Drug transport and transport-metabolism interplay in the human and rat intestine
Li, Ming

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Chapter 4

P-gp Activity and Inhibition in the Different Regions of

Human Intestine *Ex Vivo*

Ming Li, Inge A.M. de Graaf, Marina H. de Jager, Geny M. M. Groothuis

(Submitted)

Affiliations:
Pharmacokinetics, Toxicology & Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.

Corresponding author:
Inge A. M. de Graaf
Abstract

Although intestinal P-glycoprotein (P-gp) has been extensively studied *in vitro* and in animals *in vivo*, its activity and the consequences of P-gp inhibition for drug disposition and toxicity in human *in vivo* are still difficult to be accurately extrapolated from *in vitro* data. Moreover, existing *in vitro* models do not take into consideration that the intestine is heterogeneous with respect to P-gp expression. Recently, we reported rat precision-cut intestinal slices (PCIS) as a physiological *ex vivo* model to study the regional gradient of P-gp activity and inhibition. In the present study, we extended the application of PCIS to the human intestine. For this purpose rhodamine 123 (R123) accumulation in the presence or absence of the P-gp inhibitors verapamil, cyclosporine A, quinidine, ketoconazole, PSC833 and CP100356, was measured in PCIS of human duodenum, jejunum, ileum and colon. R123 accumulation in the presence of the P-gp inhibitors appeared to be most enhanced in ileum compared to the other regions, and the regional differences in accumulation are in line with published differences in abundance of P-gp. The rank order of the potency of the P-gp inhibitors, reflected by the IC$_{50}$, was comparable to that in rat PCIS. However, cellular accumulation of the P-gp substrate R123 was more enhanced in human PCIS intestine than that in rat PCIS, indicating species difference in P-gp abundance. These data show that human PCIS are an appropriate *ex vivo* model to study the activity of intestinal P-gp and predict the inhibitory effect of drugs and of transporter-mediated drug-drug interactions in the intestine.

Keywords: P-gp, precision-cut intestinal slices, IC$_{50}$, P-gp inhibitor, *ex vivo*
1. Introduction

In the last decade, the intestine has been more and more acknowledged to be actively involved not only in the absorption [1], but also in distribution, metabolism, excretion and toxicity (ADME-Tox), of orally administered drugs [2-4]. The drug transporters that are expressed along the intestine play an important role in these processes [5, 6]. Among these transporters, P-glycoprotein (P-gp), a member of ATP-binding cassette family which is expressed on the apical membrane of the enterocytes, plays the key role, since it exhibits a high expression level and has a broad substrate specificity [6, 7]. By actively excreting its substrates back into the gut lumen it forms a protective barrier in the intestine against xenobiotics, limiting their absorption. Besides this, P-gp also influences drug metabolism in the intestine, on the one hand by controlling the accessibility of parent drugs to the metabolizing enzymes [8] and on the other hand by preventing product inhibition by active excretion of the more hydrophilic metabolites that are often also substrates of P-gp [9]. Thus, P-gp plays a role in intestinal first-pass metabolism, as well as the excretion of endogenous compounds. Consequently, P-gp controls the intracellular concentration of drugs and their metabolites in the intestine, determining the local exposure and thus the local toxicity of drug and/or metabolites if they are toxic [10]. Furthermore, since many drugs are P-gp substrates and/or inhibitors, many drug-drug interactions (DDIs) are known that are related to P-gp activity [11, 12]. Therefore, pre-clinical investigations on the influence of P-gp efflux and P-gp inhibition in the intestine as well as the inhibitory potency of new molecular entities (NMEs) are highly important for safety assessment [13].

Many different models, ranging from in vitro to in vivo models, have been developed to investigate the role of P-gp on the ADME-Tox process in the intestine. The most common models are, in order of physiological complexity, inside-out membrane vesicles, P-gp-expressing cell lines, the Ussing chamber and intestinal perfusion, and in vivo animal experiments [14-17]. However, it should be noted that the expression and activity of P-gp are largely altered in cell lines and vary considerably along the different parts of the intestine [6]. In addition, the number of tests that are possible in one single experiment becomes smaller when the model system's complexity increases. Therefore, none of these models can serve as a fast and efficient screening method, and at the same time, fully represent the properties of the intestine with respect to the in vivo gradient of expression along the length of the intestine. More importantly, since
these models are often derived from laboratory animals, the accuracy of the prediction for humans may be low due to species differences.

