Evolution of massive protostars
Marseille, M.; Bontemps, S.; Herpin, F.; van der Tak, Floris; Purcell, C. R.

Published in:
Astronomy and Astrophysics

DOI:
10.1051/0004-6361:200809798

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Evolution of massive protostars: the IRAS 18151–1208 region*,**

M. Marseille1,2, S. Bontemps1,2, F. Herpin1,2, F. F. S. van der Tak3, and C. R. Purcell4

1 Université Bordeaux 1, Laboratoire d’Astrophysique de Bordeaux
 email: [marseille;bontemps;herpin]@obs.u-bordeaux1.fr
2 CNRS/INSU, UMR 5804, BP 89, 33270 FLOIRAC, France.
3 SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands.
 email: vdtak@srond.nl
4 University of Manchester, Jodrell Bank Observatory, Macclesfield, Cheshire SK11 9DL, United Kingdom
 email: Cormac.Purcell@manchester.ac.uk

Received 18 March 2008, Accepted 3 June 2008

ABSTRACT

Context. The study of physical and chemical properties of massive protostars is critical to better understand the evolutionary sequence which leads to the formation of high-mass stars.

Aims. IRAS 18151–1208 is a nearby massive region (d = 3 kpc, L ∼ 2×10⁶ L⊙) which splits into three cores: MM1, MM2 and MM3 (separated by 1–2”). We aim at (1) studying the physical and chemical properties of the individual MM1, MM2 and MM3 cores; (2) deriving their evolutionary stages; (3) using these results to improve our view of the evolutionary sequence of massive cores.

Methods. The region was observed in the CS, C⁺S, H₂CO, HCO⁺, H₁³CO⁺, and N₂H⁺ lines at mm wavelengths with the IRAM 30m and Mopra telescopes. We use 1D and 2D modeling of the dust continuum to derive the density and temperature distributions, which are then used in the RATRAN code to model the lines and constrain the abundances of the observed species.

Results. All the lines were detected in MM1 and MM2. MM3 shows weaker emission, or even is undetected in HCO⁺ and all isotopic species. MM2 is driving a newly discovered CO outflow and hosts a mid-IR-quiet massive protostar. The abundance of CS is significantly larger in MM1 than in MM2, but smaller than in a reference massive protostar such as AFGL 2591. In contrast the N₂H⁺ abundance decreases from MM2 to MM1, and is larger than in AFGL 2591.

Conclusions. Both MM1 and MM2 host an early phase massive protostar, but MM2 (and mid-IR-quiet sources in general) is younger and more dominated by the host protostar than MM1 (mid-IR-bright). The MM3 core is probably in a pre-stellar phase. We find that the N₂H⁺/C⁺S ratio varies systematically with age in the massive protostars for which the data are available. It can be used to identify young massive protostars.

Key words. ISM: abundances – Stars: formation – Line: profiles

1. Introduction

How high-mass stars form is still an open issue (e.g. Zinnecker & Yorke[2007]). It is particularly not clear whether the formation process for OB/high-mass stars is different from the way solar-type/low-mass stars form. Stars more massive than ~10 M⊙ may form like a scaled-up version (high accretion rates) of the single (or monolithic) collapse observed for the low-mass stars, or require a more complex process in which competitive accretion inside the central regions of a forming cluster may play a decisive role (e.g. Bonnell et al. 2004).

In the first scenario, the observed high-mass clumps (100 to 1000 M⊙; 0.5 pc in size) are expected to fragment to form self-gravitating high-mass cores (10 to 100 M⊙; 0.01–0.1 pc in size; e.g. Krumholz et al. 2007) which would collapse individually to form a massive single or binary stars. In the second scenario, the competitive accretion is expected to occur inside the high-mass clumps. The study of the properties of high-mass clumps is therefore a central observational issue to progress in our understanding of the earliest phases of high-mass star formation.

From a selection of IRAS sources not associated with any bright radio source but having the IRAS colors of UC-H₂ regions (as defined by Wood & Churchwell[1989], Sritharan et al. 2002) have built a sample of so-called High Mass Protostellar Objects (hereafter HMPOs) which would correspond to the pre-UC-H₂ phase of the formation of high-mass...
stars. Beuther et al. (2002b) found that the HMPOs were systematically associated with massive clumps as detected in the dust continuum and in CS line emission. These clumps are good candidates to correspond to the earliest phases of high-mass star formation. They have not yet formed any bright H\textsc{ii} regions and contain a large amount of gas at high densities. The precise evolutionary stages of the individual HMPOs might however be very diverse and they require to be derived individually through dedicated, detailed studies.

Recently, Motte et al. (2007) investigated the whole Cygnus X complex and obtained a first unbiased view of the evolutionary scheme for high-mass clumps and cores. Like for the HMPOs, the massive clumps (~0.5 pc in size) in Cygnus X could be resolved into massive cores (~0.1 pc). Roughly half of these cores were found to be very bright in the (mid)-infrared (such as AFGL 2591; e.g. van der Tak et al. 1999), and therefore very luminous: the mid-IR high-luminosity massive cores. The other half are weak or not detected in the mid-IR, hereafter the mid-IR-quiet massive cores. Surprisingly all the mid-IR-quiet massive cores were however found to drive powerful SiO outflows. They could therefore be safely understood as the precursors of the infrared high-luminosity massive cores.

IRAS 18151–1208 is a rather typical (L \sim 10^4 \, L_{\odot}) and relatively nearby (3 kpc) HMPO (Sridharan et al. 2002). Beuther et al. (2002b) show that the clump actually splits into four individual cores MM1, MM2, MM3 and MM4 (see Fig. 1 for an overview of the region). In addition MM1 seems to further split into two cores, separated by 16\arcsec. We hereafter refer to MM1-SW for the secondary peak in the South-West of MM1 which possibly hosts an embedded protostar (Davis et al. 2004). The weakest core MM4 is clearly outside the main region, hence it will not be further considered in this paper. A CO outflow toward MM1 was discovered by Beuther et al. (2002c). The MM1 and MM2 cores have sizes roughly two times larger, and similar masses (using the same dust emissivity and temperature) than the most massive cores in Motte et al. (2007). The IRAS source coincides with MM1 and no significant IRAS contribution can be safely attributed to MM2 or MM3. MM3 is the least massive and compact core and could actually be a still quiescent or pre-stellar core. The IRAS 18151–1208 region is therefore particularly interesting to study since it hosts three individual cores which could be interpreted as high-mass star formation sites in three different evolutionary stages. Millimeter and sub-millimeter wave observations are reported in McCutcheon et al. (1995) and Beuther et al. (2002b). The near-IR counterparts (H\textsc{ii} jets and HH objects) of the CO outflow driven by MM1 have been imaged by Davis et al. (2004).

Molecular line observations compared with results of the molecular line modeling based on a physical model of the source is a classical technique to constrain physical and chemical properties of protostellar objects (see Ceccarelli et al. 1996; van der Tak 2005, for a review). While different approaches can be adopted, the most reliable and most often used method consists in constraining first the physical (density and temperature distributions) model from the dust continuum emission (mid-IR to millimeter wavelengths), and then use this physical model to derive the fractional abundances of molecular species from line emission modeling (van der Tak et al. 1999; Hogerheijde & van der Tak 2000; Schöier et al. 2002; Belloche et al. 2002; Hatchell & van der Tak 2003). Due to the dramatic changes in physical conditions inside the protostellar envelopes (increase of density and temperature, radiation, shocks) chemical evolution is observed and can be modeled thanks to chemical network codes. It is even expected that chemistry could provide a reliable clock to date protostellar objects (e.g. van Dishoeck & Blake 1998; Doty et al. 2002; Wakelam et al. 2004).

After the description of the molecular observations and of the continuum data from the literature (Sect. 2), the results are presented in Sect. 3. Section 4 details the modeling procedure from the fits of the spectral energy distributions (hereafter SEDs) for MM1 and MM2 using MC3F2 code (Sect. 4.1.1 and 4.2.1) to the non-LTE calculations of the line profiles and intensities for all observed molecules using RATRAN2 code (Sect. 4.1.2, 4.1.3, 4.2.2, and 4.2.3). In Section 5, we discuss the results of this detailed analysis in order to improve our observational view of the evolution of high-mass cores from pre-stellar to high luminosity massive protostars.

2. Observations.

Observations were performed during two sessions. The first one in June, 2005 at Mopra, the 22m dish of the Australia
Table 2. List of observational parameters for IRAM 30m and 22m Mopra telescopes. Here are indicated observed species, energy level transitions, line emission frequencies, half power beam width (HPBW), instrument for IRAM-30m and Mo for Mopra telescope, main beam efficiency η_{mb}, receiver name, velocity resolution δv, observation mode and system temperature T_{sys}.

