Continuous Glass Patterns for Painterly Rendering

Giuseppe Papari and Nicolai Petkov

Abstract—Glass patterns have been exhaustively studied both in the vision literature and from a purely mathematical point of view. We extend the related formalism to the continuous case and we show that continuous Glass patterns can be used for artistic imaging applications. The general idea is to replace natural texture present in an input image with synthetic painterly texture that is generated by means of a continuous Glass pattern, whose geometrical structure is controlled by the gradient orientation of the input image. The behavior of the proposed algorithm is analytically interpreted in terms of the theory of dynamical systems. Experimental results on a broad range of input images validate the effectiveness of the proposed method in terms of lack of undesired artifacts, which are present with other existing methods, and easy interpretability of the input parameters.

Index Terms—Image and video synthesis, texture synthesis, visualization and graphic rendering.

I. INTRODUCTION

Glass patterns (GP) [1]–[3] have drawn considerable attention in the vision literature. Fig. 1 shows examples of such patterns, obtained by superposing a random point set with a rotated version of it. If the rotation angle is sufficiently small, a circular structure is clearly visible [1]. As the rotation angle increases, the circular structure becomes less salient and finally disappears. Similar effects can be achieved if other geometric transformations are considered instead of rotations (Fig. 2).

A large amount of research has been carried out in order to understand the perception of geometrical structure in GP. Direct measurements of the neural activity in the areas V1 and V2 of the brain of primates indicate that, when GP are presented, neurons of the visual cortex strongly respond to the local orientation of pairs of dots [4], [5]. The responses to such dipole patterns are then processed by means of association fields, thus extracting long chains of collinear segments [6], [7]; these chains determine the geometrical structure perceived in GP. Circular and spiral structures in GP are more salient and more robust to noise than radial, hyperbolic and translational geometries [8]–[10]. This indicates that the contour integration process that is performed by the visual system is more sensitive to closed geometric structures than point sets.

In this paper, we introduce a continuous version of GP and show that it can be used to produce a nice artistic effect in photographic images. The idea is to replace the natural texture of the input image with a synthetic painterly texture generated by means of a continuous Glass pattern. The rest of this article is organized as follows. In Section II, the mathematical formalism related to GP is reviewed and extended to continuous signals. In Section III, the proposed painterly rendering algorithm is described. Results and comparison with other techniques are presented in Section IV and conclusions are drawn in Section V.

II. DISCRETE AND CONTINUOUS GLASS PATTERNS

In this section, we review the mathematical formalism related to the classical discrete GP (Section II-A) and we extend it to the continuous case (Section II-B). We will use the notation \(g_\sigma(r) \), \(r = (x, y) \), for a 2-D Gaussian function with standard deviation \(\sigma \):

\[
g_\sigma(r) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{|r|^2}{2\sigma^2}\right). \tag{1}
\]

A. Discrete Glass Patterns

Let \(\mathbf{v}(r) \) be a vector field defined on \(\mathbb{R}^2 \) and let us consider the following differential equation:

\[
\frac{d\mathbf{r}}{dt} = \mathbf{v}(\mathbf{r}). \tag{2}
\]

We indicate the solution of (2), with the initial condition \(\mathbf{r}(0) = r_0 \), by \(\mathbf{r}(t) = \Phi_\mathbf{v}(r_0, t) \). For a fixed value of \(t \), \(\Phi_\mathbf{v} \) is a map from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \), which satisfies the condition \(\Phi_\mathbf{v}(r, 0) = r \).
Let $S = \{\mathbf{r}_1, \ldots, \mathbf{r}_N\}$ be a random point set and let be $\Phi_{\mathbf{v}}(S, t) \triangleq \{\Phi_{\mathbf{v}}(\mathbf{r}, t) | \mathbf{r} \in S\}$. Using this notation, we define the Glass pattern $G_{\mathbf{v}, t}(S)$ associated with S, \mathbf{v}, and t as follows:

$$G_{\mathbf{v}, t}(S) \triangleq S \cup \Phi_{\mathbf{v}}(S, t).$$

Examples of GP generated by linear differential equations are shown in Figs. 1 and 2, where the elements of $G_{\mathbf{v}, t}(S)$ are rendered as black dots on a white background. In Fig. 1, Glass patterns related to the vector field $\mathbf{v}(x, y) = (-y, x)$ are shown for different values of the parameter t ($t = \pi/36, \pi/18, \pi/9, \pi/4$). More general vector fields give rise to more sophisticated geometries (Fig. 3). In general, the geometrical structure exhibited by the GP defined in (3) is related to the trajectories which solve (2) [21].