Recently, we reported the use of rat precision-cut intestinal slices (PCIS) as a possible screening method for P-gp inhibition potential of drugs [18]. In PCIS, the intestinal organ structure is maintained, whereas many slices can be prepared from a small piece of intestine, ensuring efficient use of animals and their organs [19]. It appeared that the inhibitory potencies of several model P-gp inhibitors could be accurately predicted with PCIS. Furthermore, it was shown that the influence of P-gp inhibition on the tissue retention of its substrate varied greatly between the different segments of the intestine [18]. In the present study, we aimed to extend the use of this model for P-gp inhibition to human tissue. To this extend, the influence of two strong and specific P-gp inhibitors, CP100356 and PSC833 [20], as well as several drugs known as P-gp inhibitors, namely quinidine, verapamil, cyclosporine A, and ketoconazole [21, 22] on the retention of the P-gp substrate rhodamine 123 (R123) in the slices was investigated.

The rank order of inhibitory potential of these compounds as well as the IC50 values were determined and compared to data from previously reported studies. Furthermore, by using PCIS of various segments of the human intestine (duodenum, jejunum, ileum and colon), we investigated the importance of regional differences in P-gp inhibition in the human intestine.

2. Materials and Methods

2.1. Chemicals

Rhodamine 123, ketoconazole, cyclosporine A, quinidine, verapamil hydrochloride, and agarose (low gelling temperature, type VII-A) were from Sigma-Aldrich (USA). PSC833 and CP100356 were purchased from Tocris Bioscience (UK). William’s Medium E with glutamax-I, gentamicin, and amphotericin B (fungizone) solution were from Invitrogen (UK). HEPES was obtained from MP Biomedicals (Germany).

The stock solutions were prepared in ethanol (R123), methanol (quinidine) or DMSO (verapamil, cyclosporine A, ketoconazole, PSC833 and CP100356).

2.2. Human intestinal tissue

Human intestinal tissue originated from surgical resections, which was approved by the Medical Ethical Committee of the University Medical Center Groningen. One piece of human duodenum tissue was obtained from a patient undergoing a pancreaticoduodenectomy by a
Whipple procedure. Nine pieces of human jejunum tissue were obtained from patients undergoing pylorus-preserving pancreaticoduodenectomy (PPPD). Both ileum and colon tissue was obtained from five patients undergoing hemicolectomy. The characteristics of the donors are listed in Table 1. Due to the relative scarceness of human ileum tissue and the considerable P-gp activity in human jejunum, studies besides those dedicated to compare the various intestinal regions were performed with human jejunum. After resection, the tissue was immediately stored in ice-cold carbogenated Krebs-Henseleit buffer and transported to the laboratory within 20 minutes.

Table 1 Characteristics of the human intestine donors

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Gender</th>
<th>Age</th>
<th>Region</th>
<th>Surgical Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>76</td>
<td>jejunum</td>
<td>PPPD</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>66</td>
<td>jejunum</td>
<td>PPPD</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>42</td>
<td>jejunum</td>
<td>PPPD</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>74</td>
<td>jejunum</td>
<td>PPPD</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>62</td>
<td>jejunum</td>
<td>PPPD</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>57</td>
<td>jejunum</td>
<td>PPPD</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>54</td>
<td>jejunum</td>
<td>PPPD</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>68</td>
<td>jejunum</td>
<td>PPPD</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>69</td>
<td>jejunum</td>
<td>PPPD</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>58</td>
<td>duodenum</td>
<td>Whipple</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>71</td>
<td>ileum & colon</td>
<td>hemicolecotomy</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>67</td>
<td>colon</td>
<td>hemicolecotomy</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>76</td>
<td>ileum & colon</td>
<td>hemicolecotomy</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>64</td>
<td>ileum & colon</td>
<td>hemicolecotomy</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>66</td>
<td>ileum & colon</td>
<td>hemicolecotomy</td>
</tr>
</tbody>
</table>