<table>
<thead>
<tr>
<th>Species</th>
<th>Transition</th>
<th>Frequency [GHz]</th>
<th>HPBW ["]</th>
<th>Instrumentb</th>
<th>η_{mb}</th>
<th>Receiver</th>
<th>δv [m·s$^{-1}$]</th>
<th>Mode</th>
<th>T_{sys} [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>$J = 2 \rightarrow 1$</td>
<td>97.9809</td>
<td>25</td>
<td>30m</td>
<td>0.78</td>
<td>A100</td>
<td>60</td>
<td>RaMa</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>$J = 2 \rightarrow 1$</td>
<td>97.9809</td>
<td>32</td>
<td>Mo</td>
<td>0.49</td>
<td>D150</td>
<td>191</td>
<td>OTFc</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>$J = 3 \rightarrow 2$</td>
<td>146.9690</td>
<td>17</td>
<td>30m</td>
<td>0.69</td>
<td>D270</td>
<td>90</td>
<td>RaMa</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>$J = 5 \rightarrow 4$</td>
<td>244.9356</td>
<td>10</td>
<td>30m</td>
<td>0.49</td>
<td>D270</td>
<td>96</td>
<td>RaMa</td>
<td>1150</td>
</tr>
<tr>
<td>C34S</td>
<td>$J = 2 \rightarrow 1$</td>
<td>96.4129</td>
<td>25</td>
<td>30m</td>
<td>0.78</td>
<td>A100</td>
<td>60</td>
<td>RaMa</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>$J = 2 \rightarrow 1$</td>
<td>96.4129</td>
<td>32</td>
<td>Mo</td>
<td>0.49</td>
<td>D150</td>
<td>194</td>
<td>OTFc</td>
<td>~270</td>
</tr>
<tr>
<td></td>
<td>$J = 3 \rightarrow 2$</td>
<td>144.6171</td>
<td>17</td>
<td>30m</td>
<td>0.69</td>
<td>D150</td>
<td>81</td>
<td>RaMa</td>
<td>390</td>
</tr>
<tr>
<td>CO</td>
<td>$J = 2 \rightarrow 1$</td>
<td>230.5380</td>
<td>11</td>
<td>30m</td>
<td>0.52</td>
<td>HERA</td>
<td>406</td>
<td>RaMa</td>
<td>~600</td>
</tr>
<tr>
<td>H$_2$CO</td>
<td>$J = 3_3^{02} \rightarrow 2_2^{02}$</td>
<td>218.2222</td>
<td>11</td>
<td>30m</td>
<td>0.54</td>
<td>HERA</td>
<td>107</td>
<td>RaMa</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>$J = 3_2^{02} \rightarrow 2_1^{02}$</td>
<td>218.4756</td>
<td>11</td>
<td>30m</td>
<td>0.54</td>
<td>HERA</td>
<td>107</td>
<td>RaMa</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>$J = 3_3^{03} \rightarrow 2_2^{03}$</td>
<td>225.6976</td>
<td>11</td>
<td>30m</td>
<td>0.53</td>
<td>A230</td>
<td>104</td>
<td>RaMa</td>
<td>870</td>
</tr>
<tr>
<td>HCO$^+$</td>
<td>$J = 1 \rightarrow 0$</td>
<td>98.1885</td>
<td>36</td>
<td>Mo</td>
<td>0.49</td>
<td>3.5mm</td>
<td>210</td>
<td>OTFc</td>
<td>~260</td>
</tr>
<tr>
<td>H13CO$^+$</td>
<td>$J = 1 \rightarrow 0$</td>
<td>86.7542</td>
<td>36</td>
<td>Mo</td>
<td>0.49</td>
<td>3.5mm</td>
<td>216</td>
<td>OTFc</td>
<td>~175</td>
</tr>
<tr>
<td>N$_2$H$^+$</td>
<td>$J = 1 \rightarrow 0$</td>
<td>93.1737</td>
<td>36</td>
<td>Mo</td>
<td>0.49</td>
<td>3.5mm</td>
<td>201</td>
<td>OTFc</td>
<td>~180</td>
</tr>
</tbody>
</table>

a RaM – Raster Map mode set to create a 3 × 3 pixels mini-map with a $\Delta \theta$ step of 10" around source emission peak.
b RaM2 – Raster Map mode with HERA receiver, set to create a 190" × 140" map with a $\Delta \theta$ step of 6" towards MM1, MM2 and MM3.
c OTF – On-The-Fly observing mode carrying out on a 5′ × 5′ map with a $\Delta \theta$ step of 9" and an OFF position at 30′ from the center.
d Conversional factor is $S/T_{mb} = 4.95$ Jy/K for IRAM 30m telescope and $S/T_{mb} = 22$ Jy/K for ATNF 22m telescope.

Table 1. IRAS 18151–1208 sources characteristics. Offsets from IRAS position, J2000 coordinates and velocity in the local standard of rest (Beuther et al. 2002a) are reported.

<table>
<thead>
<tr>
<th>Source</th>
<th>$\Delta \alpha$ ["]</th>
<th>$\Delta \delta$ ["]</th>
<th>α [J2000]</th>
<th>δ [J2000]</th>
<th>ν [km/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM1</td>
<td>13.2</td>
<td>-4.9</td>
<td>18h17m58.0s</td>
<td>-12h07m27s</td>
<td>33.4</td>
</tr>
<tr>
<td>MM2</td>
<td>-98.9</td>
<td>-32.8</td>
<td>18h17m50.4s</td>
<td>-12h07m55s</td>
<td>29.7</td>
</tr>
<tr>
<td>MM3</td>
<td>-72.3</td>
<td>26.5</td>
<td>18h17m52.2s</td>
<td>-12h06m56s</td>
<td>30.7</td>
</tr>
</tbody>
</table>

Telescope National Facility [ATNF](http://www.narrabri.atnf.csiro.au/mopra/), the second one in August, 2005 at Pico Veleta, on the IRAM 30m antenna.

2.1. Mopra observations

The IRAS 18151–1208 region was mapped in the On-The-Fly (OTF) mode in the rotational transition of CS ($J = 2 \rightarrow 1$) at 98.0 GHz, C34S ($J = 2 \rightarrow 1$) at 96.4 GHz, HCO$^+$ ($J = 1 \rightarrow 0$) at 89.2 GHz, H13CO$^+$ ($J = 1 \rightarrow 0$) at 86.8 GHz and N$_2$H$^+$ ($J = 1 \rightarrow 0$) at 93.2 GHz. Each run covered a field of 5′ × 5′ with a half-power beam width (HPBW) of approximately 36″ ($\eta_{mb} = 0.49$) and sampled with a $\Delta \theta$ step of 9″. We used the 3 mm receiver of the ATNF telescope with the digital auto-correlator set to the 64 MHz bandwidth with 1024 channels and both polarizations. It provides a velocity resolution of ~0.2 km·s$^{-1}$ over a 200 km·s$^{-1}$ range. Observations happened while weather was clear, with a system temperature $T_{sys} \sim 175 \sim 260$ K (see Table 2 for details). Pointing and focus adjustments have been set on Jupiter or known sources of calibration.

Raw data have been reduced with AIPS++ LIVEDATA and GRIDZILLA tasks (McMullin et al. 2004). LIVEDATA performs the subtraction between the SCAN spectra row and the OFF spectrum. Then it fits the baseline with a polynomial. We used the GRIDZILLA package to resample and build a data cube with regular pixel scale, weighted with the system temperature T_{sys}. We created a 39 × 39 grid of 9″ × 9″ pixel size convolved with a Gaussian with a FWHM of 18″, truncated at an angular offset of 36″. Finally, due to positional errors that we found in maps, a shift in α of 14″ for N$_2$H$^+$, 10″ for CS and 5″ for HCO$^+$ has been applied to fit millimeter-continuum peak positions of the three sources given by Beuther et al. (2002a).

2.2. IRAM-30m observations

We observed the rotational transition of CO ($J = 2 \rightarrow 1$) molecule at 230.5 GHz and the two H$_2$CO rotational para-transitions ($J = 3_{03} \rightarrow 2_{02}$) and ($J = 3_{22} \rightarrow 2_{11}$) at respectively 218.2 GHz and 218.5 GHz simultaneously, using the HERA 3 × 3 pixel dual multi-beam receiver with VESPA backends at a resolution of 160 kHz for CO and 40 kHz for H$_2$CO. Thus we built two 190′ × 140′ maps sampling every 6″ around MM1, MM2 and MM3. This observation was done while weather was good ($\tau_{atm} = 0.17$), with $T_{sys} \sim 600$ K and 250 K for CO and H$_2$CO respectively. The maps are incomplete because raster mapping was not set to cover the entire $\Delta \alpha$ and $\Delta \delta$, and the HERA vertical polarization (set for the CO) had a dead pixel (number 4).
All pointings and focus have been set on suitable planets (i.e. Jupiter) or calibration sources.

The IRAS 18151−1208 region was also mapped in the rotational transitions of CS at 98.0, 147.0 and 244.9 GHz (J=2−1, J=3−2, J=5−4), in the isotopic C13S rotational transitions at 96.4 and 144.6 GHz (J=2−1, J=3−2) and in the H$_2$CO rotational ortho-transition (J=3\rightarrow2) at 225.7 GHz, using simultaneously A100, A230, D150 and D270 receivers coupled to the high-resolution VESPA backend (resolution of 80 kHz).

Central emission peaks of MM1, MM2 and MM3 were quickly displayed in Fig. 2. Table 3 gives the derived emission extents of the three cores (millimeter-continuum peak positions by Beuther et al. 2002c) but seem also to be located in the region of MM2. We note that emission is detected between MM1 and MM2. It suggests that they could be connected by a dense molecular filament.

