CHAPTER 4

Substrate influence on the shape of α-domains in PbTiO$_3$ thin films

In contrast to the previous chapter, where mono-domain strained PbTiO$_3$ films were discussed, this chapter deals with relaxed PbTiO$_3$ thin films with the presence of 90° domains (α-domains). Transmission electron microscopy was employed to investigate the structure, shape and size of the α-domains. The growth conditions, and how the stiffness of the two different substrates, SrTiO$_3$ and DyScO$_3$ (with SrRuO$_3$ as bottom electrode) contributes to the shape of these α-domains are discussed in detail.

4.1. INTRODUCTION

Ferroelectric thin films have attracted major attention in recent years because of their applications in integrated ferroelectric devices such as non-volatile memories [1], ultrasonic sensors [2] and infrared detectors [3]. In the last decade, research of ferroelectric thin films has particularly focused on PbTiO$_3$, BaTiO$_3$, Pb(Zr$_{1-x}$Ti$_x$)O$_3$, BaSr$_{1-x}$Ti$_x$O$_3$ [4,5]. Thin films of these oxide materials have been deposited by Molecular Beam Epitaxy (MBE), sputtering, Pulsed Laser Deposition (PLD) and low cost chemical solution methods like sol-gel dip coating, spin coating [6]. Each one of these techniques has its own limitations. PLD has several advantages relative to the other methods, i.e. complex oxides can be grown with proper stoichiometry, the growth rate can be controlled accurately, and it is possible to use a multi-target system. We employed PLD for growth of PbTiO$_3$ thin films on two different substrates namely SrTiO$_3$ and DyScO$_3$. PbTiO$_3$ can be grown coherently on SrTiO$_3$ because of its good lattice match compared to most other substrates. Substrates belonging to the scandates family became a recent

This chapter is published as
choice because of their perovskite structure with lattice parameters around 3.95 Å offering a new range of misfit-strain values for some well-known ferroelectric perovskites such as PbTiO$_3$ [7,8].

At room temperature, the mismatch between the a-axis of tetragonal PbTiO$_3$ (PTO) and the lattice constant of SrTiO$_3$ (STO) is \sim0.2-0.3\% with $a_{\text{PTO}}\approx a_{\text{STO}}<< c_{\text{PTO}}$ and in case of DyScO$_3$ (DSO) the mismatch is about 1.4\% with $a_{\text{PTO}}< a_{\text{DSO}}<< c_{\text{PTO}}$. This situation is reversed at the growth temperature (e.g. 570 °C), where the mismatch between cubic PTO and DSO is negligibly small, whereas that of cubic PTO on STO increases to about 1\% (with $a_{\text{STO}}< a_{\text{PTO}}$). This mismatch together with the difference in thermal expansion of the substrate and the film generally gives rise to a poly-domain structure (where the dominant fraction consists of c-domains and the minor fraction of a-domains) and/or strain relieving dislocations, i.e. misfit and threading dislocations [9-11]. However, from the application point of view it is generally desired to have the tetragonal film with its c-axis oriented exclusively normal to the substrate surface, so that the spontaneous polarization is normal to the surface. Although ferroelectric thin films were prepared and applied with remarkable progress in the last decade, the basic problem of 90\° domain formation generally persisted, at least for the thicker films, and still requires in-depth analyses. The presence of 90\° domains in PbTiO$_3$ films deposited by the PLD technique on different substrates like SrTiO$_3$, MgO, KTaO$_3$ and LaAlO$_3$ has been reported, particularly in the mid nineties, in several studies, e.g. focusing on the volume fraction of a-domains as a function of substrate type and film thickness [12-14].

