Characterization of the 11q13.3 amplicon in head and neck squamous cell carcinoma
Gibcus, Johan Harmen

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Cited literature
CITED LITERATURE

 - *This elegant review shows that cancer is a multistep genetic process that progresses over time*
5. **Hanahan D and Weinberg RA.** The hallmarks of cancer. *Cell* 2000, 100:57–70
8. **Loeb LA, Springgate CF and Battula N.** Errors in DNA replication as a basis of malignant changes. *Cancer Res* 1974, 34:2311–2321
 - *This interesting review discusses cancer development in the light of evolution and sheds new light on central controversies in cancer research*
 - *This review covers all aspects of amplification, including detection methods, appearance and clinical implications*
33. Bassing CH and Alt FW. The cellular response to general and programmed DNA double strand breaks. DNA Repair (Amst) 2004, 3:781–796
 • This paper underlines the importance of chromosomal double strand breaks in amplicon formation
 • Double minutes and homogeneously staining chromosome regions are both initiated by chromosome breaks

 • This is the first description of the breakage–fusion–bridge model

 • Chromosomal breakage at fragile sites is found to induce amplification via the breakage–fusion–bridge mechanism

Cited literature | 133

- Anaphase bridges indicate that amplification of 11q13.3 is likely to be caused by breakage–fusion–bridge cycles

- The methotrexate model system of amplification is used to show that there are site specific differences in the organisation of amplicons and their propensity to amplify

- This paper describes the influence of increased gene copy number on gene expression

134 Cited literature

 • Publication of the first tiling whole genome array CGH consisting of more than 32,000 probes

100. van Wieringen WN, van de Wiel MA and Ylstra B. Normalized, Segmented or Called aCGH Data? *Cancer Informatics* 2007, 3:331–337

103. Venkatraman ES and Olshen AB. A faster circular binary segmentation algorithm for the analysis of array CGH data. *Bioinformatics.* 2007,

 • Description of a user friendly breakpoint detection algorithm

 • This review covers amplification frequency for the 11q13 region in different tumor types; the most likely candidate genes for driving the amplification are discussed

 • The first report on EMS1

- **This paper shows that the duplication of RIN1 at the border of the amplified 11q13 region fits the breakage–fusion–bridge model**

 • FISH analysis on microdissected epithelium shows that 11q13.3 amplification is present in the hyperplasia to dysplasia transition preceding HNSCC development

 • Using comparative genomic hybridization, this paper defines the common aberrations in head and neck squamous cell carcinoma

 This report shows that cortactin amplification and lymph node metastasis are independent prognostic factors for reduced survival in HNSCC

 Cortactin overexpression correlates with amplification and might serve as a prognostic marker for invasion and (lymph node) metastasis

- A high resolution FISH approach to determine the amplified region at 11q13.3 in HNSCC

 • Using fluorescent in situ hybridization, this article accurately describes the relation between 11q13 amplification and deletion of distal 11q

209. Combined analysis of aCGH and expression array reveals that FADD and PPFIA1 are amplified an overexpressed in laryngeal carcinoma

• FADD is proposed as a new driver gene that is amplified and overexpressed. FADD expression correlates with decreased disease specific survival

•• Cortactin expression is a better prognostic factor than cyclin D1 and FADD, which are generally co–amplified

256. Barr FG, Nauta LE, Davis RJ, Schafer BW, Nycum LM and Biegel JA. In vivo amplification
of the PAX3–FKHR and PAX7–FKHR fusion genes in alveolar rhabdomyosarcoma. *Hum.