B. Continuous Glass Patterns

In order to generalize this formalism to the continuous case, we define a binary field $b_S(\mathbf{r})$ associated with a point set S as follows:

$$b_S(\mathbf{r}) \triangleq \begin{cases} 1, & \mathbf{r} \in S; \\ 0, & \mathbf{r} \not\in S. \end{cases}$$

It is straightforward to see that the binary field associated with the superposition of two point sets S_1 and S_2 is equal to

$$b_{S_1 \cup S_2}(\mathbf{r}) = \max[b_{S_1}(\mathbf{r}), b_{S_2}(\mathbf{r})].$$

Fig. 1. Glass patterns obtained by superposing a random point set on a rotated copy of it, with rotation angles of 5, 10, 20, and 45 degrees.

Fig. 2. Glass patterns obtained by several geometric transformations. From left to right: Isotropic scaling, expansion, and compression in the horizontal and vertical directions, respectively, combination of rotation and isotropic scaling, and translation. Note that translational GP are the least salient.

Fig. 3. From left to right: Vector field $\mathbf{v}(x, y) = [y^2 - 1 + (1/3)xy, (1/3)(y^2 - 1) - xy]^T$, the trajectories which solve the corresponding differential equation $\dot{\mathbf{r}} = \mathbf{v}(\mathbf{r})$, and a corresponding GP.
Therefore, from (3) and (5), we see that the binary field associated with a GP is equal to
\[
b_{\mathcal{G},t}(S)(r) = \max \{ b_S(r), b_{\mathcal{G}}[\Phi_v(r, \tau)] \}. \quad (6)
\]

The generalization of (6) to the continuous case is straightforward: first, a continuous set of patterns \(b_{\mathcal{G}}[\Phi_v(r, \tau)] \), with \(\tau \in [0, 1] \) is considered, instead of only two as in (6); second, any real-valued random image \(z(r) \) can be used instead of a Poisson process \(b_S(r) \). Specifically, a continuous Glass pattern (CGP) \(\Theta_v(r) \) is defined as follows:
\[
\Theta_v(r) \triangleq \max_{\tau \in [0, 1]} \{ z[\Phi_v(r, \tau)] \}. \quad (7)
\]

Given a vector field \(v(r) \) and a random image \(z(r) \), CGP can be computed in a straightforward way by integrating (2) and by taking the maximum of \(z(r) \) over an arc of the solving trajectory \(\Phi_v(r, t) \), as indicated in (7). For reasons of simplicity, in our implementation, we integrated (2) numerically by means of the Euler algorithm [23] and we generated \(z(r) \) by convolving a white Gaussian noise \(n(r) \) with a 2-D Gaussian function \(g_{\sigma_z} \) with standard deviation \(\sigma_z \)
\[
z(r) = n(r) * g_{\sigma_z}(r). \quad (8)
\]

Examples of CGP are shown in Fig. 4, in which the histograms of all images have been equalized for visualization purposes. These patterns are related to the same vector fields \(v(r) \) as for Figs. 1–3 and, as we see, the CGP exhibit similar geometric structures to the corresponding discrete GP. Unlike discrete GP, CGP do not lose their microstructure when \(|v(r)| \) increases. On the other hand, both for the discrete and the continuous case, the geometric structure disappears as \(|v(r)| \rightarrow 0 \).

From a mathematical point of view, a CGP can be considered as the output of adaptive morphological dilation of a random noise, where the position-dependent structuring element is an arc of the curve \(\Phi_v(r, t) \) that solves the differential equation (2) (see [24] for a theoretical treatment and a survey on adaptive morphology). As we see in Fig. 4, dilating noise as in (7) gives rise to a random pattern which resembles curved brush strokes oriented along \(v(r) \), whose length is proportional to \(|v(r)|\).