2.3. Preparation and incubation of human PCIS

Precision-cut intestinal slices were prepared from the different regions of the human intestine (duodenum, jejunum, ileum and colon) as previously described [19, 23]. Briefly, after arrival, the human intestinal tissue was gently flushed with ice-cold, oxygenated Krebs-Henseleit buffer (containing 10 mM HEPES and 25 mM D-glucose, pH 7.4) to remove the blood and other remainings. After the muscle layer was removed, the mucosa layer was cut into sheets
of 10 × 20 mm and then embedded in 3 % (w/v) agarose solution in 0.9 % NaCl (37 °C) in a precooled tissue embedding unit (Alabama R&D, USA). After the agarose solution had gelled, PCIS (thickness approximately 350 - 450 µm and wet weight about 2 - 4 mg) were made using a Krumdieck tissue slicer (Alabama R&D, USA). The slices were incubated individually in a 12-well culture plate (Greiner Bio-One GmbH, Austria) containing 1.3 ml William’s medium E in a pre-warmed cabinet (37 °C) under humidified carboxen (95 % O₂ and 5 % CO₂) as described previously [18]. All the slices were first pre-incubated for 30 min in culture medium with or without inhibitors. After the pre-incubation, incubation with the P-gp substrate was started by adding the required amount of its stock solution.

2.4. Viability of the intestinal slices

As in pilot studies a good correlation was found between morphological integrity and ATP content, intracellular ATP levels in the human PCIS were evaluated to judge the overall viability of the tissue during 3 h of incubation in parallel groups as described before [24]. Immediately after arrival of the tissue in the laboratory, three tiny pieces were cut and stored as control of untreated tissue, which was used to evaluate the quality of intestine, whereas three freshly prepared slices were taken as control of 0 h. Moreover, to evaluate the influence of R123 on the viability of the slices during incubation, ATP content was measured after 3 h of incubation with or without R123 (highest concentration: 10 µM). In addition, to estimate the toxicity of the P-gp inhibitors, slices were incubated for 3 h with the P-gp inhibitors, whereafter the ATP levels were measured and compared to those in control groups. ATP samples were collected and analyzed as described before [24, 25].

2.5. Intestinal localization of R123

R123 was selected as P-gp substrate, because it is exclusively effluxed by P-gp and is not metabolized. Therefore the interference with other efflux transporters and CYP-enzymes [26] is avoided. In addition, it is easy to detect with high sensitivity due to its intensive fluorescence [27]. In order to determine the localization of R123 in the human intestinal epithelial cells and to visualize its increased accumulation by P-gp inhibitors, fluorescence microscopy was applied. Quinidine (50 µM) and CP100356 (2 µM), representing a weak and a strong P-gp inhibitor [20], respectively, and showing comparable enhancement of R123 accumulation in PCIS, were employed as P-gp inhibitor and co-incubated with R123 (final concentration: 2 µM) for 2 h with intestinal slices made from human jejunum. Then the slices were washed in ice-cold PBS, embedded in Tissue-tek (3
slices in one core) and snap-frozen within 30 s in isopentane placed on dry ice and then stored at -80 °C. Then the tissue slice preparations were sectioned and observed under a fluorescence microscope (Leica DM4000 B, Leica Microsystems, Germany), and later stained with hematoxylin and eosin and studied with a light microscope (Olympus BX41, Olympus America Inc., USA) as described earlier [18].

2.6. Kinetics of R123 uptake
After pre-incubation and the addition of R123 stock solution (final concentration 0.5 or 2 µM), the slices were harvested after 5, 15, 30, 60 and 120 minutes of incubation to study the time-course of R123 accumulation, which is the resultant of passive influx and P-gp mediated efflux. At these relatively low concentrations there was no saturation of P-gp efflux. Subsequently, the concentration dependent R123 uptake was determined after 120 minutes of incubation by measuring accumulation in the PCIS after incubation with 0.5, 2 and 10 µM R123 that were chosen as a low, medium and high concentration. To optimize the P-gp inhibition effect, slices were also incubated with these R123 concentrations in the absence or presence of CP100356 (2 µM) for 120 min. After incubation, slices were harvested and rinsed in blank PBS for 5 min and stored at -20 °C until further analysis.

