Neurostimulation as an adjuvant therapy for patients with intractable angina pectoris.
Jongste, Michel Johannes Leendert de

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 18-08-2019
Summary

In spite of the tremendous improvement in treatment of patients with angina pectoris due to significant coronary artery disease, there remains a group of patients who cannot adequately be treated. These patients are considered as having 'intractable angina'. Patients, suffering from intractable ischemic heart disease have never been defined as a separate group and no data are available regarding their morbidity and mortality. Furthermore, since their angina was 'intractable', no therapy was offered to improve their quality of life or their life expectancy.

In this thesis the efficacy of neurostimulation, a possible adjuvant therapy for these patients, is evaluated. Neurostimulation is usually applied on the skin (transcutaneous electrical nerve stimulation = TENS) or via an implanted device on the dorsal spinal cord (spinal cord stimulation = SCS). If the only effect of neurostimulation is a reduction in, or an abolishment of, the anginal warning signal, this treatment may not be safe because of a possible increase in myocardial ischemia. Therefore, we investigated the additional potential mechanisms of action of neurostimulation on the heart. Optional mechanisms have been studied from an anatomical, a physiological and a biochemical points of view.
The spinal cord stimulation improved both exercise capacity and quality of life. The increase in exercise capacity and rate pressure product, in conjunction with the reduction in ST segment depression, suggested that spinal cord stimulation improved the oxygen supply to the heart. It is uncertain whether spinal cord stimulation employed its electro-analgesic effect as a result of its anti-ischemic property on the heart, or vice versa.

Anti-ischemic effect of spinal cord stimulation (Chapter IV, V). To study a potential anti-ischemic effect, the patients performed treadmill exercise tests and had 48 hour ambulatory ECG monitoring. Exercise capacity was assessed by a standardized treadmill protocol in patients randomly assigned into a Treatment group and a Control group. To evaluate a potential operation bias we implanted the spinal cord stimulator in half of the Control group patients before the 3-month study period and in the other half of the Controls after the study period. The exercise capacity of patients treated with spinal cord stimulation increased with a concomitant reduction in ST segment depression. Moreover, we could not explain the significant improvement in the Treatment group only by an operation bias.

A significant reduction in ST segment depression was also found in our study on 48 hour ECG recordings, after implantation of the spinal cord stimulation device. The beneficial effect of neurostimulation on the ST segment depression, observed during exercise testing and 48 hour ECG recording, favors for the safety of the therapy in the treated group.

Spinal cord stimulation and quality of life aspects (Chapter VI). The quality of life is difficult to measure because subjective observations are hard to quantify. For patients with angina resulting from coronary artery disease, the New York Heart Association (NYHA) classification is a commonly accepted rating scale for clinical symptoms of cardiac patients. A problem related to the NYHA functional classification is that it is poorly related to quality of life. Furthermore, NYHA classification indicates the patient's condition only at one single point in time. Therefore, we developed and validated a questionnaire on activities of daily life specifically tailored to this subset of patients with intractable angina. After implantation of the spinal cord stimulator, ADL increased significantly. This improvement was sustained during the 1-year follow-up period.

Technical follow-up and complications (Chapter VII). A potential anti-ischemic effect of spinal cord stimulation can be demonstrated by treadmill exercise testing, or by intracoronary ECG recordings. These patients, on the other hand, were treated with transcutaneous electrical nerve stimulation (TENS). Among patients treated with chronic pain syndromes, the patients with a history of severe angina, resulting from coronary angiography, or coronary angiography, did not show any significant improvement in terms of treadmill exercise testing.

Clinical evaluation of TENS in chronic pain syndromes (Chapter VIII). In some patients, the device was reimplanted at the beginning of the study period, and in the Control group after the study period. The patients were no longer randomized and served as their own controls during the study period.The patients equipped with a Spinal Cord Stimulator was implanted at the beginning of the study period, and in the Control group after the study period. The patients were no longer randomized and served as their own controls during the study period.

Efficacy of spinal cord stimulation (Chapter II, III). In a prospective randomized study with a two months' follow-up, the efficacy of spinal cord stimulation was evaluated through exercise capacity and quality of life in patients with intractable angina. Exercise capacity was assessed by treadmill exercise tests, and quality of life by registering the short-acting nitrate intake and the number of anginal attacks in a diary, and scoring of activities of daily living (ADL). The conclusion was that spinal cord stimulation improved both exercise capacity and quality of life. The increase in exercise capacity and rate pressure product, in conjunction with the reduction in ST segment depression, suggested that spinal cord stimulation improved the oxygen supply to the heart. It is uncertain whether spinal cord stimulation employed its electro-analgesic effect as a result of its anti-ischemic property on the heart, or vice versa.