III. Proposed Algorithm

In this section, we show how CGP can be used to add an artistic effect to a photographic image. We first describe the algorithm for a graylevel input image \(I(r) \) (Section III-A) and then we extend the method to the color case (Section III-B).

A. Graylevel Images

The proposed algorithm is depicted in Figs. 5 and 6. The first step is edge preserving smoothing (EPS), which removes texture from the input image while preserving object contours [Fig. 5(b)]. Several algorithms for this task have been proposed in the literature (see, for instance, [25]–[32]); we use a modification of the operator presented in [33] (see Appendix I for...
Let \(y(\mathbf{r}) \) be the scale-dependent gradient of \(I(\mathbf{r}) \), for an image of size \(320 \times 480 \). We see that
\[
\nabla I_{\text{EPS}} = I_{\text{EPS}} \ast \nabla g_{\sigma}.
\]
(9)

From it, we construct a vector field \(\mathbf{v}(\mathbf{r}) \) whose norm we set equal to a constant \(\alpha \) and which forms a constant angle \(\theta_0 \) with the direction \(\theta_{\sigma}(\mathbf{r}) \) of \(\nabla I_{\text{EPS}} \), where \(\alpha \) and \(\theta_0 \) are input parameters.
\[
\mathbf{v}(\mathbf{r}) = \alpha \left[\cos(\theta_{\sigma}(\mathbf{r}) + \theta_0), \sin(\theta_{\sigma}(\mathbf{r}) + \theta_0) \right]^T.
\]
(10)

The function \(\theta_{\sigma}(\mathbf{r}) \) is undefined on points \(\mathbf{r} \) for which \(\| \nabla I_{\text{EPS}}(\mathbf{r}) \| = 0 \). For such points, we take by definition \(\mathbf{v}(\mathbf{r}) = 0 \).

In this notation, we define the SPT \(U(\mathbf{r}) \) as a function \(\eta \) of the CGP \(\Phi_\mathbf{v}(\mathbf{r}) \) associated with the vector field defined in (10)
\[
U(\mathbf{r}) = \eta[\Phi_\mathbf{v}(\mathbf{r})]
\]
(11)

where \(\eta \) is histogram equalization which results in a flat histogram of \(U(\mathbf{r}) \) in \([-1/2, 1/2]\].

An example of such SPT is shown in Fig. 5(c) for \(\theta_0 = \pi/2 \) and \(\alpha = 18 \), for an image of size \(320 \times 480 \). We see that the geometric structure of SPT is similar to the elongated brush strokes that artists use in paintings. For \(\theta_0 = \pi/2 \), such strokes are oriented orthogonally to \(\nabla I_{\text{EPS}}(\mathbf{r}) \). This mimics the fact that artists usually tend to draw brush strokes along object contours. Moreover, it is easy to prove that for \(\theta_0 = \pi/2 \) the trajectories \(\Phi_\mathbf{v}(\mathbf{r}, t) \) that solve the differential (2) are closed curves (see Appendix II for a formal proof). Thus, the brush strokes
tend to form whirls which are typical of some impressionist paintings.

Finally, our artistic effect is achieved by adding SPT to $I_{EPS}(r)$, thus obtaining the final output $y(r)$ [Fig. 5(d)]

$$y(r) = I_{EPS}(r) + \lambda U(r)$$

where the parameter λ controls the strength of the SPT. By comparing Fig. 5(a) and (d), we see that natural texture of the input image has been replaced by SPT. Such a texture manipulation produces images which look like paintings.