2.7. Inhibition study
To determine the inhibitory effects of P-gp inhibitors, PCIS were incubated with a range of concentrations to be able to construct an inhibitory effect vs concentration curve which was used to calculate the IC50. The inhibitors were added during pre-incubation to ensure the presence of the inhibitors in the enterocytes at the moment the substrate was added. The incubation time of 120 minutes and R123 concentration of 2 µM were selected based on the results of the kinetics study mentioned above.

To study the differences in P-gp activity in the different intestinal regions, slices were prepared from human duodenum, jejunum, ileum and colon, whereas quinidine, CP100356 and verapamil were employed as P-gp inhibitors with final concentrations in the range of 0 - 200 µM, 0 - 5 µM, and 0 - 50 µM, respectively. To compare the inhibitory potency of various P-gp inhibitors, slices were made from human jejunum and incubated with verapamil (0 - 50 µM), cyclosporine A (0 - 20 µM), quinidine (0 - 200 µM), ketoconazole (0 - 50 µM), PSC833 (0 - 2 µM) and CP100356 (0 - 5 µM), respectively. The increase of tissue accumulation of R123 was considered as an indication of P-gp inhibition.
Chapter 4

The final concentration of the solvents in culture medium was kept lower than 1 %, which did not influence the viability of the slice (evaluated by intracellular ATP, data not shown) and the transport activity (compared to the control group without any of these solvent, data not shown).

2.8. R123 measurement

After incubation, the slices were collected in 1.5 ml Eppendorf tubes and homogenized together with 200 µl blank WME and 400 µl acetonitrile using a Mini-BeadBeater-8 (BioSpec, USA). After centrifugation for 5 min at 13000 rpm and 4 °C, 150 µl supernatant was transferred into a 96-well plate, and the fluorescence of R123 was measured with a fluorescence plate reader (Molecular Devices, USA) (excitation/emission wavelength: 485 nm / 530 nm). The R123 content in PCIS was calculated using a calibration curve prepared with homogenate from blank intestinal slices.

2.9. Protein determination

The pellets remaining after the ATP assay and the R123 measurement were dried overnight at 37 °C and then dissolved in 200 µl of 5 M NaOH for 30 min. After dilution with H₂O to 1 M NaOH, the protein content of the samples was determined using the Bio-Rad DC Protein Assay (Bio-Rad, Germany) with a calibration curve prepared from bovine serum albumin. The protein content of each slice was used to normalize for the size variation of PCIS.

2.10. Statistical analysis

All the experiments were performed with at least three different intestinal tissues and within each experiment all incubations were carried out in triplicate. The average of the three individual slices of one human intestine was considered as one observation. The average of observations from the different intestines was shown in the figures ± SEM, if not specifically indicated otherwise. Two-tailed paired Student’s t-test was employed for a two-group comparison, whereas one-way ANOVA and two-way ANOVA were used to compare multiple groups with one factor and two factors, respectively. \(P < 0.05 \) was considered as the level of significance.

In the inhibition studies, data were normalized to their control groups (100 %) and fitted into a response vs. log [inhibitor] curve. The IC₅₀ value of each P-gp inhibitor and at each region was calculated using GraphPadPrism 5 (GraphPad Inc., USA).
3. Results

3.1. Viability of the intestinal slices

As shown in Fig. 1, the ATP level in untreated tissue control (human jejunum) was on average 3.9 nmol/mg protein. After incubation for 3 h without treatment, the intracellular ATP content had slightly decreased from 4.0 (fresh slices, 0 h) to 3.3 nmol/mg protein ($p > 0.05$). Similarly, the intracellular ATP in both human ileum and colon also decreased less than 20 % (from 6.4 ± 0.5 to 5.0 ± 0.3 nmol/mg protein for ileum and from 5.6 ± 1.1 to 5.4 ± 0.5 nmol/mg protein for colon) and no statistically significant decrease was found between 0 h and 3 h, indicating that the human PCIS were viable during incubation. In addition, the ATP content of slices that were exposed to R123 (2 or 10 µM) was not significantly different from control slices, suggesting that R123 did not influence the viability of the slice during incubation. Furthermore, after co-incubation for 3 h with the P-gp inhibitors at the highest concentration used in the inhibition study, no significant different decrease of the slice ATP content was found compared to that in control group (data not shown), indicating that the human PCIS were also viable during the incubation with P-gp inhibitors.