To allow sufficient thermal activation (e.g. atomic mobility, diffusion etc.) and avoid unwanted pyrochlore phase formation our PbTiO$_3$ films are grown at 570 °C. This deposition temperature is above the ferro- to para-electric transition temperature, T_C of *bulk* PbTiO$_3$ (490 °C). However, recent experimental studies have shown (in accordance with earlier theoretical work [15]) that, if the films are strained during deposition, T_C can be pushed to substantially higher temperatures than that of the bulk [16-18]. Accordingly, our PbTiO$_3$ films on SrTiO$_3$ (grown at 570 °C) should grow directly in the tetragonal ferroelectric phase. In contrast, cubic PbTiO$_3$ films on DyScO$_3$ grow without significant mismatch at the deposition temperature and therefore grow in the paraelectric phase. Upon cooling from the cubic paraelectric phase to the tetragonal ferroelectric phase 90°
domains develop in the PbTiO$_3$ on DyScO$_3$. In the case of PbTiO$_3$ on SrTiO$_3$ no a-domains are expected since for all temperatures the a-axis of tetragonal PbTiO$_3$ remains well-matched with the lattice constant of SrTiO$_3$. This is indeed the case when the films are grown under conditions closer to thermodynamic equilibrium, as elaborated in previous chapter [19]. A similar result was recently found for PbZr$_{0.2}$Ti$_{0.8}$O$_3$ on SrTiO$_3$ [20]. In the present work, we deliberately introduced a-domains in PbTiO$_3$ on SrTiO$_3$ by changing the deposition parameters. The figure below shows the growth rate (Laser pulse frequency) as a function of film thickness. The dotted line is the demarcation reference line for the regions with and without a-domains.

![Graph](image)

Figure 4.1: Graph of laser pulse frequency (growth rate) versus PbTiO$_3$ film thickness showing the presence or absence of a-domains in the films as observed using XRD and/or TEM. The dashed line is a guide to the eye to distinguish the regions with and without a-domains.

In this chapter we particularly focus our attention on the shape of a-domains in PbTiO$_3$ thin films, which has not been studied in detail in the past, as influenced by the substrate stiffness. High-Resolution TEM has been employed to image the a-domains and nano-indentation experiments were performed to make a correlation with the substrate stiffness.
4.2 EXPERIMENTAL PROCEDURE

Pulsed-Laser Deposition was used to grow a 110 nm film of PbTiO$_3$ on (001) SrTiO$_3$ and two 30 nm films on (110) DyScO$_3$ with 5 nm and 30 nm SrRuO$_3$ conductive perovskite as intermediate layer. The bulk lattice parameters of PbTiO$_3$ are (at room temperature, RT) $a = b = 3.894$ Å, $c = 4.140$ Å [21], i.e. with a tetragonal structure. SrTiO$_3$ has a cubic structure and its lattice constant is (at RT) $a = 3.905$ Å. The DyScO$_3$ has an orthorhombic structure with the following lattice constants (at RT): $a = 5.440$ Å, $b = 5.713$ Å, $c = 7.887$ Å [22]. (110)-oriented DyScO$_3$ has nearly a square in-plane lattice with $a_{//} = 3.944$ Å.

The SrTiO$_3$ substrates were ultrasonicated with ultra-pure water, then the surfaces were etched using buffered HF and finally heat treated at 960 °C for 1.5 hours. The substrates we used were predominantly, but not completely terminated by titanium oxide as was inferred from AFM analysis. The DyScO$_3$ substrates were cleaned with ethanol, acetone and thermally treated at a temperature of 960 °C for about an hour. The substrates were glued to the heater using silver paste. PbTiO$_3$ films were deposited on SrTiO$_3$ at a temperature of 570 °C using a pulsed KrF excimer laser at a wavelength of 248 nm (Lambda Physik COMPex pro 205) in an ambient oxygen pressure of 0.13 mbar with a repetition rate of 10 Hz. A temperature above 600 °C will lead to evaporation of lead. Our target is of the right stoichiometry without any excess percentage of lead. The substrates were kept at a distance of 51 mm from the target. An energy density of 2.5 J/cm2 with a laser spot of ~3 mm2 was used. After deposition the films were annealed within oxygen of 0.5 bar and cooled at the rate of 5 °C / min. The films on DyScO$_3$ were deposited with a slightly less energy density of 2 J/cm2 and a substrate target distance of 45 mm with a repetition rate of 1 Hz; the other parameters were identical as for PbTiO$_3$ growth on SrTiO$_3$. The intermediate SrRuO$_3$ layer was grown at a temperature of 600 °C with 2 Hz repetition rate.