B. Color Images

For color images, the straightforward application of the above described algorithm to each color component of the input image would produce undesired color artifacts, even if the same random image $Z(r)$ is used for all color components.
Therefore, we generate a monochromatic SPT that is added to each color component $I^{(i)}_{EFS}(r)$ of the color image $I_{EFS}(r)$

$$y^{(i)}(r) = I^{(i)}_{EFS}(r) + \lambda U(r), \quad i = 1, 2, 3. \quad (13)$$

The CGP $G_{\gamma}(r)$ is still computed by means of the structuring vector field defined in (10), where $\theta^{(i)}(r)$ is now the orientation of a color gradient [34]. Specifically, $\theta^{(i)}(r)$ is given by the direction of the eigenvector associated with the maximum eigenvalue of the following matrix:

$$K^{(i)}_{\sigma}(r) = \sum_{i} \left[\nabla_{r} I^{(i)}_{EFS}(r) \right] \left[\nabla_{r} I^{(i)}_{EFS}(r) \right]^T. \quad (14)$$

The value of $\theta^{(i)}(r)$ is undefined on points r for which the eigenvalues of $K^{(i)}_{\sigma}(r)$ are equal. Similarly to the graylevel case, for such points we take by definition $v(r) = 0$.

IV. RESULTS AND COMPARISON

In this section, some experimental results are presented and commented in order to illustrate the ability of the proposed algorithm to add artistic effects to photographic images, and to study the influence of the input parameters. Our algorithm is compared with two of the most popular existing artistic operators, namely the impressionist rendering (IR) proposed in [35] and the nonphotorealistic rendering technique called artistic vision (AV) presented in [36]. IR consists in rendering overlapping rectangular brush strokes of a given size and orientation;
intersection between strokes and object contours is avoided by means of a stroke clipping procedure based on the Sobel edge detector [37]. In AV, curved brush strokes of different sizes are rendered by means of a more sophisticated segmentation approach. We show some results in Figs. 7–12; a larger set of examples is available on the web.2 Unless differently specified, we use the parameter values according to Table 1.

The output of the proposed operator, for the input images of Figs. 7(a)–9(a), is shown in Figs. 7(b)–9(b). As we see, our operator effectively mimics curved brush strokes oriented along object contours, such as the contour of the bird in Fig. 8(b). The whirls that are present in contourless areas resemble some impressionist paintings. In Figs. 7(c)–9(c), the outputs of AV are shown for the same input images; though simulation of curved brush strokes is attempted, several artifacts are clearly visible, especially on flat areas. IR [Figs. 7(d)–9(d)] does not produce artifacts, but it tends to render blurry contours, such as the contour of the zebras’ heads in Fig. 10(d), and small object details are lost, such as the legs of the sheep in Fig. 7 or the small branches under the bird in Fig. 8. Moreover, IR fails in rendering impressionist whirls.

We now illustrate the influence of the input parameters on the output of the proposed operator. The parameters σ_z and α, defined in (8) and (10), respectively, determine the spatial correlation of the SPT along and orthogonally, respectively, to the local brush stroke direction. As shown in Fig. 11, larger values of α correspond to longer brush strokes, whereas larger values of σ_z...
PAPARI AND PETKOV: CONTINUOUS GLASS PATTERNS FOR PAINTERLY RENDERING

Fig. 12. Illustration of the influence of the parameter σ. From left to right: Input image and outputs of the proposed operator for $\sigma = 4$ and $\sigma = 8$. In the second case, the lines traced out by the brush strokes are smoother and the average size of the impressionist whirls is larger.

TABLE I
VALUES OF THE PARAMETERS USED FOR THE STUDIED APPROACHES, WITH EACH COLOR COMPONENT OF THE INPUT IMAGE RANGING BETWEEN 0 AND 1

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Parameter values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed approach</td>
<td>$a = 18$, $\sigma = 6$, $\lambda = 0.3$, $\sigma_x = 0.7$, $\theta_0 = \pi/2$</td>
</tr>
<tr>
<td>IR [35]</td>
<td>$l = 5$, $w = 1$, $\Delta r = \Delta y = \Delta b = 0.06$, $\Delta I = 0.15$</td>
</tr>
<tr>
<td>AV [36]</td>
<td>Segm. levs. = 48, Enh. levs. = 96, Brush. Art. lev. = 40, $\alpha = 50%$</td>
</tr>
</tbody>
</table>

give rise to wider brush strokes. As to the parameter σ defined in (9), it controls the degree of smoothness of $v(r)$ and, consequently, the degree of smoothness of the lines that are traced out by the brush strokes (Fig. 12). Larger values of σ also imply larger impressionist whirls. Concerning the parameter θ_0, it controls the angle between the brush strokes and the nearest object contours. In Fig. 13, it is shown how different artistic effects can be achieved by varying the value of θ_0. As we can see, for $\theta = \pi/2$, the strokes follow the object contours and form whirls in flat areas, while for $\theta = 0$ the strokes are orthogonal to the contours and build star-like formations in flat regions. Finally, the parameter λ defined in (12) controls the strength of SPT.