![Fig. 1 ATP content of human jejunum (untreated tissue), fresh PCIS at 0 h, and after 3 h of incubation in the absence or presence of 2 and 10 µM of R123 (n = 6). One-way ANOVA with Tukey’s comparison as post-hoc test was employed for the comparison between every two groups. No statistical significance was found.](image)

3.2. Intestinal localization of R123

In human jejunum slices incubated without P-gp inhibitor (Fig. 2 a), the fluorescence of R123 in the epithelial cells was very low and thus the epithelium lining was a faint, nearly invisible
line. In contrast, the fluorescence at the bottom of villi, in the crypt cells, was more intense. This can be explained by the active efflux of R123 by P-gp which is expressed in the mature epithelial cells but not in the crypt cells. When P-gp was inhibited by quinidine or CP100356, the R123 concentration in the villi was increased and higher than that in the other intestinal structures (Fig. 2 b and c). Similar observations were done with PCIS from rat jejunum [18].

3.3. Kinetics of R123 accumulation in the slices
As shown in Fig. 3a, the tissue concentration of R123 (0.5 and 2 µM) increased linearly between 5 min and 120 min. The R123 content extrapolated to t = 0 min was higher than zero which is probably reflecting non-specific binding of R123 to tissue protein.

Since the increase of the tissue concentration was linear until 120 minutes, we chose this incubation time to investigate the concentration-dependent uptake of R123 and the effects of P-gp inhibition (Fig. 3b). The increase of R123 accumulation in human PCIS was proportional with the medium concentration of R123 of 0.5, 2 and 10 µM (16 ± 2, 46 ± 4, and 220 ± 55 pmol/mg protein, respectively). When P-gp efflux was inhibited with CP100356 (2 µM), the R123 accumulation in human PCIS was enhanced to 19 ± 1, 73 ± 3, and 379 ± 41 pmol/mg protein, respectively, which was statistically significant when the concentration of
R123 was 2 µM and 10 µM. Based on these results, we can conclude that P-gp considerably contributes to the efflux of R123, and that the efflux of R123 from the tissue to the medium was not saturated up to 10 µM R123.

Fig. 3 The time-course (a, left) and the concentration dependency (b, right) of R123 accumulation in human jejunum PCIS and the effects of P-gp inhibition (b) by CP100356 (2 µM) (a: n = 3 - 5; b: n = 3 for 0.5 and 10 µM R123, and n = 6 for 2 µM R123). Two-tailed paired Student’s t-test was employed for comparison between the control and CP100356 co-incubation group at each R123 concentration. * indicates $p < 0.05$.

3.4. Inhibition study

3.4.1. Regional difference of P-gp inhibition

As shown in **Fig. 4** and **Table 2**, the maximum effect of P-gp inhibition by all the three P-gp inhibitors was highest in the ileum (on average 3.8 fold increase) compared to jejunum (on average 2.0 fold increase). In contrast, R123 accumulation was only slightly enhanced in duodenum and colon (on average 1.3 and 1.2 fold increase, respectively), in line with the lower P-gp expression in these two regions. A similar ranking of the various intestinal regions with respect to the effect of P-gp inhibition was found with rat PCIS [18] (summarized and listed in **Table 2**). However, compared to rat PCIS, R123 accumulation was relatively more enhanced by P-gp inhibition in human intestine, especially in the ileum. The IC$_{50}$ values of quinidine, CP 100356 and verapamil were similar in each of the intestinal regions as expected since the IC$_{50}$ values are rather determined by the interaction between the transporter and the inhibitor and as such independent of the transporter abundance.
Fig. 4 Effects of P-gp inhibition by quinidine (a), CP100356 (b), and verapamil (c) on R123 accumulation in human PCIS from the different regions along the intestine. The results were relative to the control group (no inhibitor). n = 1 for duodenum (only for quinidine and CP100356, data represent average ± S.D.), n = 3 for
P-gp Activity and Inhibition in the Different Regions of Human Intestine Ex Vivo