The cold gas tracer N$_2$H$^+$ (1−0) is detected toward the three cores. Emission from MM2 is stronger and more concentrated than for MM1 (89"×62" and 55"×54" respectively), suggesting that MM2 has a smaller and colder envelope. A similar behaviour has been observed by Reid & Matthews (2007) for two similar cores in IRAS 23033+5951. The elongation of MM1 (b/a = 0.69) and position angle (+77°) resembles the extension of the dust emission. MM3 line emission is stronger compared to other molecules and shows a connection with MM2. Together with a similar rest velocity for MM2 and MM3, it confirms that MM3 belongs to the IRAS 18151−1208 region.

HCO$^+$ (1−0) and H13CO$^+$ (1−0) lines are detected for both MM1 and MM2. MM3 has a weak emission in HCO$^+$ (1−0). As for CS, MM1 emission is stronger and more extended than for MM2 (respective extensions are 104"×78" and 57"×56"). With b/a = 0.75 and a position angle of +75°, we note that MM1 emission may be extended along the outflow as expected since the HCO$^+$ line emission is definitely showing outflow wings such as in CO. The map shows an emission between MM1 to MM2, and MM2 to MM3, confirming that the three sources are connected.

Dense gas traced by H$_2$CO (3$_22$−2$_{21}$) line is detected for MM1 and MM2 only. The emission from each source coincides perfectly with the dust continuum positions. MM1 and MM2 have similar intensities and have roughly the same small circular size (35"×30", b/a = 0.85 for the two sources) and do not show any spatial suggestions of being contaminated by outflows.

The CO (2−1) line emission is detected in all sources and shows an extended emission from the whole region. MM1 emission is extended to the west (72"×51", b/a = 0.71 and P.A. = +85°) due to the red wing of the outflow (P.A. = +88°). See the following section for more details on the CO outflows.

3.2. Molecular outflows in CO (2−1)

The CO (2−1) line emission shows clear outflow wings. They are due to the already known CO outflow driven by MM1 (Beuther et al. 2002c) but seem also to be located in the region of MM2. Figure 3 displays the average CO (2−1) spectra around MM1 and MM2, as well as the contour map of the integrated emission in the wings. The displayed spectra clearly show emission wings up to high velocities. The observed maximum velocities are -20.4 and +20.6 km s$^{-1}$ for MM1 and -19.7 and +28.3 km s$^{-1}$ for MM2, with respect to v_{LSR} (see Fig. 3).
Table 3. Sources extension at $3\sigma_{\text{noise}}$, minor-to-major axis ratio b/a and position angle (P.A.; counterclockwise angle relative to the North) for each molecular transition observed. When the emission is almost spherical ($b/a \geq 0.85$) P.A. is uncertain and set to 0°.

<table>
<thead>
<tr>
<th>Source</th>
<th>MM1</th>
<th>MM2</th>
<th>MM3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ext.</td>
<td>b/a</td>
<td>P.A. [°]</td>
</tr>
<tr>
<td>CO (2–1)</td>
<td>72'' × 51''</td>
<td>0.71</td>
<td>+85</td>
</tr>
<tr>
<td>H$_2$CO (3$_2$–2$_1$)</td>
<td>35'' × 30''</td>
<td>0.85</td>
<td>0</td>
</tr>
<tr>
<td>CS (2–1)</td>
<td>97'' × 81''</td>
<td>0.83</td>
<td>+57</td>
</tr>
<tr>
<td>N$_2$H$^+$ (1–0)</td>
<td>89'' × 62''</td>
<td>0.69</td>
<td>+77</td>
</tr>
<tr>
<td>HCO$^+$ (1–0)</td>
<td>104'' × 78''</td>
<td>0.75</td>
<td>+75</td>
</tr>
<tr>
<td>H$_3^+$CO$^+$ (1–0)</td>
<td>52'' × 38''</td>
<td>0.73</td>
<td>-28</td>
</tr>
</tbody>
</table>

Fig. 2. Integrated velocity maps of CS (2–1), N$_2$H$^+$ (1–0), HCO$^+$ (1–0), H$_3^+$CO$^+$ (1–0) obtained with the Mopra 22m telescope (left and middle panels) and CO (2–1), H$_2$CO (3$_2$–2$_1$) maps obtained with the IRAM 30m telescope (right panel). Level contours fit 90% to 10% of peak flux with a 10% step. Only levels exceeding the threshold of 2σ_{noise} in each map are plotted in order to identify detections. Peak fluxes are 16.9 K·km·s$^{-1}$ for CS, 16.9 K·km·s$^{-1}$ for N$_2$H$^+$, 32.9 K·km·s$^{-1}$ for HCO$^+$, 2.31 K·km·s$^{-1}$ for H$_3^+$CO$^+$, 21.1 K·km·s$^{-1}$ for H$_2$CO and 393 K·km·s$^{-1}$ for CO. Crosses indicate the 1.2 mm continuum positions (Beuther et al. 2002b) for the three sources.

and Table 4. It is clear from the map of this wing emission that there are actually two outflows driven by the two respective cores. The MM2 outflow is actually newly discovered (see Sect. 5.1 for a discussion).

The MM1 outflow appears mostly east-west oriented. This is not quite the orientation observed for the main jet-outflow system recently discussed by Davis et al. (2004) with a NW-SE direction for the H$_2$ jet (see their Fig. 2). A second H$_2$ jet, west of MM1 and probably driven by an embedded source in MM1-SW (see Fig. 1), is however also recognised in this work. The position of MM1-SW is marked in Fig. 2 with a small green triangle. Its location is close to a possible secondary center of outflow with a weak blue-shifted lobe in the south and the bright red-shifted western lobe being curved toward that location. The spatial resolution of our CO observation is not high enough to fully conclude about the association of CO outflowing gas with the different driving sources, but it seems that the western part of the MM1 outflow might actually be dominated by a second outflow from MM1-SW. The inclination of the MM1 flow on the sky is difficult to determine. From the significant extension
of the flow and from the overlap of the lobes we can only say that the flow is neither face-on (in the plane of the sky) nor pole-on, and is therefore mostly intermediate.

The MM2 outflow is more compact than for MM1. Both lobes are confined in the core. The integrated emissions in the two lobes are similar in strength and are four times larger than the blue lobe of MM1. If the flow is dominated by a single ejection, the large overlap of the two lobes suggests that the flow is not face-on, but could be close to pole-on.

All the derived properties of the two outflows are summarized in Table 4. In addition, to quantify the energetics of the two detected outflows, we derive and give in this table the outflow forces using the procedure described in Bontemps et al. (1996). The mechanical force (or momentum flux) seems to be the measurable quantity from observed CO outflows which can approach in a not too uncertain way the corresponding quantity of the inner jet or wind (Cabrit & Bertout 1992; Chernin 1996). We estimate the outflow force \(F_{\text{CO}} \) for MM1 and MM2 by integrating the momentum flux inside volumes with radius 6′′ and 18′′ centered on the sources. In addition, for the extended red lobe of MM1, a measurement is given between 18′′ and 30′′ to better cover the red lobe. Since the inclination of the two outflows can not be reliably derived from such low resolution observations we adopt the average correction of a factor of 10 adopted by Bontemps et al. (1996).

3.3. Raster maps in CS, C\(^{34}\)S, and H\(_2\)CO (3\(_{12}\)−2\(_{11}\))

In addition to the large maps, a complementary investigation of the three millimeter sources is provided by the 3 × 3 raster maps of CS, C\(^{34}\)S and H\(_2\)CO (see Fig. 4).

All transitions are detected toward MM1 at \(v_{\text{LSR}} = 33.4 \pm 0.1 \) km s\(^{-1}\). The line profiles are similar with a typical line width (FWHM) \(\Delta v = 2.7 \pm 0.2 \) km s\(^{-1}\). CS (2−1), CS (3−2) and CS (5−4) have roughly equal intensities. The optically thin C\(^{34}\)S (2−1) line emission is detected all around the source at an approximately constant intensity level of ~ 1 K. In contrast C\(^{34}\)S (3−2) seems to peak on the central position. The line profiles and the spatial patterns for H\(_2\)CO (3\(_{12}\)−2\(_{11}\)) and CS (5−4) are very similar, suggestive of common origin and excitation conditions for the two transitions (\(E_{\text{up}}/k \) are respectively equal to 33.40 and 35.27 K).

The intensities of most transitions toward MM2 are weaker than MM1. The line profiles at \(v_{\text{LSR}} = 29.8 \pm 0.1 \) km s\(^{-1}\) have a triangular shape and a larger line width (\(\Delta v = 3.7 \pm 0.1 \) km s\(^{-1}\)) compared to MM1. This could be due to a gas motion contribution through its turbulence. The intensity of CS (5−4) is low compared to MM1, contrary to H\(_2\)CO (3\(_{12}\)−2\(_{11}\)) line emission which is as bright as in MM1.

All molecular line profiles are weaker in MM3, and seem to be less peaked than in MM1 and MM2 as seen in velocity integrated maps (cf. Fig. 2). They are detected at all positions in CS (2−1), (3−2), they have a weak emission in two positions in H\(_2\)CO (3\(_{12}\)−2\(_{11}\)) and finally CS (5−4) and the C\(^{34}\)S transitions could not be detected.

