assay variation of less than 5%.

Statistical analysis
We determined that a sample size of 50 patients and 30 matched controls would have 85% power to detect a difference of at least 15% at α=0.05. Normal distribution of variables was tested with the Kolmogorov-Smirnov test. Descriptive statistics are presented as mean values ± SD, as median (inter quartile range) for skewed variables or as percentages. For comparison between groups, continuous variables were analyzed by student’s t-test. In case of categorical variables the chi-square test or Fisher’s exact test was used. To test whether differences in skin AF could be explained by differences in potential confounders, one-way analysis of covariance (ANCOVA) was performed and F statistic and estimation of
Skin autofluorescence is elevated in patients with stable coronary artery disease. Effect size (eta-squared, η^2) were calculated. For univariate correlations skewed variables were log transformed for a better linear fit, and Pearson correlation coefficient (r) was given for continuous variables. Where appropriate partial correlations are given, corrected for confounders. Stepwise, forward selection was used to construct a multivariate model with skin AF as the dependent variable and age, gender, current and former smoking, sRAGE, neopterin, glucose, BMI, CRP, lipids, CrCl, and pulse pressure as independent variables. Variables with p-values >0.10 were removed from the model. A two-sided P-value <0.05 was considered statistically significant. All statistical analyses were carried out with the Statistical Package for Social Science (SPSS, version 12.0.2, 24 March 2005).

Results

Subject characteristics

Patients and matched controls did not differ in age and gender distribution, with the majority being male. Skin reflectance was significantly higher in patients compared with controls. More details on subject characteristics are outlined in Table 1. Patients had an extensive medical history of vascular disease: 27% had a previous acute coronary syndrome (ACS), 35% had a previous percutaneous coronary intervention, and 27% had a coronary artery bypass graft. Additionally, 5% had a previous stroke and 13% peripheral artery disease. The

<table>
<thead>
<tr>
<th>Table 1. Clinical characteristics of study groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Age (yrs)</td>
</tr>
<tr>
<td>Men</td>
</tr>
<tr>
<td>Skin reflectance (%)</td>
</tr>
<tr>
<td>Smoking behaviour</td>
</tr>
<tr>
<td>current</td>
</tr>
<tr>
<td>former</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
</tr>
<tr>
<td>CrCl (ml/min/1.73 m2)</td>
</tr>
<tr>
<td>Blood pressure</td>
</tr>
<tr>
<td>Systolic (mmHg)</td>
</tr>
<tr>
<td>Diastolic (mmHg)</td>
</tr>
<tr>
<td>Pulse pressure (mmHg)</td>
</tr>
<tr>
<td>Statin use</td>
</tr>
<tr>
<td>Antihypertensive use</td>
</tr>
<tr>
<td>β-blocking agents</td>
</tr>
<tr>
<td>Diuretics</td>
</tr>
<tr>
<td>ACE-inhibitors</td>
</tr>
<tr>
<td>ARBs</td>
</tr>
<tr>
<td>Calcium antagonists</td>
</tr>
<tr>
<td>Aspirin use</td>
</tr>
</tbody>
</table>

Values are means ± SD or numbers of subjects (percentage); sCAD = stable coronary artery disease; BMI = body mass index; CrCl = creatinine clearance (Cockcroft-Gault formula); ACE = angiotensine-converting enzyme; ARB = angiotensine receptor blocker. Differences between groups were tested with student’s t-test, chi-square test or Fisher’s exact test where appropriate.
percentage of patients and controls that fell in the three categories of CRP levels (i.e. <1, 1-3, and >3 mg/l) as suggested by the American Heart Association, did not differ significantly between groups (controls: 16%; 44%; 41%; patients: 19%; 22%; 59%; P=0.091).