jejenum, n = 3 for ileum, and n = 4 for colon. Note: 1. there was only one human duodenum tissue available during the study; 2. the increase by P-gp inhibitor was very low in human colon, the inhibition effect vs concentration curve could not be fitted to calculate the IC$_{50}$ value.

The accumulation of R123 in the absence of inhibitors in the slices of the different regions is depicted in Fig. 5. A high tissue concentration of R123 in the colon compared to the ileum and jejunum was observed, whereas there was no significant difference between jejunum and ileum. Duodenum also showed a high R123 accumulation, however, as this was only measured in tissue of one donor, the result in duodenum was excluded from statistical comparison.

![Fig. 5 R123 accumulation after 120 minutes in human PCIS from the different regions along the intestine without P-gp inhibition. The results were expressed as mean ± SEM. n = 1 for duodenum, n = 5 for jejunum, n = 4 for ileum, and n = 4 for colon. One-way ANOVA with bonferroni post-hoc test was employed for the comparison between every two groups. *, Significant differences were found between jejunum and colon, and between ileum and colon. Note: There was only one human duodenum tissue available during the study, therefore it was excluded from Bonferroni post-hoc test.]

3.4.2. Inhibitory potency of various P-gp inhibitors

As expected, all six P-gp inhibitors enhanced the accumulation of R123 in the PCIS from jejunum and the increase was concentration-dependent, as shown in Fig. 6. At maximum inhibition, R123 tissue concentration increased 2.0 fold, for all six inhibitors. The potency of P-gp inhibition, estimated by the IC$_{50}$, varied greatly as indicated by the inhibitory effect vs concentration curves. For CP100356 and PSC833, two potent P-gp inhibitors, an IC$_{50}$ of 0.42 µM and 0.93 µM, was observed respectively. The higher IC$_{50}$ of the other classical P-gp inhibitors, quinidine (35.65 µM), cyclosporine A (1.78 µM), and verapamil (2.66 µM),
indicated a lower potency of P-gp inhibition. However, the IC_{50} of ketoconazole could not be accurately calculated since no plateau in the inhibitory effect vs concentration curve was reached with the concentration range studied. However, assuming that the same maximum inhibition would be reached as with the other two inhibitors studied with PCIS of the same tissue (PSC833 and cyclosporine A), the IC_{50} value probably is higher than 20 µM. In Table 2 the IC_{50} values of the P-gp inhibitors are compared with those from rat PCIS studied earlier [18]. It appears that the IC_{50} values from human PCIS are comparable with those from rat PCIS. Particularly the rank order of P-gp inhibitors, which is expected to be the same regardless of the model and the substrate, was largely the same for rat and human PCIS.

Fig. 6 Effects of 6 different P-gp inhibitors on R123 accumulation in human jejunum PCIS (n = 3). The results are depicted as relative to the control group (no inhibitor). Note: Quinidine, CP100356 and verapamil were tested on the slices from the same three donors, whereas cyclosporine A, ketoconazole and PSC833 from three other donors.

4. Discussion
Intestinal P-gp is an important factor in the pharmacokinetics and safety profile of drugs. The International Transporter Consortium (ITC) recommended that new drugs are screened as possible substrates or inhibitors of P-gp during drug development [13, 28] which has been adopted in the guidelines of FDA (US), EMA (European), and
PMDA (Japan).

Table 2a: comparison of IC$_{50}$ values of the P-gp inhibitors.