![Image](image_url)

<table>
<thead>
<tr>
<th>Δv_c [km s$^{-1}$]</th>
<th>Δv_r [km s$^{-1}$]</th>
<th>$F_{\text{CO}b}$ [M\odot km s$^{-1}$ yr$^{-1}$]</th>
<th>$F_{\text{CO}r}$ [M\odot km s$^{-1}$ yr$^{-1}$]</th>
<th>$F_{\text{CO}{out}}$ [M\odot km s$^{-1}$ yr$^{-1}$]</th>
<th>Ext. blue</th>
<th>Ext. red</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM1 13.027.4</td>
<td>39.54.0</td>
<td>0.44 ± 0.12 × 10$^{-3}$</td>
<td>1.86 ± 0.11 × 10$^{-3}$</td>
<td>2.30 ± 0.23 × 10$^{-3}$</td>
<td>17" × 11"</td>
<td>46" × 45"</td>
</tr>
<tr>
<td>MM2 10.023.8</td>
<td>35.58.0</td>
<td>0.48 ± 0.09 × 10$^{-3}$</td>
<td>1.86 ± 0.15 × 10$^{-3}$</td>
<td>2.34 ± 0.24 × 10$^{-3}$</td>
<td>40" × 25"</td>
<td>26" × 22"</td>
</tr>
</tbody>
</table>

Table 4. Momentum flux of CO (2–1) calculated as in [Bontemps et al., 1996]. Blue and red integration intervals Δv_c (km s$^{-1}$), blue-shifted momentum flux between 6" and 12" F_{CO_b} (M$_\odot$ km s$^{-1}$ yr$^{-1}$), red-shifted momentum flux between 6" and 12" F_{CO_r} (M$_\odot$ km s$^{-1}$ yr$^{-1}$), total momentum flux $F_{\text{CO}_{out}}$ (M$_\odot$ km s$^{-1}$ yr$^{-1}$), maximal and outflows extensions are reported for MM1 and MM2.

Table 5. Continuum flux densities of the three cores within IRAS 18151–1208 region. MSX flux densities are extracted from the catalog for MM1 and a $3\sigma_{\text{noise}}$ calculation over the beam is done to derive an upper limit for the undetected MM2 and MM3 sources. IRAS measurements are derived from maps improved by HiRes method. Millimeter and sub-millimeter continuum flux densities are adapted to source reference size derived from continuum map by [Beuther et al., 2002b].

3.4. Continuum fluxes

In order to derive the spectral energy distribution of the three millimeter peaks in IRAS 18151–1208, we retrieve continuum data from the literature. MM1 was imaged for the first time at 450, 800 and 1100 µm by [McCUTCHEON et al., 1995] then at 450 and 850 µm by [WILLIAMS et al., 2004], and the overall region at 1.2 mm by [Beuther et al., 2002b]. Uncertainties are homogenized to account for typical calibration errors taken as 20% in the millimeter range (1.1 and 1.2 mm) and 30% in the submillimeter range (450 and 800 µm). In order to compare observations and model, we choose the deconvolved dust emission size θ_r as a reference for the SED. We deconvolve using $\theta_r = \sqrt{\theta^2 - \theta_{\text{mb}}^2}$, where θ_r is the observed mm-continuum half-peak size derived by [Beuther et al., 2002b] and θ_{mb} the HPBW (11°), using a two-dimensional Gaussian fit, assuming that the source is smaller than the beam and has a Gaussian shape.

All millimeter ($\lambda > 450$ µm) peaks S^peak_λ are then adapted to this reference size using

$$S^\lambda = \left(\frac{\theta_r}{\theta_{\text{mb}}} \right)^{3p} S^\text{peak}_\lambda$$

where p is the density power-law index (derived by [Beuther et al., 2002b] and S_λ the adapted flux density used to build the SED. These flux densities are 49.4, 7.62, 1.40 and 1.66 Jy at respectively 450, 850, 1100, 1250 µm for MM1. The process is iterated on MM2 and MM3 and reference sizes with millimeter-continuum peak fluxes are reported in Table 5. Unfortunately the sub-millimeter continuum data for MM2 and MM3 are less abundant than for MM1 as these two sources were not observed by [McCUTCHEON et al., 1995] and [Williams et al., 2004].

4. Modeling the continuum and the molecular emission of MM1 and MM2

In this section we explain how we derive physical models for MM1 and MM2 and how we use them to investigate the kinematics and the molecular abundances inside the cores. Following the method initiated and validated by [van der Tak et al., 1999, 2000], we use the dust continuum emission to derive the density and temperature profiles of the cores. Dust emission is sensitive to the total column density of dust (optically thin part of the SED in the millimeter wave range), and to the dust temperature and its distribution (mid to far-IR range). We try to build the simplest model in order to have the most general representation of the object. Then from the obtained physical model, we can run molecular line modeling to constrain kinematics (line profiles) and chemistry (abundances of observed species). Since MM3 is weak or not detected in
4.1. IRAS 18151–1208 MM1

4.1.1. Spectral energy distribution

The MM1 core is massive \(M \approx 550 M_\odot \) according to Beuther et al. (2002b) and applying the correction of 1/2 from the associated 2005 erratum. It coincides with the bright IRAS 18151–1208 source \(L \approx 2.0 \times 10^4 L_\odot \). In first approximation, assuming that the object has a spherical symmetry, we want to derive the best radial distribution of density and temperature that can fit the SED and that takes into account observational constrains.

(1) 1D modeling

We use the radiative transfer code MC3D in its 1D version (Wolf et al. 1999) to calculate the expected dust emission. This code is Monte-Carlo based and is using the standard MRN (Mathis et al. 1977) dust grain distribution with the dust opacities from Ossenkopf & Henning (1994). The model parameters are the central stellar luminosity \(L_\ast \), its temperature \(T_\ast \), the internal and external radii \(r_0 \) and \(r_{ext} \) of the object, the molecular hydrogen density \(n_0 \) at \(r_0 \) and the power-law index \(p \) of the density distribution of the form \(n(r) = n_0 (r/r_0)^p \).

The bolometric luminosity is derived by integrating the SED, and we obtain \(L_{bol} = 1.4 \times 10^3 L_\odot \). The temperature of the central star is taken as the corresponding main sequence star, i.e. \(T_\ast = 22,500 \) K (type B2V of 10 \(M_\odot \), approximatively, cf. Underhill et al. 1979). We adjust \(r_0 \) to fit the dust sublimation radius where \(T = 1500 \) K. The external radius \(r_{ext} \) of the model is derived from the radius of the 1.2 mm continuum emission (here the deconvolved mean of major and minus axis given by Beuther et al. 2002b) assuming that the source has a Gaussian shape smaller than the beam size. The resulting extension is 18.2′′, hence \(r_{ext} = 27,300 \) AU or \(\approx 0.13 \) pc at 3 kpc. The power-law index \(p \) is set to \(-1.2 \) according to the continuum profile fit by Beuther et al. (2002b). Finally the only free parameter left is \(n_0 \) and is derived by fitting optically thin 1.2 mm continuum emission with a \(\chi^2 \) calculation. We find \(n_0 = 2.8 \times 10^9 \) cm\(^{-3} \) at \(r_0 = 21 \) AU with \(\chi^2 = 3.94 \), hence \(\langle n \rangle = 8.0 \times 10^5 \) cm\(^{-3} \) and a total mass of gas equal to 660 \(M_\odot \). Outer and mean temperatures, formally \(T_{ext} \) and \(T \), are respectively 25.4 K and 27.3 K. The derived temperature profile can be fitted with a power-law of the form \(\langle T \rangle = T_{0} (r/r_0)^{\beta} \) at 3 kpc. The power-law index \(\beta \) is set to \(-0.588 \) and \(\beta = 3.95 \).

The resulting SED (see Fig. 5 in dashed line) shows that millimeter and sub-millimeter continuum parts are well modeled. On the contrary, the mid- and far-infrared emission is not reproduced, due to spherical symmetry that does not permit infrared photons, coming from inner parts, to leave the source without being reprocessed into photons at millimeter wavelengths. 2D modeling, where the polar regions contain less matter than in the mid-plane, should therefore reproduce better the observed mid-infrared emission.

(2) 2D modeling

We use the 2D version of the MC3D code which was developed for disks. It is parametrized in radial and altitude di-
mostly spherical external layers of the protostellar cores, the Since molecular line emission is usually dominated by the 4.1.2. CS and C\textsubscript{34}S line emissions

Since molecular line emission is usually dominated by the mostly spherical external layers of the protostellar cores, the
distributions in Fig. 6. One can see that the equatorial regions
the observed infrared emission, although the silicate feature is
ous line. It illustrates how a 2D modeling can reproduce better
emission significantly for MM1.