Anti-ischemic effect of spinal cord stimulation (Chapter IV, V). To study a potential anti-ischemic effect, the patients performed treadmill exercise tests and had 48 hour ambulatory ECG monitoring. Exercise capacity was assessed by a standardized treadmill protocol in patients randomly assigned into a Treatment group and a Control group. To evaluate a potential operation bias we implanted the spinal cord stimulator in half of the Control group patients before the 3-month study period and in the other half of the Controls after the study period. The exercise capacity of patients treated with spinal cord stimulation increased with a concomitant reduction in ST segment depression. Moreover, we could not explain the significant improvement in the Treatment group only by an operation bias.

A significant reduction in ST segment depression was also found in our study on 48 hour ECG recordings, after implantation of the spinal cord stimulation device. The beneficial effect of neurostimulation on the ST segment depression, observed during exercise testing and 48 hour ECG recording, favors for the safety of the therapy in the treated group.

Spinal cord stimulation and quality of life aspects (Chapter VI). The quality of life is difficult to measure because subjective observations are hard to quantify. For patients with angina resulting from coronary artery disease, the New York Heart Association (NYHA) classification is a commonly accepted rating scale for clinical symptoms of cardiac patients. A problem related to the NYHA functional classification is that it is poorly related to quality of life. Furthermore, NYHA classification indicates the patient's condition only at one single point in time. Therefore, we developed and validated a questionnaire on activities of daily life specifically tailored to this subset of patients with intractable angina. After implantation of the spinal cord stimulator, ADL increased significantly. This improvement was sustained during the 1-year follow-up period.

Technical follow-up and complications (Chapter VII). A potential anti-ischemic effect of spinal cord stimulation can be demonstrated by treadmill exercise testing, or by intracoronary ECG recordings. These patients, on the other hand, were treated with transcutaneous electrical nerve stimulation (TENS). Among patients treated with chronic pain syndromes, the patients with a history of severe angina, resulting from coronary angiography, did not show any significant improvement in terms of treadmill exercise testing.

Clinical evaluation of TENS in chronic pain syndromes (Chapter VIII). In some patients, the device was reimplanted at the beginning of the study period, and in the Control group after the study period. The patients were no longer randomized and served as their own controls during the study period. The patients equipped with a Spinal Cord Stimulator was implanted at the beginning of the study period, and in the Control group after the study period. The patients were no longer randomized and served as their own controls during the study period.

Efficacy of spinal cord stimulation (Chapter II, III). In a prospective randomized study with a two months' follow-up, the efficacy of spinal cord stimulation was evaluated through exercise capacity and quality of life in patients with intractable angina. Exercise capacity was assessed by treadmill exercise tests, and quality of life by registering the short-acting nitrate intake and the number of anginal attacks in a diary, and scoring of activities of daily living (ADL). The conclusion was that spinal cord stimulation improved both exercise capacity and quality of life. The increase in exercise capacity and rate pressure product, in conjunction with the reduction in ST segment depression, suggested that spinal cord stimulation improved the oxygen supply to the heart. It is uncertain whether spinal cord stimulation employed its electro-analgesic effect as a result of its anti-ischemic property on the heart, or vice versa.

Anti-ischemic effect of spinal cord stimulation (Chapter IV, V). To study a potential anti-ischemic effect, the patients performed treadmill exercise tests and had 48 hour ambulatory ECG monitoring. Exercise capacity was assessed by a standardized treadmill protocol in patients randomly assigned into a Treatment group and a Control group. To evaluate a potential operation bias we implanted the spinal cord stimulator in half of the Control group patients before the 3-month study period and in the other half of the Controls after the study period. The exercise capacity of patients treated with spinal cord stimulation increased with a concomitant reduction in ST segment depression. Moreover, we could not explain the significant improvement in the Treatment group only by an operation bias.

A significant reduction in ST segment depression was also found in our study on 48 hour ECG recordings, after implantation of the spinal cord stimulation device. The beneficial effect of neurostimulation on the ST segment depression, observed during exercise testing and 48 hour ECG recording, favors for the safety of the therapy in the treated group.