<table>
<thead>
<tr>
<th>Inhibitors</th>
<th>IC$_{50}$ (µM)</th>
<th>Human PCIS</th>
<th>Rat PCIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP100356</td>
<td>0.42</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>PSC83</td>
<td>0.93</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Cyclosporine A</td>
<td>1.79</td>
<td>2.34</td>
<td></td>
</tr>
<tr>
<td>Verapamil</td>
<td>2.66</td>
<td>5.21</td>
<td></td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>> 20</td>
<td>8.22</td>
<td></td>
</tr>
<tr>
<td>Quinidine</td>
<td>35.65</td>
<td>23.57</td>
<td></td>
</tr>
</tbody>
</table>

Table 2b: the average increase in accumulation by the P-gp inhibitors in PCIS from rat and human PCIS

<table>
<thead>
<tr>
<th>Regions</th>
<th>R123 accumulation by P-gp inhibitors (fold change)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Human PCIS</td>
</tr>
<tr>
<td>Duodenum</td>
<td>1.3 ± 0.1</td>
</tr>
<tr>
<td>Jejunum</td>
<td>2.0 ± 0.1</td>
</tr>
<tr>
<td>Ileum</td>
<td>3.6 ± 0.6</td>
</tr>
<tr>
<td>Colon</td>
<td>1.1 ± 0.1</td>
</tr>
</tbody>
</table>

Note: n = 1 for human duodenum (data represent average ± S.D.), n = 5 for human jejunum, n = 4 for human ileum, and n = 5 for human colon, n = 6 for rat.

Recently, we reported on the rat PCIS model as a possible model to study P-gp-mediated transport [18]. In the present study we extended this to human tissue, aiming to overcome difficulties in translation of animal data to the situation in humans. It was found that selected model inhibitors of P-gp could significantly enhance the intracellular concentration of R123, indicative of P-gp activity. Interestingly, the inhibition potency of the used inhibitors was found to be approximately the same for rats and humans with PCIS. Also Sugimoto et al., who compared the inhibition potency of
cyclosporine A, verapamil, ketoconazole and quinidine in LLC-PK1 cells either expressing human or rat P-gp, found similar results in both species [22]. This indicates that only minor differences in P-gp substrate specificity exists between the two species.

Since the slices are prepared from fresh tissue, and only incubated for a short time for these transport studies, we believe that the abundance of transporter proteins is close to in vivo, in contrast to expression in cell lines and P-gp expression systems which lack this similarity to the intestine in vivo. This makes it possible not only to determine the P-gp inhibitory potency of compounds, but also to estimate the extent of the effect of P-gp inhibition on the retention of P-gp substrates in the enterocytes. We found that the extent to which the intracellular concentration of R123 could be enhanced due to P-gp inhibition, was quite different between rats and humans. In ileum, where the expression of P-gp is highest in both rats [29] and humans [30], R123 concentration was enhanced approximately 2.3 - 2.5 times in rats [18] and 3.5 - 4.5 times in humans (present study). This observation is of clinical importance, since the extent to which the intracellular concentration of a P-gp substrate is raised is (probably) related to the increase of systemic uptake of the substrate due to P-gp inhibition. Also local intestinal toxicity, being dependent on the exposure of cellular targets, is related to the extent of inhibition and as such, to the increase of intracellular substrate concentration. Probably, this difference between rats and humans is due to the different abundance of the P-gp protein in the two species. Unfortunately, no data on P-gp abundance in rats is available to compare with abundance in human intestine and to support this hypothesis.