We use the CS and C\textsubscript{34}S line emission to compare the results of modeling in 1D and 2D geometries. We directly use outputs of continuum models described above, assuming that dust and gas temperatures are equal, to which we add parameters for molecular abundances and kinematics. The molecular abundances relative to H\textsubscript{2}, X(CS) and X(C\textsubscript{34}S), mostly determine the line intensities when the opacity is low (\(\tau \leq 1\)). Then we use a constant turbulent velocity \(v_T\). It is the main contributor to the line width compared to the thermal dispersion. X(CS) and \(v_T\) are therefore the free parameters to fit the intensities and widths of the line emission we observed. Finally we want to test if an infall motion in our model could improve our results, giving at least an upper limit for it. The infall velocity is parameterized by the free-fall, power-law distribution \(v_{\text{ff}}(r) = v_{\text{ff}}(r/r_0)^{-0.5}\) (Shu 1977). We test its effect on modeled line emission by switching between \(v_{\text{ff}} = 0\) and \(v_{\text{ff}} = -0.4\ \text{km} \cdot \text{s}^{-1}\), the lowest value that modifies modeled line emission significantly for MM1.

The line profiles are computed with the RATRAN code (Hogerheijde & van der Tak 2000). This code allows 1D and 2D modeling using respectively multi-shell and grid description of the object. The radiative transfer calculation uses the Monte-Carlo method to derive the populations of the energy levels and then builds data cubes that are convolved with corresponding beam sizes of the telescope to be directly compared with the observations.

In the 1D (spherical) geometry, a \(\chi^2\) calculation is performed for the optically thin C\textsubscript{34}S line (\(r_{\text{obs}} = 9.0 \times 10^{-2}\) and \(r_{\text{obs}} = 2.2 \times 10^{-1}\)) over a grid for \(f_{\text{CS}}\), \(X(\text{CS})/X(\text{C}34\text{S})_{\text{H}_{2}}\) (with \(X(\text{C}34\text{S})_{\text{H}_{2}} = 1.0 \times 10^{-10}\) and \(10^{-11}\)). The best fit is obtained for \(f_{\text{CS}} = 0.51\) with \(\chi^2 = 0.956\). Then the grid is refined for \(f_{\text{CS}}\) only, because model results are less dependent for \(v_T\) (kept equal to 1 km s\(^{-1}\)). The best result is obtained for \(f_{\text{CS}} = 0.51\) with \(\chi^2 = 0.952\), leading to the abundance \(X(\text{C}34\text{S}) = 5.1 \times 10^{-11}\). Assuming a typical \([\text{S}]/\text{H}\) isotopic ratio of 20 (Wilson & Rood 1993; Chin et al. 1996) Lucas & Liszt 1998) the CS emission is modeled with the abundance \(X(\text{CS}) = 1.0 \times 10^{-9}\).

The final results of the line modeling are displayed in Fig. 7. Given the very small number (2) of free parameters, the result-

\[
n(r, z) = \begin{cases}
n_0 \left(\frac{z}{r}\right)^p e^{-\pi z^2/r^2} & \text{if } r \in [r_0; r_{\text{ext}}] \\
0 & \text{otherwise}
\end{cases}
\]

We note that the model has three free parameters: \(n_0\) determined as for the 1D modeling, the inverse height of scale \(c\), and the source angle relative to the line of sight \(\theta_{\text{los}}\). It is mostly \(\theta_{\text{los}}\) which controls the fraction of mid-infrared emission. Values close to 45\(^\circ\) can roughly reproduce the SED, and we do not further adjust the value to keep the model as general as possible. The inverse height of scale \(c\) is controlling how thin the disk-like structure is. Since MM1 is young and is still mostly a spherical core, we try to keep \(c\) as small as possible while having always a significant mid-infrared emission for typical average lines of sight. Thus \(c\) was gradually increased from 0.4 by 0.1 steps until an infrared emission greater than 0.1 Jy (limit of detection in the observations) could be obtained, finally leading to \(c = 0.7\). Other parameters are kept identical as in 1D model \((T_*, L_*, r_0, r_{\text{ext}}\) and \(p\)). Calculations show that the best fit is obtained for \(n_0 = 2.7 \times 10^5\) cm\(^{-3}\) with \(\chi^2 = 0.732\) (total mass \(M = 830\) M\(_{\odot}\)). The derived SED is plotted in Fig. 5 in continuous line. It illustrates how a 2D modeling can reproduce better the observed infrared emission, although the silicate feature is not matched. We display the resulting density and temperature distributions in Fig. 6. One can see that the equatorial regions are denser and colder than around the polar axis. This is why mid-IR emission can escape and directly contribute to the SED.

4.1.2. CS and C\textsubscript{34}S line emissions

Since molecular line emission is usually dominated by the mostly spherical external layers of the protostellar cores, the 2D description might not be required to reproduce molecular lines.

\[\tau = \frac{c}{r} = \frac{r_0}{r} \quad \text{for density and 10 logarithmic levels} \]

Density and temperature distributions for the 2D model presented in a logarithmic grey scale, with 20 logarithmic levels from 10\(^2\) to 10\(^7\) cm\(^{-3}\) for density and 10 logarithmic levels from 10 K to 263 K.
ing fits are quite good. It reproduces well the line intensities. Only the profiles for the higher excitation lines indicate a significant difference between observations and this simple model. There are clear self-absorptions for the (3–2) and the (5–4) transitions (\(T_{\text{rot}} = 3.6\)) which indicate an overestimate of large CS column densities for the highest excitation regions (central regions). This could well be due to a significant decrease of the CS abundance toward to the center of the core (see Sect. 5.5 for a discussion).

We find that a minimum infall velocity of \(-0.4\) km s\(^{-1}\) is needed to start to see a clear asymmetric shape of the profile. Introducing infall improves only slightly the results for the (2–1) and (3–2) transitions and makes the fit of the (5–4) transition worse (cf. Fig. 7, second plot from the left). We conclude that an infall velocity in the 1D model does not improve the fits, and we consider as an upper limit the value of \(-0.4\) km s\(^{-1}\).

For the 2D modeling, the same \(\chi^2\) adjustment is performed for \(f_{\text{rot}}\) and \(f_{\text{col}}\). Interestingly enough, the final best fit is exactly the same than in the 1D geometry with \(X(\text{CS}) = 1.0 \times 10^{-9}\) and \(X(\text{C}^{12}\text{S}) = 5.1 \times 10^{-11}\). We note that line profiles and relative intensities between the transitions are similar to the 1D case. Only a very slight improvement of the profile of CS (5–4) which is less self-absorbed can be noted. The result is shown on the third plot from the left in Fig. 7.

Again the effect of an infall velocity on the line profiles is tested. With \(v_\text{inf} = -0.4\) km s\(^{-1}\) we note that the asymmetric profile of the line emission is less strong than in the 1D case (cf. Fig. 7, fourth plot from the left). We however conclude that infall in the 2D case does not improve critically the results.

Comparison between 1D and 2D modeling shows that using a spherical description of the source is sufficient to reproduce CS and \(^{34}\text{S}\) molecular line emission, even if 2D is slightly better with less self-absorption than in the 1D case. In addition we conclude that infall motion is not clearly detected and is not necessary to reproduce observations of MM1. We thus decide to use only 1D modeling without infall motion for the other observed lines.

The fact that 2D modeling is not needed for the CS line emission can be explained by the optical depth which is not so high at the corresponding frequencies compared with the mid-IR continuum, or by the asymmetry which is significant only on small scales where the temperature is high (between 300 and 1000 K). The observed molecular lines are not tracing these inner regions.

4.1.3. Other lines: \(\text{N}_2\text{H}^+, \text{HCO}^+, \text{H}^{13}\text{CO}^+\) and \(\text{H}_2\text{CO}\)

We adopt the 1D model derived in the previous section. For each molecule, the only free parameter left is therefore its relative abundance to \(\text{H}_2\).

1. \(\text{N}_2\text{H}^+\) (J=1–0) modeling

The \(\text{N}_2\text{H}^+\) (J=1–0) is split by hyperfine structure. Theoretically there are 15 hyperfine components, which blend into seven for sources with low turbulence (Caselli et al. 1995) or into three if turbulence is strong, as in our case. In order to correctly fit observations from ATNF telescope at Mopra we created the molecular datafile for the RATRAN radiative transfer code. Energy levels, Einstein coefficients \(A_{\text{ul}}\) and collisional rates \(\gamma_{\text{ul}}\) are derived from Daniel et al. (2004) through the BASECOL database maintained by the Observatoire de Paris.

Energy levels included in the molecular datafile vary from \(J = 0\) to \(J = 6\). The hyperfine structure resulting from angular momentum and nuclear spin interaction (\(F_1\) and \(F\) quantum numbers) leads to a total of 55 energy levels. The statistical weight of each level is determined by (see Daniel et al. 2005):

\[
n_{\text{J}F,F_1} = \frac{(J+1)(2J+1)}{[J,F,F_1,F]} \tag{3}
\]

where \([J,F,F_1,F]\) is the number of magnetic sub-levels for the angular momentum \(J\). The molecular data file takes into account 119 radiative transitions where the first 15 of them fit to the \((J=1–0)\) transition. The spectra obtained are then summed to finally reproduce the whole composite profile of the triplet (see Fig. 6).

Collision rates \(\gamma_{\text{ul}}\) reported by Daniel et al. (2004) are given for helium as collision partner. As described by Schöier et al. (2005) we take 1.4 \(\times\) \(\gamma_{\text{ul}}\) in order to correct for an \(\text{H}_2\) collision partner. Initially collision rates are given for temperatures from 5 K to 50 K which is the temperature range of the outer parts of our sources. To be able to model the entire sources, we have extrapolated the rates to high temperatures using a least-squares method that derives collisional rates from a linear fit of the form:

\[
\log(\gamma_{\text{ul}}) = a \log(T) + b \tag{4}
\]

This extrapolation has the advantage of fitting the global trend of the collisional rate without any exaggerated values for high temperatures.

