Pex14 is the sole component of the peroxisomal translocon that is required for pexophagy
van Zutphen, Tim; Veenhuis, Marten; van der Klei, Ida

Published in:
Autophagy

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Pex14 is the sole component of the peroxisomal translocon that is required for pexophagy

Tim van Zutphen, Marten Veenhuis and Ida J. van der Klei*

Molecular Cell Biology; University of Groningen; Haren, The Netherlands

Key words: pexophagy, peroxin, Hansenula polymorpha, yeast, peroxisome

Pex14 was initially identified as a peroxisomal membrane protein that is involved in docking of the soluble receptor proteins Pex5 and Pex7, which are required for import of PTS1- or PTS2-containing peroxisomal matrix proteins. However, Hansenula polymorpha Pex14 is also required for selective degradation of peroxisomes (pexophagy). Previously we showed that Pex1, Pex4, Pex6 and Pex8 are not required for this process. Here we show that also in the absence of various other peroxins, namely Pex2, Pex10, Pex12, Pex13 and Pex17, pexophagy can normally occur. These peroxins are, like Pex14, components of the peroxisomal translocon. Our data confirm that Pex14 is the sole peroxin that has a unique dual function in two apparent opposite processes, namely peroxisome formation and selective degradation.

Introduction

Autophagy is a highly conserved process that is responsible for the recycling of cytoplasmic components by the vacuole/lysosome. Both selective and non-selective autophagic processes have been described (ref. 2). Pexophagy involves the selective degradation of peroxisomes. In the methylotrophic yeast Hansenula polymorpha, pexophagy is induced upon a shift of methanol-grown cells to glucose. This process, termed macroautophagy, initiates with the recognition and subsequent sequestration of a single peroxisome by multiple membrane layers, followed by fusion of the outer sequestering membrane layer with the vacuole membrane and finally degradation of the entire organelle by vacuolar enzymes.5

Besides numerous autophagy-related (ATG) genes, also the peroxisomal membrane protein Pex14 was shown to play an essential role in pexophagy, most likely in the initial recognition of the organelle to be degraded by the autophagy machinery. Initially, Pex14 was identified as a peroxin involved in matrix protein import as it is thought to recruit the PTS1 and PTS2 receptor proteins, Pex5 and Pex7, respectively, to the peroxisomal membrane.19 Later studies identified two other components of the receptor docking complex, Pex13 and Pex17. A second protein complex in the peroxisomal membrane that is involved in matrix protein import is formed by three RING finger proteins, Pex2, Pex10 and Pex12. Both the docking and RING finger complexes can associate to form a super-complex. Here we show none of the peroxins of the peroxisomal translocon besides Pex14 are essential for pexophagy.

Material and Methods

Organisms and growth. The H. polymorpha strains used in this study are listed in Table 1. Cells were cultivated at 37°C using either YPD medium (1% yeast extract, 1% peptone, 1% glucose), or mineral medium (as described previously, ref. 13). For analysis of peroxisome degradation, cells were precultivated using mineral medium containing 0.25% (w/v) ammonium sulphate and 0.25% (w/v) glucose as sole nitrogen and carbon sources respectively. Cells were subsequently shifted to 0.05% (w/v) glycerol and 0.5% (w/v) methanol as carbon sources. Exponential glycerol/methanol cultures were shifted to medium containing 0.5% (w/v) glucose to induce pexophagy.7 When required, media were supplemented with 30 µg/ml leucine or appropriate antibiotics. For growth on plates, 2% agar was added to the media. Escherichia coli DH5α was used as host for propagation of plasmids using LB supplemented with appropriate antibiotics at 37°C as described.14

Construction of strains. Each of the pex strains as well as wild-type and mutant atg1 were transformed with either SphI-linearized pHIPX4 N50.PEX3.GFP or pHIPZ4 N50.PEX3.GFP (as described, refs. 14 and 17), producing N50.Pex3.GFP under the control of the alcohol oxidase promoter.

Microscopy. For fluorescence microscopy, 1 ml cell culture was supplemented with 2 mM FM 4-64, incubated for 45 minutes at 37°C and analyzed with a Zeiss Axioskop microscope (Carl Zeiss, Göttingen, Germany). Electron microscopy was performed as described previously (ref. 18). Ultrathin sections of unicyrlyl-embedded cells were used for immunocytochemistry, using polyclonal antiserum against GFP and gold-conjugated goat anti-rabbit antiserum.

Biochemical methods. Cell extracts were prepared as detailed previously (ref. 15). Equal volumes of the cultures were subjected to SDS-polyacrylamide gel electrophoresis, followed by western blot analysis. Blots were probed with rabbit polyclonal antiserum against alcohol oxidase, Pex10 or GFP followed by detection using either the Protoblot immunoblotting system (Promega Biotec)
or BM Chemiluminescent Western blotting kit (Roche Molecular Biochemicals, Almere).

Blots were scanned using a densitometer (Biorad GS-710, Hercules, CA, USA) and quantified using Image J (version 1.37); three measurements were performed on each band of three individual experiments per strain.

Results

To investigate whether besides Pex14 other peroxins of the docking or RING finger sub-complexes are required for glucose induced pexophagy, we studied degradation of peroxisome remnants in single PEX deletion strains (pex2, pex12, pex13 and pex17). The degradation of peroxisomal membrane remnants was monitored by the analysis of the levels of the peroxisomal membrane protein Pex10, using western blotting and anti-Pex10 antibodies.15

Development of various peroxisome remnants21 was induced by growing the cells on a mixture of glycerol and methanol, followed by a shift of these cells to glucose-excess conditions. The levels of the peroxisomal membrane protein Pex10 gradually decreased in all mutants similar to the wild-type controls, although the kinetics of degradation may slightly vary (as shown in Fig. 1A). This is exemplified by the data from pex17 cells that showed a relatively slow decrease of Pex10. As a negative control, atg1 cells were analyzed in which pexophagy is blocked.22 In these cells the Pex10 levels did not significantly decrease upon a shift of the cells to glucose medium.