Spinal cord stimulation and quality of life aspects (Chapter VI). The quality of life is difficult to measure because subjective observations are hard to quantify. For patients with angina resulting from coronary artery disease, the New York Heart Association (NYHA) classification is a commonly accepted rating scale for clinical symptoms of cardiac patients. A problem related to the NYHA functional classification is that it is poorly related to quality of life. Furthermore, NYHA classification indicates the patient's condition only at one single point in time. Therefore, we developed and validated a questionnaire on activities of daily life specifically tailored to this subset of patients with intractable angina. After implantation of the spinal cord stimulator, ADL increased significantly. This improvement was sustained during the 1-year follow-up period.

Technical follow-up and complications (Chapter VII). A potential anti-ischemic effect of spinal cord stimulation can be demonstrated by treadmill exercise testing, or by intracoronary ECG recordings. These patients, on the other hand, were treated with transcutaneous electrical nerve stimulation (TENS). Among patients treated with chronic pain syndromes, the patients with a history of severe angina, resulting from coronary angiography, did not show any significant improvement in terms of treadmill exercise testing.

Clinical evaluation of TENS in chronic pain syndromes (Chapter VIII). In some patients, the device was reimplanted at the beginning of the study period, and in the Control group after the study period. The patients were no longer randomized and served as their own controls during the study period. The patients equipped with a Spinal Cord Stimulator was implanted at the beginning of the study period, and in the Control group after the study period. The patients were no longer randomized and served as their own controls during the study period.
implantation of the spinal cord stimulation device the ADL increased significantly. This increase was maintained during the 1-year follow-up period.

Technical follow-up and complications of spinal cord stimulation devices (Chapter VII). The implantation of a spinal cord stimulator can be considered as a standardized surgical procedure similar to the implantation of a pacemaker.

The variable settings for the various medical applications have been fine-tuned over the past few years. During 1-year follow-up the stimulation threshold did not change significantly. This implies that no adaptation in the provoked paresthesias occurred. The consequences of micro-dislocation can usually be restored by reprogramming the device. Reoperations to position the dislodged electrodes have occurred rather frequently in our group of patients.

Clinical evaluation of TENS in different pain syndromes (Chapter VIII). In some patients with severe angina, resulting from coronary artery disease, documented by coronary angiography, ischemia could not be demonstrated by treadmill exercise or ambulatory ECG recordings. These patients were not included in the study on spinal cord stimulation; they were treated with transcutaneous electrical nerve stimulation (TENS). Among patients treated with TENS for different pain syndromes, the patients with angina pectoris showed the best results after 6 months follow-up. Albeit that 1 out of 3 patients experienced a problem, usually a temporary irritation of the skin at the sites of electrodes positioning.

Studies on mechanisms of neurostimulation (Chapter IX, X, XI). To date, it is not yet known which higher structures in the central nervous system are involved in spinal cord stimulation. The periaqueductual gray (PAG), a structure coordinating survival behavior and pain modulation of the individual, might be one of the structures involved (Chapter IX). In animal experiments we have demonstrated that stimulation in specific parts of the PAG produces an increase in femoral-, carotid- and coronary- blood flow, usually accompanied by a change in heart rate. During PAG-stimulation myocardial blood flow increased 3-fold, after temporary occlusion of a coronary artery, compared to no PAG-stimulation.

From a physiological point of view we studied myocardial perfusion during and without spinal cord stimulation by means of a positron emission tomography (PET). During every session scans were made at rest and during the dipyridamole stress. We found an increase at rest in myocardial perfusion in the ischemic regions during spinal cord stimulation, with a concomitant increase in perfusion ratio. The perfusion ratio is the perfusion in the ischemic regions divided by the perfusion in non-ischemic regions. During active stimulation a reduction in ST segment depression was observed, accompanied by a decrease in angina when ischemia was induced by the dipyridamole stress test. We concluded that spinal cord stimulation employs its action through a redistribution of blood flow from non-ischemic to ischemic regions (Chapter X).

Finally, we studied the expression of biochemical compounds in the brain, to evaluate the involvement of the autonomic nervous system when spinal cord stimulation is applied. In rats electrodes were introduced into the epidural space and fixedated at the T1 level. By stimulation of the spinal cord we could study the expression of the immediate early gene: c-fos and the stress hormone: Heat Shock Protein (HSP72) in the central nervous system. We found c-fos labelling in specific parts of the autonomic nervous system after spinal cord stimulation. No neuronal HSP72 staining was observed. Therefore it is unlikely that spinal cord stimulation might induce brain damage (Chapter XI).

Regarding the clinical efficacy of neurostimulation in this group of patients and the observed reduction in myocardial ischemia, neurostimulation can be considered a safe additional treatment for this subset of patients.