Differences in skin AF and serum biomarkers between groups

Skin AF was significantly higher in patients compared with controls (Table 2; see also Figure 1). Correcting for differences in skin reflectance did not significantly influence the difference in skin AF between groups (skin reflectance: F=0.18, η²=0.002, P=0.67; sCAD: F=8.4, η²=0.084; P=0.005; corrected skin AF 2.21) Correction for other potential confounders, including diabetes (F=5.3, η²=0.054, P=0.024), current smoking (F=0.79, η²=0.009, P=0.38), body mass index (F=1.9, η²=0.02, P=0.18) or renal function (F=1.1, η²=0.012, P=0.3), decreased mean skin AF in the patient group to 2.15 ± 0.52, 2.21 ± 0.60, 2.09 ±

Table 2. Biomarkers

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>sCAD (n = 63)</th>
<th>Controls (n = 33)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP (mg/l)</td>
<td>4.1 (1.6 - 7.8)</td>
<td>2.9 (1.5 - 5.5)</td>
<td>0.20</td>
</tr>
<tr>
<td>Neopterin (nmol/l)</td>
<td>7.5 ± 2.0</td>
<td>7.1 ± 1.7</td>
<td>0.33</td>
</tr>
<tr>
<td>sRAGE (pg/ml)</td>
<td>1373 ± 653</td>
<td>1299 ± 419</td>
<td>0.51</td>
</tr>
<tr>
<td>Glucose (mmol/l)</td>
<td>5.3 (4.7 - 6.1) *</td>
<td>4.8 (4.6 - 5.3)</td>
<td>0.024</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>4.4 ± 0.8 *</td>
<td>5.7 ± 0.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>1.8 (1.4 - 2.2) *</td>
<td>1.1 (0.8 - 1.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>HDL-cholesterol (mmol/l)</td>
<td>1.2 ± 0.2 *</td>
<td>1.6 ± 0.4</td>
<td><0.001</td>
</tr>
<tr>
<td>LDL-cholesterol (mmol/l)</td>
<td>2.3 ± 0.6 *</td>
<td>3.6 ± 0.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Cholesterol/HDL-cholesterol</td>
<td>3.8 ± 0.8</td>
<td>3.8 ± 1.0</td>
<td>0.74</td>
</tr>
<tr>
<td>Creatinine (µmol/l)</td>
<td>95 ± 15 *</td>
<td>89 ± 10</td>
<td>0.045</td>
</tr>
</tbody>
</table>

Values are means ± SD, medians (interquartile range); sCAD = stable coronary artery disease; AF = autofluorescence; CRP = C-reactive protein; sRAGE = soluble receptor for Advanced Glycation End products; HDL = high density lipoprotein; LDL = low density lipoprotein.

![Figure 1](image.png)

Figure 1. Comparison of skin autofluorescence (AF) levels between patients with stable coronary artery disease (sCAD) and healthy age and gender matched controls. Horizontal line represents the mean. AU = Arbitrary Units.
Skin autofluorescence is elevated in patients with stable coronary artery disease (sCAD) with 0.41 ± 10^{-2}, and 2.22 ± 0.59 AU respectively, but AF remained significantly higher compared with controls (all P<0.05). Patients did not have significantly higher levels of CRP, sRAGE and neopterin compared with controls. Since neopterin correlated with CrCl (r=-0.37; P=0.001), neopterin values were divided by CrCl for comparison between groups. These corrected values were higher in sCAD compared with matched controls (0.12 ± 0.06 vs. 0.10 ± 0.03; P=0.008).

Factors potentially related to skin AF
In patients and controls analysed as a whole, skin AF correlated with age (r=0.24; P=0.0017), body mass index (r=0.21; P=0.0038), and pulse pressure (r=0.25; P=0.0016), but also with serum sRAGE (r=0.39; P<0.0001), neopterin (r=0.29; P=0.005) and glucose (r=0.26; P=0.0017). Skin AF tended to be higher in current smokers (2.31 ± 0.54 vs. 2.06 ± 0.48; P=0.079), and correlated inversely with total cholesterol (r=-0.24; P=0.018) and

![Figure 2](image.png)

Figure 2. Scatter plots of the association of skin autofluorescence (AF) with the soluble receptor for Advanced Glycation End products (sRAGE; A) and neopterin (B) in patients with stable coronary artery disease (sCAD). Black circle reflects non-smoking patients without diabetes; open circle reflects smoking patient with diabetes; black square reflects smoking patients without diabetes; open square reflects non-smoking patients with diabetes.