V. DISCUSSION AND CONCLUSIONS

The classic approach to produce painting-like images with the aid of a computer consists in generating a set of possibly overlapping brush strokes, which are rendered in a certain order on a white or canvas-textured background. Early works [38] proposed supervised methods in which the user had to specify position, shape and orientation of each brush stroke. Since this requires a considerable effort from the user, much research has been carried out in order to develop algorithms with higher degree of automatization [35], [39]–[47]. Particular attention has been paid to the generation of curved brush strokes, brush strokes of variable size, and textured brush strokes. As for the latter point, several algorithms for brush strokes rendering have been proposed, based on physical models of the phenomenology related to the diffusion of pigments on paper [48]. Other development concerns the possibility to render strokes on top of an image instead of a white background (underpainting) [36], the use of global saliency maps to determine the order in which brush strokes must be rendered [45], or methods based on some properties of the human visual system [41], [46]. In [44], it is shown that representing a synthetic painterly image in terms of a list of brush strokes attributes results in a much higher lossless compression ratio with respect to well established general purpose image compressors. For a survey of these techniques we refer to [49].

The methods referred above can achieve interesting artistic effects. However, most of them strongly rely on heuristics and require a large number of intermediate computational steps, such as edge detection or image segmentation, which are sensitive to parameter settings. As admitted in [36], these algorithms may fail as soon as one of the intermediate operations does not perform well for some particular input image. Moreover, some of the input parameters do not have a clear interpretation in the context of painting simulation (such as, for instance, the threshold of the Sobel edge detector deployed in [35]). In contrast, we achieve artistic effects by replacing the natural texture of the input image by synthetic texture which simulates brush strokes, rather than generating a list of strokes and specifying the attributes of each one of them (position, shape, orientation, color, texture). This results in a much simpler approach, which comprises only two elementary steps—EPS and generation of SPT—which are robust to variations of the
Fig. 13. Illustration of the influence of the parameter \(\theta_\alpha\). (a) Input image and outputs of the proposed operator for (b) \(\theta_\alpha = \pi/2\), (c) \(\theta_\alpha = \pi/4\), and (d) \(\theta_\alpha = 0\). For the last two images, EPS has been performed with \(q = 0\).

input image. The input parameters are easily interpreted in terms of size of the brush strokes, size of the impressionist whirls, and angle between brush strokes and the nearest object contours (Figs. 11–13).

In the proposed method, a key role is played by the vector field \(\mathbf{v}(\mathbf{r})\), which determines the geometric structure of the SPT and, consequently, the local orientation of the brush strokes. We have chosen to relate \(\mathbf{v}(\mathbf{r})\) to \(\nabla_\alpha I_{EFS}\) as defined in (10) for reasons of conceptual simplicity and low computational demand. However, different vector fields \(\mathbf{v}(\mathbf{r})\) may be used as well. For instance, deploying anisotropic diffusion (AD) for the computation of the gradient of \(I_{EFS}\), instead of Gaussian blurring, would bring improvement in presence of sharp corners (Fig. 14). As we can see, with Gaussian blurring the lines traced out by the brush strokes may be too rotund and, therefore, they may cross object contours (Fig. 14, left), whereas AD overcomes this problem. On the other hand, with respect to Gaussian blurring, AD is computationally more demanding, less robust to noise, and it may give rise to spurious whirls, such as the one on the front side of the horse’s head shown in Fig. 14(b). In general, there is no universal algorithm for the computation of \(\mathbf{v}(\mathbf{r})\) from an input image and its choice is application dependent.

