64. EGLITIS, M.A. and Meoz, E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. PROC. NATL. ACAD. SCI. U. S. A. 94 [8], 4090-4095 (1997).
REFERENCES


192. MOLINEUX, G., McCrea, C., Yan, X.Q. et al. FLT-3 ligand and granulocyte colony-stimulating factor to increase neutrophil numbers and to mobilize peripheral blood stem cells with long-term repopulating potential. BLOOD 89 [11], 3998-4004 (1997).


197. KAWADA, H., Takizawa, S., Takanashi, T. et al. endothelial progenitor cells in the subacute phase after cerebral infarction is effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow-derived neutrophils. CIRCULATION 113 [5], 701-706 (2006).


204. REHMAN, L., Li, J., Orschell, C.M. et al. Peripheral blood “endothelial progenitor cells” are derived from monocye/macrophages and secrete angiogenic growth factors. CIRCULATION 107 [8], 1164-1169 (2003).


221. LI, H., Liu, H., and Heller, S. Pluripotent stem cells from the adult mouse inner ear. NAT. MED. 9 [10], 1293-1299 (2003).
a single CD34-low/negative hematopoietic stem cell.

expression of CD24 on CD19-CD79a+ early B-cell progenitors in human bone marrow.

murine stem cell markers. STEM CELLS 24 [9], 2078-2084 (2006).

Prospective characterization of neural stem cells by flow cytometry analysis using a combination of surface markers. J. NEUROSCI. RES. 80 [4], 456-466 (2005).

Israeli B-cell progenitors in human bone marrow.

Characterization of multipotent progenitors from the Bowman's capsule of adult human kidneys.