Emission of \(\text{N}_2\text{H}^+\) is considered as optically thin (\(\tau \sim 10^{-2}\)) due to its typical low abundance. Thus we model it by comparing the velocity integrated fluxes of observation and model starting from a typical abundance \(X(\text{N}_2\text{H}^+) = 1.0 \times 10^{-11}\). The ratio of modeled to observed fluxes is then used to further correct the abundance while verifying that the line profile is always correctly reproduced. Iterating the process gives \(X(\text{N}_2\text{H}^+) = 3.5 \times 10^{-10}\). An overlay of the model on the observation is shown in Fig. 8.

2. \(\text{HCO}^+\) and \(\text{H}^{13}\text{CO}^+\) (J=1–0) modeling

The \(\text{HCO}^+\) and \(\text{H}^{13}\text{CO}^+\) lines are good tracers of high density gas and of its kinematics. \(\text{H}^{13}\text{CO}^+\) (J=1–0) is usually optically thin (here we finally get \(\tau = 3.4 \times 10^{-2}\)) so we adopt the same routine to derive molecular abundances as for \(\text{N}_2\text{H}^+\). We then get an abundance of \(X(\text{H}^{13}\text{CO}^+) = 3.4 \times 10^{-11}\). Applying a typical isotopic ratio \([^{12}\text{C}] / [^{13}\text{C}] = 67\) (Wilson & Rood 1994; Lacas & Liszt 1998) we model the \(\text{HCO}^+\) line with \(X(\text{HCO}^+) = 2.3 \times 10^{-10}\). Results are shown in Fig. 9. The resulting modeled \(\text{HCO}^+\) line is optically thick (\(\tau = 1.7\)) reaching a maximum intensity of \(\sim 4\) K. It suggests that the region of emission in the model is smaller than the telescope beam as expected for a high density tracer. On the other hand the observed intensity and profile are very different. It

5 http://umdpo.obspm.fr/basecol/
indicates that the bulk of the HCO$^+$ rich gas does not follow the general distribution of matter indicated by other tracers (dust emission and optically thin lines). The HCO$^+$ ($J=1$–0) line seems to have an excess on the blue side which could well be associated with the blue-shifted outflow wing which is mostly located inside the core in CO (see Fig. 3). Generally speaking, HCO$^+$ is a good outflow tracer and we speculate that the HCO$^+$ line is actually dominated by some HCO$^+$ rich gas associated with the outflow shocks inside the core (i.e. at high density as required to excite HCO$^+$). This would mean that the derived HCO$^+$ abundance in the core envelope is only an upper limit and could well be much smaller, except locally in outflow shocks.

(3) para- and ortho-H$_2$CO modeling

The ratio between para and ortho populations of H$_2$CO is an interesting parameter in the global context of gas temperature and chemical activity (Kahane et al. 1984) and can be a useful tool to follow chemical evolution of gas inside and between the observed sources. Our modeling indicates that the lines are mostly optically thin ($\tau_{218.2\text{GHz}} = 1.37$, $\tau_{218.5\text{GHz}} = 0.09$ and $\tau_{225\text{GHz}} = 0.77$) so we adopt the same routine as described for N$_2$H$^+$. The abundances obtained are as follows X(para − H$_2$CO) $= 1.5 \times 10^{-10}$ and X(ortho − H$_2$CO) = 1.3×10^{-10}, leading to a ratio para/ortho ≈ 1.2. The agreement between the modeled and the observed lines is good. All the lines however tend to show some excess on the blue side, while the ortho line even shows excesses on both sides (see Fig. 10). In addition we want to emphasize that the two para-H$_2$CO transitions which have two significantly different E_{up}/k (respectively 21.0 K and 68.1 K) are well reproduced. This is an indication that the excitation temperature of the emitting gas is well reproduced by the physical model.

4.2. IRAS 18151−1208 MM2

4.2.1. Spectral energy distribution

Since MM2 is not detected in the mid-infrared, and taking into account our conclusions from the modeling of MM1, we decide...
to only model the source in a simple 1D, spherical geometry. We cannot derive the bolometric luminosity of MM2 by integrating its SED, due to the fact that all infrared fluxes are upper limits. Instead, we assume a luminosity of 2700 L_\odot, which is uncertain by at least a factor of 2. This luminosity corresponds to a B4V type star (approximatively 7 M_\odot) with T_* = 16 600 K, that we use to describe the heating source of our model. The 1.2 mm continuum deconvolved source extension from Beuther et al. (2002b) is equal to 14.4″ thus $r_{ext} = 21$ 600 A.U. or $= 0.10$ pc at 3 kpc and we assume a power-law index $p = -1.3$ from the same paper. Because only one mm-wave peak flux density was measured for MM2 (see Table 5), we adapt n_0 to fit this unique measurement. After two iterations we converge to $n_0 = 1.1 \times 10^{10}$ cm$^{-3}$ at $r_0 = 12.4$ A.U., hence $\langle n \rangle = 1.1 \times 10^6$ cm$^{-3}$ and a total mass gas of $M = 460$ M_\odot. We derive $T_{ext} = 19.2$ K, $\langle T \rangle = 19.4$ K and the temperature can be fitted by a power-law of the form $\log_{10}(T) = \alpha \log r + \beta$ with $\alpha = -0.614$ and $\beta = 3.85$. The resulting SED does not show any emission in the mid- and far-infrared, in agreement with the observations (see Fig. 11) and as expected for a simple 1D description.
We have also tested a possible infall velocity field of the form $v_{\text{in}}(r) = v_{\text{in}}(r_0) r^{-0.5}$.

Emission of optically thin C34S lines ($\tau_{2-1} = 4.4 \times 10^{-2}$ and $\tau_{3-2} = 4.4 \times 10^{-2}$) in MM2 object are treated by taking two different grids for the χ^2 calculation over its intensity and area. The first grid is $f_{\text{CS}}(v_T) = [(0.1, 0.2, \ldots, 0.5), (1.5, 1.6, \ldots, 2.0)]$ and shows a best fit for $(f, v_T) = (0.3, 1.7)$, the second one is finer with $f_{\text{CS}} = [0.25, 0.26, \ldots, 0.35]$ and a fixed $v_T = 1.7 \text{ km s}^{-1}$ because of the low dependence of the modeled line on this parameter, compared to f_{CS}. It gives the best fit for $f_{\text{CS}} = 0.27$, hence an abundance $X(\text{C}^{34}\text{S}) = 2.7 \times 10^{-11}$. As for MM1, the resulting modeled lines reproduce well all transitions except the CS (5−4) line which is heavily overestimated in intensity. Again it points to a lower abundance of CS in the inner regions compared to the outside.

Then, as above for MM1, we add an infall velocity profile following a typical $r^{-0.5}$ distribution. The asymmetric shape is obtained for a minimum infall velocity $v_{\text{in}} = -1.0 \text{ km s}^{-1}$. The resulting profile is unchanged for (2−1) transition, is slightly improved for the (3−2) but shows an excess of blue emission which is not observed for CS (5−4) (see Fig. 12 right). Therefore including infall velocity distribution does not improve our fit and hence does not seem to be necessary. It gives an upper limit for the infall velocity of $v_{\text{in}} = -1.0 \text{ km s}^{-1}$.

The optically thin emission of N$_2$H$^+$ ($\tau \sim 10^{-2}$) in MM2 is treated by comparing the observed and modeled velocity integrated area and using it to adapt an initial typical abundance (1.0×10^{-10}). The resulting fit for N$_2$H$^+$ is shown in Fig. 13 and corresponds to $X(\text{N}_2\text{H}^+) = 6.3 \times 10^{-10}$. As for MM1, the quality of the fit is high.

For HCO$^+$ and H13CO$^+$ we obtain the following abundances: $X(\text{HCO}^+) = 5.1 \times 10^{-9}$ and $X(\text{H}^{13}\text{CO}^+) = 7.6 \times 10^{-11}$. The best fit result is shown in Fig. 14. As for MM1, the modeled HCO$^+$ line emission does not reproduce well the observations. The HCO$^+$ column density derived from the H13CO$^+$ line implies an heavily saturated ($\tau = 19$) HCO$^+$ line which is not observed. Obviously in contrast to all the other molecules, the distribution of HCO$^+$ does not follow the simple spherical geometry of the model.