| Table 3. Stepwise multiple regression analysis of variables independently associated with skin AF |
|---------------------------------|------------------|------------------|------------------|------------------|------------------|
| | All subjects | Patients only | | Patients only | |
| | β | 95% CI | P-value | β | 95% CI | P-value |
| sRAGE | 0.40 | 0.22 - 0.59 | <0.001 | 0.43 | 0.21 - 0.66 | <0.001 |
| Neopterin | 0.32 | 0.14 - 0.51 | 0.001 | 0.36 | 0.12 - 0.59 | 0.003 |
| (log)Glucose | 0.25 | 0.06 - 0.43 | 0.009 | 0.29 | 0.07 - 0.50 | 0.011 |
| Current smoking | 0.28 | 0.09 - 0.46 | 0.005 | 0.26 | 0.04 - 0.49 | 0.024 |

sCAD = stable coronary artery disease; sRAGE = soluble receptor for Advanced Glycation End products; CI = confidence interval.
LDL-cholesterol ($r=0.28; P=0.007$). However, this relation diminished after correction for statin use. There was no significant correlation of skin AF with CRP, creatinine and CrCl. When analysing the patient group, only sRAGE (Figure 2a) and neopterin (Figure 2b), were significantly associated with skin AF.

Table 3 demonstrates that when analysing patients and controls as a whole or patients only, stepwise linear regression identified an independent association of skin AF only with sRAGE, neopterin, glucose, and current smoking (R^2 was 0.38 in patients and controls as a whole and 0.42 in patients only). Age, gender, former smoking, BMI, CRP, lipids, CrCl, and pulse pressure were not significantly associated with skin AF in these multivariable regression models.

Discussion

In this study we demonstrate that skin AF is elevated in patients with sCAD compared with age and gender matched controls. Even after correction for diabetes, smoking, or impaired renal function this difference persisted. Furthermore, in patients with sCAD, skin AF was independently and positively associated with serum levels of the soluble receptor for AGEs (sRAGE) and neopterin. Since sRAGE and neopterin are both considered to be involved in enhanced cellular oxidative and/or glycaemic stress these data provide insight into the role of oxidative, inflammatory, and glycaemic stress in the development of cardiovascular disease.

In previous reports we have already demonstrated that skin AF is strongly related to skin accumulation of AGEs, as evidenced by a high correlation with specific AGEs measured from skin biopsy homogenates. Since these measured AGEs included both exclusively carbohydrate or ascorbic acid derived AGEs (pentosidine), but also mainly lipid derived AGEs (carboxymethyllysine and carboxyethyllysine), we concluded that skin AF may be a non-invasive marker for both glycaemic and oxidative stress. This was also supported by the observation that skin AF was inversely related to plasma vitamin C levels, a strong antioxidant, in subjects with renal failure. Furthermore, subjects with diabetes, particularly those with neuropathy or micro- and macrovascular complications and with renal failure had significantly higher levels of skin AF. Most importantly, skin AF predicted CAD related mortality in patients with renal failure independently of established risk factors. The data from the present study are in agreement with our previous observations; however, prospective data are needed to investigate the clinical usefulness of skin AF in predicting future events in patients with stable CAD.

Through interaction with their major cellular receptor, RAGE, AGEs may prime proinflammatory mechanisms in monocytes and endothelial cells, thereby amplifying proinflammatory mechanisms in atherosclerotic plaque formation. Engagement of RAGE results in intracellular signaling, which leads to sustained activation of the proinflammatory transcription factor NF-κB resulting in enhanced expression of inflammatory mediators. Sustained activation of this cascade also leads to upregulation of the transmembrane receptor. It has been suggested that proteolysis of full-length RAGE may be a mechanism for the increase in the level of the soluble isoform in the serum. However, more research is warranted to elucidate...
Skin Autofluorescence is elevated in patients with stable coronary artery disease. Recently, the key role of RAGE in the generation of oxidative stress and subsequent cellular damage was pointed out in an animal model of ischemia/reperfusion injury after myocardial infarction. It was demonstrated that lipid peroxidation derived AGEs are generated by ischemia/reperfusion and subsequently activate RAGE, augmenting vascular and inflammatory cell activation. Animals lacking cellular expression of RAGE were more likely to be protected from RAGE mediated damage. In clinical studies, Falcone et al. reported lower sRAGE levels in subjects with sCAD, and Koyama et al. found sRAGE to be inversely correlated with intima media thickness. It was hypothesized that sRAGE functions as a circulating decoy receptor and binding to its ligands decreases its free form, resulting in lower serum levels measured with the ELISA kit. In our study, sCAD patients had sRAGE levels similar to those of healthy controls. The marked difference between our sRAGE results and those of the considerably larger study group of Falcone et al. may well be due to the differences in study groups: while they studied only nondiabetic males without lipid lowering drugs, in our group females (22%) and diabetes patients (19%) were also represented while the large majority (84%) used statins. Recently, sRAGE levels have been found to be elevated in other diseases associated with oxidative stress, such as renal failure and acute lung injury. Moreover, our results are in line with a study by Yamagishi et al. who found serum levels of sRAGE to be positively associated with circulating AGEs in a nondiabetic general population. Because our study was not primarily designed to investigate the issue of sRAGE differences between sCAD patients and controls, it is difficult to draw definite conclusions from our data. Furthermore, it is important to note that several ligands other than AGEs also bind to RAGE.