To confirm degradation of the organelles in the vacuole, we also used an artificial marker protein, consisting of the first 50 N-terminal amino acids of Pex3 fused to enhanced Green Fluorescent Protein (eGFP; N50.Pex3.GFP). The first 50 N-terminal residues of Pex3 contain targeting information for the peroxisomal membrane and serve as specific anchor to mark the peroxisomal membrane with GFP. However, this short peptide of Pex3 is not functional in peroxisome biogenesis or degradation.15

Electron microscopy showed that the hybrid protein also normally sorted to the peroxisome remnants (shown for pex13, Fig. 1B). In fluorescence microscopy, these remnant structures are visualized as single fluorescent spots per cell.23 We also introduced the N50.Pex3.GFP expression cassette in two control strains, namely in wild-type and atg1 cells.

Western blot analysis revealed that upon a shift of N50.Pex3.GFP-producing wild-type cells from glycerol/methanol to glucose, the levels of the hybrid protein gradually decreased (Fig. 1C). The decrease of the protein levels of peroxisomal alcohol oxidase (AO) indicated that synthesis of N50.Pex3.GFP did not influence degradation of a homologous marker protein. Degradation of peroxisomal proteins was paralleled by the appearance of green fluorescence in the vacuoles as shown in Figure 1D, in contrast to full length Pex3 which is removed from the peroxisomal membrane before uptake of the organelle by the vacule.24 In H. polymorpha atg1 cells producing N50.Pex3.GFP, however, N50.Pex3.GFP and AO levels did not decrease (Fig. 1C) and GFP-fluorescence was not observed in the vacuoles (Fig. 1D).

In addition to pex2, pex12, pex13 and pex17 we now also studied the fate of peroxisomal ghosts in pex10 cells. Each of the pex mutants producing N50.Pex3.GFP was pre-cultivated in media containing glycerol/methanol and exposed to excess glucose conditions. Western blot analysis revealed that upon the shift N50.Pex3.GFP levels decreased in all mutant strains, similar to the wild-type control (Fig. 2A, shown for pex10 cells; Fig. 2B, quantification). Also by this method, the kinetics of degradation was slowest in pex17 cells. Fluorescence microscopy revealed that in all cases green fluorescence appeared in the vacuole (Fig. 2C; only shown for pex13 cells). To confirm that in pex17 cells the peroxisomal remnants were indeed subject to pexophagy, we analyzed pex17 cells by electron microscopy upon a shift of glycerol/methanol grown cells to glucose. Shortly after induction of pexophagy, additional membranes were formed around the peroxisomal remnants, a typical feature of the initial stages of pexophagy (Fig. 3).4 Taking together these and earlier data, we conclude that of all H. polymorpha peroxins available yet, solely Pex14 is involved in selective peroxisome degradation.

Acknowledgements

We thank Ron Booij for skillful assistance in electron microscopy and Arjen Krikken for the construction of strains. Tim van Zutphen is supported by a grant from the Netherlands Organisation for Scientific Research/Earth and Life Sciences (NWO/ALW).

References

Figure 1. (A) Western blot analysis of Pex10 levels after a shift of glycerol/methanol grown cells into fresh glucose medium. As in wild-type (WT) control cells, the Pex10 levels decreased in pex2, pex12, pex13 and pex17 cells in the initial hours of cultivation. In atg1 control cells the Pex10 levels did not significantly decrease. Samples were taken at the indicated time points after the shift; equal volumes of the culture were loaded per lane. The blots were decorated using α-Pex10-antibodies. (B). Immunocytochemistry to show that N50.Pex3.GFP is exclusively sorted to the peroxisome membrane remnants in pex13 cells. Ultrathin sections were incubated with α-GFP antibodies and gold-conjugated goat-anti rabbit antiserum [P, peroxisome remnant; V, vacuole; M, mitochondrion. The bar represents 0.2 μm]. (C) Western blots showing the decrease of GFP or alcohol oxidase (AO) protein levels upon a shift of WT and atg1 control cells from glycerol/methanol medium into glucose. Both strains produced N50.Pex3.GFP. Blots of WT cells showed a decrease in AO and GFP protein, which was not observed in atg1 controls. Equal volumes of the culture were loaded per lane. The blots were decorated using α-AO or α-GFP antibodies, respectively. (D) Fluorescence microscopy of WT and atg1 cells producing N50.Pex3.GFP. Cells grown on glycerol/methanol medium contain a cluster of 2-3 GFP-marked peroxisomes located adjacent to the vacuole (marked by FM 4-64). In WT cells shifted to glucose medium vacuolar GFP was detected, suggesting that peroxisome degradation had initiated. This vacuolar GFP was never observed in the atg1 control strain.
Figure 2. (A) Western blot analysis showing the decrease in N50.Pex3.GFP upon a shift of pex10 cells from glycerol/methanol to glucose media. Blot is decorated with α-GFP antibodies. (B) Quantification of N50.Pex3.GFP levels in each strain, depicted here as the residual amount of N50.Pex3.GFP protein levels 2 hours after the shift, adjusting the initial amount at T = 0 to 100%. (C) Fluorescence microscopy of pex13 cells producing N50.Pex3.GFP. The cells contain a single fluorescent spot located adjacent to the vacuole (marked by FM 4-64). After 1 hour of cultivation on glucose, vacuolar GFP is evident, indicating degradation of [part of] these structures.