We then derive the best abundances for the para and ortho-H$_2$CO to reproduce the three observed transitions (see Fig. 15). The abundance obtained for the ortho transition at 225 GHz is $X(\text{ortho-H}_2\text{CO}) = 2.0 \times 10^{-10}$. For the two para tran-
Fig. 14. Emissions of HCO\(^+\) (top) and H\(^{13}\)CO\(^+\) (bottom) (\(J=1–0\)) from MM2 source overlaid by 1D model of the source (dashed line). Spectra velocity resolutions are kept identical to observational resolutions reported in Table 2.

sitions, no unique abundance can be derived. For the best fit of the 218.222 GHz line emission, the abundance obtained is \(X(\text{para}–\text{H}_2\text{CO}) = 2.6 \times 10^{-10}\) but the 218.475 GHz line is then too weak by a factor of almost 2; see Fig. [15]. At the other extreme, if the 218.475 GHz line is fitted, the abundance obtained is \(X(\text{para}–\text{H}_2\text{CO}) = 4.8 \times 10^{-10}\). In contrast to MM1 for which a correct ratio of the two para lines was obtained, the modeled ratio (218.222 over 218.475) for MM2 appears to be too large. Since the weaker 218.475 GHz line emission has a higher upper energy level (\(E_{\text{up}}/k = 68.1\) K) it suggests that the emitting gas is actually warmer in MM2 than what is represented by the simple 1D model. The resulting para to ortho ratio is therefore in the range \(\simeq 1.3–2.4\).

5. Discussion

5.1. MM2: a new massive protostar driving a powerful outflow.

MM2 is a millimeter source without infrared counterpart (MSX or IRAS). It is even seen in absorption over the local background in the MSX 8\(\mu\)m image (see Fig. [1]). A water maser has been detected toward the core by Beuther et al. (2002a). With the addition of our newly discovered CO outflow driven by MM2, it all clearly points to a protostellar nature of MM2. Inside the core size of 0.22 pc (14.4\(''\)), a total mass of 460 M\(_{\odot}\) is obtained with MC3D (dust emissivity for the MRN grain distribution; see Table 5). MM2 is therefore
were proposed to well represent the earliest phases of high-mass star formation. Among the 40 cores, 15 were already associated with an UC-H\(\alpha\) region and bright in the infrared, 8 were only bright in the infrared, and 17 were IR-quiet protostellar cores. This sequence is proposed to be mostly an evolutionary sequence, the IR-quiet cores being the precursors of the IR-bright cores, and then of UC-H\(\alpha\) regions. We will discuss the cores in IRAS 18151–1208 in the framework of these recent Cygnus X results.

First of all no bright radio source is detected in the whole IRAS 18151–1208 clump. All the massive protostellar objects detected in the clump are necessarily objects in an evolutionary stage prior to the formation of an UC-H\(\alpha\) region. In Fig. 1 the distribution of mid-infrared emission from MSX is displayed. It is clear that the main bright infrared source is associated with MM1 while the MM2 area is devoid of mid-infrared emission. The core is actually even seen in absorption over the local background. MM3 is more complicated since a moderately bright MSX source is situated close to the center of the core.

MM1 has a mass of 660 \(M_\odot\) in a radius of 27 300 A.U. (core size of 0.27 pc) obtained from the fit of the SED with MC3D (Table 6). It has a bolometric luminosity higher than \(10^4\ L_\odot\), and is bright in the mid-IR (\(S_{20\mu m} = 61\) Jy). It drives a powerful bipolar outflow and therefore hosts at least one mid-IR bright massive protostar. Using the same dust properties (millimeter dust emissivity and average temperature) as in Motte et al. (2007), and inside a 0.13 pc size, the MM1 core would have a mass as high as 74 \(M_\odot\), and would therefore be among the most massive cores of Cygnus X. With an equivalent \(S_{20\mu m}\) = 190 Jy at 1.7 kpc (distance of Cygnus X), it would be the brightest core which is not associated with an UC-H\(\alpha\) region (see Fig. 7 in Motte et al. 2007). It is however not as bright in the mid-IR as the well-known AFGL 2591 source described by van der Tak et al. (1999). In the Motte et al. (2007) classification, MM1 is therefore a high-luminosity IR (or IR bright) protostar.

Except its non detection in the mid- and far-IR (\(S_{20\mu m} \leq 2\) Jy), the properties of MM2 resemble those of MM1. It has a mass of 460 \(M_\odot\) in a radius of 21 600 A.U. (core size of 0.22 pc) obtained with MC3D (Table 6), a still high bolometric luminosity of 2700 \(L_\odot\), and it drives a powerful bipolar outflow. Using the same dust properties as in Motte et al. (2007), and inside a 0.13 pc, the MM2 core would have a mass of 45 \(M_\odot\), and would therefore be among the 40 high-density cores of Cygnus X. In the Motte et al. (2007) classification, MM2 is a mid-IR-quiet massive protostar.

Observations of MM3 does not permit to conclude definitely on its nature. Although it is massive with a flatter density profile (about 200 \(M_\odot\) and \(p = 0.8\), the Beuther et al. (2002a) and no outflow detected, any mid-IR emission is confused due to the nearing confusing source detected by MSX and the presence of a bright IR filament in the background. At best one can only propose that MM3 is a probable prestellar core.

One can also use the CO outflow energetics to further discuss the evolutionary stages of MM1 and MM2. Outflows are believed to be the best indirect tracers of protostellar accretion. Interestingly enough, while MM2 is not a bright IR source and is less luminous than MM1, its CO outflow is as powerful as the one of MM1. This is like Class 0 low-mass proto-

\(L_\star\)	MM1	\(2700\ L_\odot\)
\(T_\star\)	22 500 K	16 600 K
\(M_{gas}\)	\(660 \pm 130\ M_\odot\)	\(460 \pm 100\ M_\odot\)
\(r_{ext}\)	27 300 A.U.	21 600 A.U.
\(n_0\)	\(2.8 \times 10^9\ cm^{-3}\)	\(1.1 \times 10^9\ cm^{-3}\)
\(\beta\)	\(8.0 \pm 0.2\)	\(1.1 \pm 0.2\)
\(\sigma\)	-1.2	-1.3
\(T_{ext}\)	25.4 (0.5) K	19.2 (0.4) K
\(\alpha\)	7.6 (2.4) K	19.2 (0.4) K
\(\beta\)	-0.588 (0.011)	-0.614 (0.012)
\(\gamma\)	3.95 (0.03)	3.85 (0.04)
\(r_{gas}\)	21 (2) A.U.	12 (1) A.U.

\(a\) Values from continuum map analysis by Beuther et al. (2002a).

Table 6. Summary of results from dust continuum emission modeling (above mid-line) and from molecular line emission modeling (below mid-line). The relative uncertainties on the derived parameters are given inside the parentheses and are at the 3 \(\sigma\) level. They correspond to the rms noise propagated through the modeling process. The additional absolute uncertainty on masses and abundances, mostly due to the uncertain emissivity of dust, is given in Sect. 5.3.
stars which have on average more powerful outflows than more evolved, and IR bright Class I objects. It has been interpreted by Bontemps et al. (1996) as due to a decrease of the accretion rate with time. Extrapolating these results to higher masses, we investigate in Fig. 16 how MM1 and MM2 place in the evolutionary diagram based on the energetics of CO outflows. The location of the low-mass protostars (Class 0 and Class I) is displayed with stars and is well reproduced by a toy model (dotted tracks) based on an exponential decrease of the accretion rate with time (see details in Bontemps et al. 1996) for stars between 0.2 and 2 \(M_\odot \). Three additional tracks are given for \(M = 8, 20, 50 \ M_\odot \). One can note, for instance, that while the low-mass protostars reach a maximum luminosity which is higher than their final ZAMS luminosity (by a factor of 5 for 0.2 \(M_\odot \) stars) the luminosities of massive protostars are always increasing. In this scenario, the dashed line would represent the location of the transition between Class 0 and Class I protostars, i.e. the location where half of the final mass is accreted (first black arrow symbols, second arrow symbols are for 90 \% of the mass accreted). If this can be extrapolated to high-mass protostars it indicates that MM2 is younger than MM1 and could host a high-mass Class 0 like protostar. Note that the HMPO (star symbols) including MM1 and MM2 are not well resolved as individual collapsing objects. This is particularly important for MM2 for which the measured luminosity depends on its continuum fluxes in the millimeter range and therefore directly scales with the size of the region. The luminosity of MM2 should therefore be seen as an upper limit of the actual luminosity of the protostar. In this diagram, MM2 and MM1 are located in the area of the \(M = 20 \ M_\odot \) track with MM2 having less than 50 \% of its final mass, and MM1 having of the order of 50 \% of its final mass accreted. While the stellar embryo of MM2 is therefore certainly not yet a ionising star, MM1 could be hosting a weakly ionizing stellar embryo of \(\sim 10 \ M_\odot \). This could explain why MM1 would appear as the brightest core in Cygnus X (in Fig. 7 of Motte et al. 2007) which is not yet associated with a UC-H\(\alpha \) region.

The overall properties of MM1 and MM2 therefore provide us with a coherent picture of MM1 and MM2 hosting at least one high-mass protostar which are not yet creating an UC-H\(\alpha \) region. MM2 hosts a certainly younger protostar, and probably slightly less massive, than MM1. The high-mass protostar hosted by MM1 is a good candidate to be just at the limit of switching on a new UC-H\(\alpha \) region. In this scheme, well-known protostars such as AFGL 2591 would be slightly more evolved with an already formed UC-H\(\alpha \) region and a much brighter flux in the mid-IR.