CGP share some similarities with the line integral convolution (LIC), which has been proposed in [50] with the purpose of representing a vector field by means of oriented texture. However, CGP result in a better brush strokes simulation than LIC, especially for large values of \(a\) and \(\sigma_z\); thus, they are more suitable for artistic imaging applications [compare Fig. 15(a) and (b)]. In particular, since the intensity profile of a CGP is more piece-wise constant with respect to LIC, brush strokes are more visible and their edges are sharper. Moreover, if a CGP with large brush strokes is linearly combined with a LIC associated with the same vector field, for small values of \(a\) and \(\sigma_z\) [Fig. 15(c)], it is possible to simulate textured brush strokes.
controls the sharpness of the edges in the is high, thus the term limits the local is an input parameter. First, they are increased and, second, they are more suitable for image processing tasks. As an application, we show that CGP can be used to produce nice artistic effects. Experimental results on a broad range of input images validate the effectiveness of the proposed method. Due to its simplicity, input parameters are easily interpretable, and undesired artifacts that affect some existing algorithms are avoided. Moreover, the possibility to achieve considerably different artistic effects by simply changing the values of certain input parameters (such as θ_0, see Fig. 13) makes the method versatile and promising.

APPENDIX I

EDGES PRESERVING SMOOTHING

In this Appendix, we briefly describe the operator we deploy for EPS. Let $I(r)$ be a grayscale image and let $m(r)$ and $s(r)$ be the local average and the local standard deviation of $I(r)$, computed as the following two convolutions:

$$m = I * g_{\sigma}, \quad s^2 = (I^2 * g_{\sigma}) - m^2.$$

The output $\Psi_q(r)$ of the EPS deployed here is a weighted average of the values of $m(r)$, with weights proportional to $[s(r)]^{-q}$, computed as follows:

$$I_{EFS} = \Psi_q = \frac{(ms^{-q}) * g_{\sigma}}{s^{-q} * g_{\sigma}} = \frac{\int m(\rho) [s(\rho)]^{-q} g_{\sigma}(r-\rho)d\rho}{\int [s(\rho)]^{-q} g_{\sigma}(r-\rho)d\rho},$$

where $q \geq 0$ is an input parameter.

The behavior of this operator is illustrated in Fig. 17. If point ρ is sufficiently close to an edge [Fig. 17(a)], the local standard deviation $s(\rho)$ is high, thus the term $m(\rho) [s(\rho)]^{-q}$ gives a negligible contribution to the numerator of (16). On the contrary, if ρ is far from edges [Fig. 17(b)], $s(\rho)$ is small and the contribution of $m(\rho) [s(\rho)]^{-q}$ is high. In this way, smoothing across edges is avoided. In (16), the Gaussian term $g_{\sigma}(r-\rho)$ limits the local averaging of $m(\rho)$ to a neighborhood of r, giving more weight to points ρ that are closer to r, and the denominator plays the role of a normalizing factor.

The parameter q controls the sharpness of the edges in the output image: for $q = 0$, (16) reduces to the convolution of the input image $I(r)$ with a Gaussian function with standard deviation $\sigma \sqrt{2}$; this corresponds to the minimum edge sharpness. On the other hand, for $q \rightarrow \infty$, we have $\Psi_{\infty}(r) = m[\rho_{\min}(r)]$, where $\rho_{\min}(r)$ is the value of ρ, within a neighborhood of r of radius, say, 3σ for which $s(\rho)$ is minimum. This corresponds to the Gaussian–Kuwahara EPS [51], [52], which gives rise to the maximum edge sharpness.

For other values of q, the EPS deployed here is an intermediate case between Gaussian smoothing and the Gaussian–Kuwahara EPS. In Fig. 18, the performance of the proposed operator in terms of texture and noise rejection and edge degradation are plotted versus each other for different values of q. Texture and noise rejection is measured in terms of PSNR (dB), while edge degradation ξ is defined as follows:

$$\xi = \frac{1}{NE} \int [I(r) - I_{EFS}(r)]^2 dr$$

where $I(r)$ is a synthetic image for which the number NE of edge pixels is known. As we see in Fig. 18, when the optimum is reached ($q = 4$), we achieve almost the same noise rejection as with Gaussian smoothing and almost the same edge preservation as with Gaussian Kuwahara operator.