According to the decision tree that was proposed by the ITC, the necessity of an in vivo DDI study should be assessed by determining whether the ratio of the theoretical maximum intestinal concentration $[\text{I}]_{\text{max,gut}}$ of a NME to its inhibitory potency on P-gp efflux is higher than 10 ($[\text{I}]_{\text{max,gut}} / (K_i \text{ or IC}_{50}) \geq 10$) [31]. Based on this assessment, a further drug interaction study can be waived or recommended. Because the absolute IC$_{50}$ or K_i value determines the cutoff value, it is essential that the assessing models not only rank the potencies of potential P-gp inhibitors correctly, but also give reliable and reproducible IC$_{50}$ or K_i values. For the six inhibitors used in our study, both the ranking of their inhibitory potency and the “absolute” IC$_{50}$ values differed markedly from previous reports of studies with cell lines [20, 30, 32]. This could at least partly be explained by the fact that large variations in expression of transporters and metabolizing enzymes exist between and even within the different cell lines [33, 34]. Since metabolism, transport and protein binding of the inhibitor can determine the concentration of the inhibitors intracellularly
at the target (P-gp), it is very likely that these apparent IC$_{50}$ values are influenced by the different expression of protein binding, metabolizing enzymes and uptake transporters in these different models. We noticed that particularly the ranking of ketoconazole was highly different between the different systems, as it was ranked as relatively potent in MDCKII cells [32, 35], but much less potent in Caco-2, LLC-PK1 and NIH-G185 cells [20, 22, 36]. This might correlate with the relative expressions of P-gp and CYP3A4 in the different cells, as ketoconazole is substrate and inhibitor of both proteins [37, 38]. We may speculate that prediction of IC$_{50}$/K$_{i}$ is more accurate in the PCIS, since metabolism and transport is expected to be closer to in vivo. Moreover, in PCIS, similar to the situation in vivo, inhibitors may bind to extracellular matrix proteins and other cells, affecting the apparent IC$_{50}$/K$_{i}$. Unfortunately, no apparent IC$_{50}$ or K$_{i}$ values of P-gp inhibitors are available from in vivo studies to compare and validate this assumption.

The intestine is a highly differentiated and heterogeneous organ, in which the structure and function are considerably varied among regions. For instance, P-gp expression is low on the proximal intestine and increases gradually to the distal end of small intestine, however low in colon [6, 29]. Thus, the intestine is usually divided into several compartments in the physiological-based pharmacokinetics model to simulate the in vivo situation. However, the regional difference of the intestine is practically impossible to mimic in cell lines and thus is often ignored. The use of PCIS made from different intestinal regions can reflect these regional differences.

In the present study, we used PCIS from the different parts of human intestine to map regional differences in P-gp activity and inhibition. R123 intracellular concentration (which is dependent on P-gp activity) was enhanced by P-gp inhibition with an increasing gradient from duodenum (1.3 fold increase on average) to jejunum (2.0 fold increase) and ileum (3.6 fold increase), while the smallest effect was induced in colon (1.1 fold increase) (Table 2). This regional difference was also found in rat PCIS (Table 2). Previously it was reported that P-gp abundance in isolated membrane fractions of the human intestine, quantified with LC-MS/MS was approximately 0.30, 0.45, 0.95, and 0.25 pmol/(mg membrane protein) in duodenum, jejunum, ileum and colon [30]. Thus the relative P-gp abundance in the different regions normalized to the abundance in duodenum (respectively 1, 1.5, 3.2, 0.8) correlates very well with the extent of P-gp inhibition in the present study (1, 1.6, 2.8, 0.9, from duodenum to colon). These data indicate that considerable effects of P-gp mediated DDIs can be
particularly expected between drugs and inhibitors that are absorbed in jejunum or ileum, whereas for drugs with a good permeability which are readily absorbed in duodenum, the influence of P-gp might be low.

In conclusion, the present study shows that human PCIS are an efficient and reliable *ex vivo* model to study the activity and inhibition of intestinal P-gp in the different regions of the human intestine. The IC$_{50}$ and rank order of P-gp inhibitors appeared similar in rat and human PCIS. However, the extent of the inhibitory effect on intestinal P-gp was larger in human, suggesting that a larger effect of P-gp inhibition on AUC and local tissue concentration of P-gp substrates can be expected in humans than in rats, which could be of clinical importance. Furthermore, with PCIS we were able to map the regional activity of P-gp in the human intestine. Since the effect of P-gp inhibition was considerable in jejunum and ileum, but relatively minor in the other regions, DDIs affecting AUC and local tissue of P-gp substrates can be expected for drugs that are absorbed in these regions.

Acknowledgements

Ming Li is very grateful to be granted by the China Scholarship Counsel (CSC) for his PhD scholarship.

The authors thank Wouter Tobias van Haaften, Prof. Dr. Peter Olinga (Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen), Dr. Koert P. de Jong, Dr. Sijbrand Hofker and their colleagues (Department of Abdominal Surgery, University Medical Center Groningen) for the arrangements for obtaining human intestinal tissue.

References