257. Vogt N, Lefevre SH, Apiou F, Dutrillaux AM, Cor A, Leuraud P and others. Molecular
structure of double–minute chromosomes bearing amplified copies of the epidermal growth

Centromeric breakage as a major cause of cytogenetic abnormalities in oral squamous cell

259. Schuuring E, van Damme H, Schuuring–Scholtes E, Verhoeven E, Michalides R, Geelen

activation of a novel putative transforming gene, myeov, and cyclin D1 in a subset of multiple
myeloma cell lines with t(11;14)(q13; q32). *Blood* 2000, 95:2691–2698

Genet.* 2005, 48:250–262

262. Vaandrager JW, Schuuring E, Zwikstra E, de Boer CJ, Kleiverda KK, Van Krieken JH
and others. Direct visualization of dispersed 11q13 chromosomal translocations in mantle
cell lymphoma by multicolor DNA fiber fluorescence in situ hybridization. *Blood* 1996,
88:1177–1182

263. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM and others. The
human genome browser at UCSC. *Genome Res.* 2002, 12:996–1006

264. Yuan B, Oechsli MN and Hendler FJ. A region within murine chromosome 7F4, syntenic
to the human 11q13 amplicon, is frequently amplified in 4NQO–induced oral cavity tumors.
Oncogene 1997, 15:1161–1170

265. Bailey JA and Eichler EE. Primate segmental duplications: crucibles of evolution, diversity

266. Locke DP, Segraves R, Nicholls RD, Schwartz S, Pinkel D, Albertson DG and others. BAC
microarray analysis of 15q11–q13 rearrangements and the impact of segmental duplications.

during primate evolution result in complex human genome architecture. *Genome Res.* 2004,
14:2209–2220

268. Newman T and Trask BJ. Complex evolution of 7E olfactory receptor genes in segmental

269. Olender T, Feldmesser E, Aatarot T, Eisenstein M and Lancet D. The olfactory receptor
universe–from whole genome analysis to structure and evolution. *Genet.Mol.Res.* 2004,
3:545–553

270. Bailey JA, Baertsch R, Kent WJ, Haussler D and Eichler EE. Hotspots of mammalian
chromosomal evolution. *Genome Biol.* 2004, 5:R23

271. Yue Y and Haaf T. 7E olfactory receptor gene clusters and evolutionary chromosome

272. Stankiewicz P and Lupski JR. Molecular–evolutionary mechanisms for genomic disorders.

273. Trask BJ and Hamlin JL. Early dihydrofolate reductase gene amplification events in CHO
cells usually occur on the same chromosome arm as the original locus. *Genes Dev.* 1989,
3:1913–1925

146 Cited literature

281. Maser RS and DePinho RA. Telomeres and the DNA damage response: why the fox is guarding the henhouse. *DNA Repair (Amst)* 2004, 3:979–988

Using FISH and immunohistochemistry the authors link increased cyclin D1 protein expression in premalignant tissue to the occurrence of 11q13 amplification in tumors

This manuscript defines replication transition regions at the 11q13 region, providing a possible structural cause for chromosomal breakage and subsequent amplification

This paper uses array CGH to determine the replication timing within the human genome; chromosome 11q is a highlighted example

• This review discusses the possible role of low copy repeats in both evolution and disease

148 Cited literature
 - Founding paper linking a cytogenetic BAC clone map to the human genome sequence

 - Local control of laryngeal carcinoma is significantly increased when radiotherapy follows induction chemotherapy

 - This paper shows that cortactin potentiates migration and influences cell invasion via anoikis resistance

 - This paper shows that FADD overexpression is related to cyclin D1 overexpression and that p-FADD expression, correlating with adverse outcome, enhances NF-κappaB activity

150 | Cited literature

- *This report shows the oncogenic potential of cyclin D1 in normal keratinocytes*

382. Hui R, Campbell DH, Lee CS, Mc Caul K, Horsfall DJ, Musgrove EA and others. EMS1 amplification can occur independently of CCND1 or INT–2 amplification at 11q13 and may identify different phenotypes in primary breast cancer. *Oncogene* 1997, 15:1617–1623

• *This paper shows that DNA double strand breaks at a fragile site lead to MET amplification by breakage–fusio–bridge cycles*

408. Bates S, Bonetta L, MacAllan D, Parry D, Holder A, Dickson C and others. CDK6 (PLSTIRE) and CDK4 (PSK–J3) are a distinct subset of the cyclin–dependent kinases that associate with cyclin D1. *Oncogene* 1994, 9:71–79

 This publication underscores the importance of validating the expression of seemingly unimportant genes that are coamplified with known oncogenes