This EPS is an evolution of the operator presented in [33]. Though the outputs of the two algorithms are similar, the approach proposed here has the following advantages: i) lower...
Fig. 16. (Top) Input image (1176 × 900 pixel) and (bottom) the result of our painterly rendering with textured brush strokes (crop).

Fig. 17. Behavior of the deployed EPS, when point p is (a) close and (b) far from an edge.

computational complexity, since here only four separable convolutions are required, whereas in [33] a larger number of non-separable convolutions is involved; ii) higher texture and noise rejection. Here, almost the same amount of texture is removed as by Gaussian filter with standard deviation equal to $\sigma \sqrt{2}$, while the operator proposed in [33], for the same edge preservation, removes less texture than a Gaussian filter with standard deviation equal to σ. iii) Smaller number of input parameters, since in [33] an additional parameter N is introduced.

APPENDIX II

ANALYSIS OF THE ALGORITHM

In this Appendix, we prove some analytical properties of the streamlines $\mathbf{r}(t) = \Phi_{\mathbf{v}}(\mathbf{r}_0, t)$ of the vector field $\mathbf{v}(\mathbf{r})$ defined in (10), which solve the differential (2). The concerned vector field can be written as

$$\mathbf{v}(\mathbf{r}) = \frac{(\nabla_\sigma I_{EPS}) \cos \theta_0 + (\nabla^\perp_\sigma I_{EPS}) \sin \theta_0}{|\nabla_\sigma I_{EPS}|}$$

(18)

with $\nabla_\sigma = g_\sigma \times [\partial/\partial x, \partial/\partial y]^T$, $\nabla^\perp_\sigma = g_\sigma \times [-\partial/\partial y, \partial/\partial x]^T$. Since the multiplication of $\mathbf{v}(\mathbf{r})$ for any nonzero scalar function does not change the streamlines of $\mathbf{v}(\mathbf{r})$, but only the local speed at which they are traced out, we can simplify our study by considering the vector field $\mathbf{w}(\mathbf{r}) = |\nabla_\sigma I_{EPS}(\mathbf{r})|\mathbf{v}(\mathbf{r})$ instead of $\mathbf{v}(\mathbf{r})$

$$\mathbf{w}(\mathbf{r}) = (\nabla_\sigma I_{EPS}) \cos \theta_0 + (\nabla^\perp_\sigma I_{EPS}) \sin \theta_0.$$

(19)

We formally prove that, for $\theta_0 = \pi/2$, the following two facts hold: (1) streamlines of $\mathbf{v}(\mathbf{r})$ are closed curves. (2) such curves are traced around points \mathbf{x}_k such that $\mathbf{w}(\mathbf{x}_k) = \mathbf{0}$ and the determinant (det) of the Hessian matrix of $I_{EPS} \times g_\sigma$ is positive.

In order to prove (1) we observe that, from basic algebra, the divergence of $\mathbf{w}(\mathbf{r})$ is equal to

$$\nabla \cdot \mathbf{w}(\mathbf{r}) = \nabla^2 I_{EPS} \cos \theta_0.$$

(20)

Therefore, for $\theta_0 = \pi/2$, $\nabla \cdot \mathbf{w}(\mathbf{r})$ is zero everywhere in \mathbb{R}^2 and the vector field $\mathbf{w}(\mathbf{r})$ is solenoidal. Thus, in force of a well-known theorem in topology, the streamlines of $\mathbf{w}(\mathbf{r})$ must necessarily be closed curves.3

3Unbounded curves are considered closed since they close themselves at infinity.
Concerning \((T_2) \), a Taylor expansion yields
\[
\mathbf{w}(\mathbf{r}) = H \cdot (\mathbf{r} - \mathbf{r}_k) + O \left(||\mathbf{r} - \mathbf{r}_k|| \right).
\] (21)