In chronic kidney disease, enhanced expression of RAGE on circulating monocytes is strongly correlated with plasma levels of tumor necrosis factor alpha, neopterin and CRP. Additionally, it has been reported that plasma levels of neopterin are associated with pentosidine levels in patients with chronic kidney disease. These data are in agreement with our findings that skin AF, as a validated marker for AGEs, is strongly associated with the soluble isoform of RAGE, reflecting RAGE expression, as well as with neopterin, reflecting macrophage activation.

Surprisingly, CRP levels were not significantly higher in sCAD patients compared with matched controls and CRP was not related to skin AF. A logical explanation might be that most of our patients were receiving intensive drug treatment with statins, antihypertensive agents and aspirin. We have previously shown that statin treatment modulates CRP levels as well as neopterin. Additionally, some antihypertensive agents and aspirin may also decrease oxidative stress and inflammation.

As reported by others, neopterin appeared to be higher in patients, after correction for CrCl. \textit{In vitro}, neopterin exhibits distinct biochemical effects, most likely via interactions with reactive oxygen or nitrogen intermediates, thereby affecting the cellular redox state. In clinical studies, neopterin levels were elevated in patients with ACS. Therefore neopterin can be regarded as a marker for disease activity, and may also serve as a risk marker for future cardiovascular events in patients with sCAD as well as with ACS.
Study limitations

Since this study had a cross-sectional design, a causative relation between skin AF and serum markers cannot be confirmed. From previous investigations we have learned that skin AF cannot be reliably measured with current equipment in subjects with skin photo type V-VI or reflectance <12\%\(^5\). Therefore, for this study we excluded these skin types and research for improving the measurement is ongoing.

Since not all AGEs encompass fluorescent properties, skin AF is only representative of part of the total AGE burden. However, in our validation study we found that skin AF also correlated strongly with non-fluorescent AGEs\(^6\). Additionally, two major lipid peroxidation products, 4-hydroxynonenal and malondialdehyde — after binding to free aminogroups of protein — also encompass characteristic fluorescent properties\(^31\). Since the AGE-reader covers a wide excitation/emission spectrum, skin AF measured with the AGE reader may have a miscellaneous origin.

Conclusion

To the best of our knowledge, this is the first study to demonstrate that a non-invasive marker for inflammatory and oxidative stress is elevated in predominantly euglycemic subjects with sCAD. Skin AF was independently and strongly associated with serum levels of sRAGE, a marker for enhanced cellular expression of this receptor as well as with neopterin, as a marker for monocyte activation. We hypothesize that skin AF may be a non-invasive index of inflammatory and oxidative stress in patients with sCAD. Although prospective studies are warranted to confirm this hypothesis, skin AF may provide an easily applicable tool to improve our understanding of these important modulators of atherosclerotic cardiovascular diseases.
Reference List

18. Falcone C, Emanuele E, D’Angelo A et al. Plasma levels of soluble receptor for advanced glycation

21 Yamagishi S, Adachi H, Nakamura K et al. Positive association between serum levels of advanced glycation end products and the soluble form of receptor for advanced glycation end products in nondiabetic subjects. Metabolism 2006; 55(9):1227-1231.