5.3. Density and temperature profiles from dust continuum

From the detailed 1D and 2D analysis of the continuum emission and of the optically thin molecular line modeling, we arrived at the conclusion that a 1D spherical geometry is enough to reproduce the molecular line emission. It is only to account for the mid-infrared emission that a 2D geometry is required. Our careful analysis showed that the 1D and 2D models were indistinguishable when it comes to model the molecular lines. This is actually not surprising since only a very small fraction of the total mass in the core is affected by the 2D inner flattening of the density distribution. Only 11 \(M_\odot \) of the 660 \(M_\odot \) of MM1 is found to be at \(T > 100 \) K. The bulk of mass is at much lower temperatures and does not contribute to the infrared emission (see Fig. 17).

Facing the same difficulty to reproduce the mid-infrared emission of massive protostars, van der Tak et al. (1999) adopted another strategy by using a 1D spherical model with a large inner cavity which could let escape the infrared photons. Our results also validate this approach since it was a way to neglect the inner dust contribution for the molecular line modeling. On the other hand, this approach tends to converge toward large sizes of the cores which are not observed. We believe it is more realistic to impose the sizes of the cores as observed in the dust continuum.

Finally, we note that the use of a self-consistent dust radiative transfer code such as MC3D is ideal to reduce the number of free parameters. On the other hand, it imposes some stringent hypotheses on the dust properties by requiring a full opacity curve for dust grains, from infrared to millimeter wavelengths. For instance, we use the MRN distribution of grains which is known not to take into account very well the real dust opacity in the millimeter range when ice mantles are present for cold and dense cores (Ossenkopf & Henning 1994). For SED modeling, this is not very important since dust emission in the millimeter range is optically thin. But it is however im-
important for mass derivation, and we therefore expect that the masses we derived are overestimated due to freeze out onto grains. As a consequence the abundances could be underestimated accordingly. The resulting absolute uncertainty can be evaluated by directly deriving total masses from the 1.25 mm continuum fluxes of MM1 and MM2 in Table 5 using the mass determination by Motte et al. (2007) and the average temperatures obtained in Table 6. We get 200 and 114 M⊙ for MM1 and MM2 respectively which are \(\sim 3.5 \) times smaller than with MC3D. This systematic effect is however a general concern and our resulting abundances are still directly comparable with results from most previous similar studies which used the same assumptions.

5.4. Average abundances from molecular observations.

Modeling of MM1 and MM2 allowed us to derive absolute molecular abundances. The CS abundances we find, \(X = 0.5-1.0 \times 10^{-8} \), are typical values obtained for this type of source (Pirogov et al. 2007). We note the same result for \(\text{N}_2\text{H}^+ \) where \(X = 3.5-6.3 \times 10^{-9} \) (Pirogov et al. 2003), \(\text{HCO}^+ \) with \(X = 2.3-5.1 \times 10^{-9} \) (van der Tak et al. 2000a), and finally \(X(\text{H}_2\text{CO}) \) is in the large typical abundance range observed (Keane et al. 2001 Bisschop et al. 2007). All these results fit abundance ranges derived from standard chemical evolution modeling as made by Doty et al. (2002): \(X(\text{CS}) \) varying from \(1 \times 10^{-10} \) to \(1 \times 10^{-8} \), \(X(\text{N}_2\text{H}^+) \) from \(1 \times 10^{-12} \) to \(3 \times 10^{-10} \), \(X(\text{HCO}^+) \) from \(1 \times 10^{-11} \) to \(6 \times 10^{-9} \) and \(X(\text{H}_2\text{CO}) \) from \(1 \times 10^{-10} \) to \(2 \times 10^{-8} \). Thus we conclude that our observations and models do not reveal any abundance anomaly compared to other massive protostellar objects and to chemical predictions.

5.5. Depleted CS abundance in the inner regions.

The modeling of multiple line emission from a single molecular species enables us to probe physical conditions inside a source. In our model, where no shocks are inserted, the main factor is thermal excitation. Modeling of CS transitions \((E_{\text{upp}}/k) \) is equal to respectively 7.0, 14.1 and 35.3 K for \(J=2-1 \), \(J=3-2 \) and \(J=4-3 \) reveals that for both MM1 and MM2 sources the two lowest CS transitions are almost reproduced, whereas the highest one is stronger than observed (see Fig. 7 and Fig. 12). A lower abundance of CS in the inner regions could explain this discrepancy. Since the gas is cold and dense in basically the whole MM1 and MM2 cores a significant depletion of CS onto the grains is expected (see Tafalla et al. 2002 and references therein). For the line modeling of the low-mass Class 0 protostar IRAM 04191, Belloche et al. (2002) had also to consider a significant CS depletion (by a factor of about 20) to reproduce the observed lines. The CS depletion is expected to be still significant even for high-mass cores such as MM1 and MM2 because they have not yet formed a large hot core region (only a very small fraction of the total mass of MM1 is expected to be at \(T > 100 \) K; see above). We conclude that CS depletion in the inner regions of MM1 and MM2 could be responsible for the observed too weak CS\((5-4)\) emission which is not reproduced by our modeling.

5.6. \(\text{H}_2\text{CO} \): a probe of physical and chemical interactions?

Our study clearly shows that \(\text{H}_2\text{CO} \) emission of we observed can be modeled with no radial variation of abundance. The test of an overabundance driven by a hot core (\(T > 100 \) K) does not show any significant improvement in line fitting. We can understand it from the low contribution in mass of the hot parts of MM1 and MM2 (resp. 11 M⊙ and 3 M⊙; see Fig. 17). Thus we conclude that \(\text{H}_2\text{CO} \) line emission does not show any hot core contribution.

However the line emission from MM2 leads to a greater abundance of \(\text{H}_2\text{CO} \) than MM1, with a need for a hotter inner

Fig. 17. Density (top) and temperature (bottom) profiles used in 1D for molecular line emission modeling of MM1 (plain) and MM2 (dashed). Intervals (vertical lines) represent where 90 % of the mass is present in the models hence what physical conditions are dominating line emission process of molecules observed.
part although it is the colder and the younger of the two sources. The line emission from MM2 could be affected by a significant contribution of outflow shocks in the inner envelope of the protostar. This idea is supported by the higher turbulent velocity observed in MM2 ($v_T = 1.7 \text{ km s}^{-1}$ in contrast to 1.0 km s^{-1} for MM1) and its internal para-to-ortho ratio greater than 1, suggesting recent chemical activity (Kahane et al. 1984) driven in these shocks.

5.7. Chemical evolution of high-mass cores.

We finally wish to speculate that the chemical differences between MM1 and MM2 are related to their different evolutionary stages. The derived abundances, obtained with the same modeling process and radiative transfer code, show that X(CS) is 2 times higher for MM1 than for MM2, and 5 times lower than in the probably more evolved AFGL 2591 high-mass protostar, suggesting that the CS abundance might increase with time. Interestingly enough, the Johnstone et al. (2003) study of sub-millimeter sources in Orion was suggesting the same trend. The chemical models by Wakelam et al. (2004) actually predict such an evolution of the CS abundance in protostars: a constant production of CS is expected at low temperatures ($T < 100 \text{ K}$) thus increasing the abundance with the source evolution. Moreover, when the hot core region develops, the release of CS from the grains may even increase more the CS abundance. This could be the case for the high abundances in AFGL 2591 and in the sources observed by Hatchell & van der Tak (2003).

In contrast, X(N$_2$H$^+$) is found to decrease with time; the N$_2$H$^+$ abundance inside AFGL 2591 shows a clear trend of decrease from MM2 to AFGL 2591: X(N$_2$H$^+$)$_\text{AFGL 2591} = 0.1 \times X$(N$_2H^+$)$_\text{MM1} = 0.05 \times X$(N$_2H^+$)$_\text{MM2}$. This molecule hardly depletes on cold dust grains and is rapidly destroyed at warm temperatures. This behaviour is not unique and has been already observed in high-mass protostellar objects (Reid & Matthews 2007). We suggest that the CS and N$_2$H$^+$, i.e. abundance ratio may be a good tracer of protostellar evolution, but more observations and modeling are required to test this hypothesis.

6. Conclusions

Here we summarize our conclusions on the massive protostellar objects MM1 and MM2 of the IRAS 18151–1208 region.

1. The three cores of the region, MM1, MM2 and MM3 are physically linked and have probably been formed from a single parental cloud or clump.
2. We detected for the first time a CO outflow driven by MM2. It clearly establishes the protostellar nature of MM2. In contrast MM3 does not show any outflow activity and is therefore most probably a pre-stellar core.
3. Following the evolutionary scheme discussed in Motte et al. (2007), MM1 is a high luminosity IR (or IR-bright) massive protostar while MM2 is an IR-quiet massive protostar.
4. We have established that while an inner flattening of the matter distribution is required to reproduce the SED of MM1, a simple 1D spherical geometry is enough to well model molecular line observations. In contrast, MM2 does not even require a inner flattening since it is not detected in the mid-infrared range.
5. A significant depletion of CS in the inner parts of the MM1 and MM2 cores is required to fully reproduce the observed CS line emission.
6. We find that the abundance ratio between CS and N$_2$H$^+$ could be a very good evolution tracer for high-mass protostellar cores hosting high-mass protostars.

Acknowledgements. We would like to thank Henrik Beuther for his useful and precise comments as referee and for kindly providing his 1.2 mm continuum map data of the region that we have used for the figure of the whole region (Fig. 1). They both greatly improved the general content of this paper. We also thank Jonathan Braine and Nicola Schneider for their corrections.

References