As well known, a singular point \(\mathbf{r}_k \) is a center of a closed curve if the eigenvalues of \(H \) have zero real part. Basic algebra shows that, for the vector field \(\mathbf{w}(\mathbf{r}) \) defined in (19), the eigenvalues \(\lambda_{1,2} \) of \(H \) are equal to
\[
\lambda_{1,2} = \frac{\cos \theta_0 \text{tr} H \pm \sqrt{\cos^2 \theta_0 \text{tr}^2 H - 4 \text{det} H}}{2} \] (22)

where \(\text{tr} H \) is the trace of \(H \). By means of the inequality \(\text{tr}^2 H > 4 \text{det} H \), which holds for any symmetric matrix, it is straightforward to prove that \(\lambda_{1,2} \) are purely imaginary if \(\theta_0 = \pi/2 \). This completes the proof.

The consequences of these analytical facts to the behavior of the proposed artistic operator are illustrated in Fig. 19. It is shown that the centers of the impressionist whirls are located at the zeros of the gradient magnitude of \(I_{EP} \), for which \(\mathbf{w}(\mathbf{r}) \approx 0 \). Since the density of such points decreases quadratically with \(\sigma \), the above discussion also provides an analytical explanations of why the size of the impressionist whirls grows with \(\sigma \). In contrast, for \(\theta_0 \neq \pi/2 \), the streamlines of \(\mathbf{w}(\mathbf{r}) \) and \(\mathbf{v}(\mathbf{r}) \) are no longer closed lines; thus, the artistic effect shown in Figs. 13(c), (d) is achieved.

REFERENCES

Fig. 19. From left to right: Input image, gradient magnitude of \(I_{EP} \) (black dots mark the zeros of the gradient magnitude), and output of the proposed operator. The centers of the impressionist whirls correspond to the zeros of the gradient magnitude.
L. Kovács and T. Szirányi, “Efficient coding of stroke-rendered paint-
A. Hertzmann, “Painterly rendering with curved brush strokes of mul-
P. Haeberli, “Paint by numbers: Abstract image representations,”
P. Perona and J. Malik, “Scale-space and edge detection using
C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color im-
D. Barash, “Fundamental relationship between bilateral filtering,
S. Teboul, L. Blanc-Feraud, G. Aubert, and M. Barlaud, “Variational
A. Cumani, “Edge detection in multispectral images,”
S. Litwinowicz, “Processing images and video for an impressionist ef-
B. Gooch, G. Coombe, and P. Shirley, “Artistic vision: Painterly ren-
S. Kajiwara and Y. Yamaguchi, “An algorithm for automatic painterly
M. Shiraiishi and Y. Yamaguchi, “An algorithm for automatic painterly
D. De Carlo and A. Santella, “Stylization and Abstraction of Photos-
N. Li and Z. Huang, “Feature-guided painterly image rendering,” in
L. Kovacs and T. Sziranyi, “Algorithmic painter: A NPR method to gen-
A. Kasao and K. Miyata, “Algorithmic painter: A NPR method to gen-
R. van den Boomgaard, “Decomposition of the Kuwahara-Nagao op-
Giuseppe Papari was born in Rome, Italy, in 1979. He received the M.S. degree in electrical engineering from the Universita’ degli Studi di Roma Tre (University of Rome III) in 2003. He is currently pursuing the Ph.D. degree in the Departement of Mathematics and Computing Science, University of Groningen, The Netherlands.

Nicolai Petkov received the Dr.sc.techn. degree in computer engineering (Informationstechnik) from the Dresden University of Technology, Germany. He is a Professor of computer science and Head of the Research Institute of Mathematics and Computing Science, University of Groningen, The Netherlands. Prior to joining the University of Groningen in 1991, he held research positions at the University of Wuppertal, the University of Erlangen-Nürnberg, the Academy of Sciences in Berlin, and the Dresden University of Technology. In 1989, he was awarded an Alexander von Humboldt scholarship of the Federal Republic of Germany. He is the author of two monographs and (co-)author of another book, four patents, and over 100 scientific papers. He is a member of the editorial boards of several journals. His current research focusses on computer simulations and understanding of the visual system of the brain and using the obtained insights for the development of effective computer vision algorithms. He is also interested in using computers for artistic expression.