X-ray Diffraction was used to determine the presence, amount and orientation (tilting) of c- and a-domains in the thin films of PbTiO$_3$ on both substrates. Because of the orientation of both types of domains (and the overlap with substrate peaks), simple θ–2θ scans are insufficient to determine their presence. By performing measurements on both the θ–2θ ($K_{//}$) and ω (K_{\perp}) axes, reciprocal space maps [23, 24] were obtained using a
Substrate influence on the shape of domain structure in PbTiO$_3$ thin films

standard lab diffractometer (X’Pert P analytical, Cu anode $\lambda=1.540598\text{Å}$), providing detailed information about the a- and c-domains.

High resolution TEM was used to investigate the cross sectional structure of the films. TEM samples were prepared by the conventional method involving cutting, grinding, polishing, dimpling and ion milling. A precision ion polishing system (Gatan model 691) with 4kV Ar$^+$ beams having incident angle of 8° on both sides was used. The observations were performed with a JEOL 2010F electron microscope operating at an accelerating voltage of 200 kV.

Nanoindentations experiments were performed with a calibrated MTS Nano Indenter$^\text{®}$ XP with a Continuous Stiffness Module (CSM). A Berkovich-type indenter was used and the data were obtained during loading using the CSM. The indentations were all performed up to a maximum depth of 1500 nm; the superimposed force frequency for the CSM was 45 Hz. The final results were obtained by averaging over 10 indentations and a depth range of 400-1400 nm. To allow an accurate direct comparison, an identical procedure for indentations was performed on both the (001) SrTiO$_3$ and (110) DyScO$_3$ substrates. To obtain the Young’s moduli from the reduced moduli, a Poisson ratio (ν) of 0.24 was used. This value holds for SrTiO$_3$ as based on the single crystal elastic constants [25].

4.3 RESULTS AND DISCUSSION

Figure 4.2: X-Ray diffraction patterns showing in (a) 0-20 scans of PbTiO$_3$ on SrTiO$_3$ (red) and of PbTiO$_3$ on DyScO$_3$ (blue) and in (b) a Reciprocal Space Map around the (001) reflection of PbTiO$_3$ on DyScO$_3$ in units of $2K_0 = 4\pi/\lambda = 4\pi/1.540598$ Å.

The thin film samples were provided by Ard Vlooswijk of Solid State Chemistry Group, University of Groningen, The Netherlands.
Examples of the X-ray diffraction results of PbTiO$_3$ films on both substrates, SrTiO$_3$ and DyScO$_3$, are presented in Fig.4.2. θ-2θ scans of PbTiO$_3$ on both types of substrates are shown in Fig.4.2a and reveal that unwanted (impurity) phases are not detectable in the grown films. By performing scans around different Bragg peaks the presence of a-domains in the PbTiO$_3$ films next to dominant c-domains on both substrates was confirmed. The reciprocal space map around the 001 Bragg peak of the (30 nm) PbTiO$_3$ film on DyScO$_3$ (with 30 nm intermediate SrRuO$_3$), shown in Fig.4.2b, clearly indicates that the a- and c-domains exhibit a long range ordered structure, i.e. an alternating c-a structure with a periodicity of 28 nm [26]. For the PbTiO$_3$ film on SrTiO$_3$ the XRD measurements did not reveal any ordering of the domain structure.

A cross-sectional bright field TEM image of a 110 nm PbTiO$_3$ film on SrTiO$_3$ is shown in Fig.4.3. The presence of wedge shaped a-domains, with decreasing widths when approaching the substrate, can be observed clearly in the image. Special care was taken that a sample tilt was not responsible for the observed shape of the domains. Although the a-domains seem to exhibit a periodicity in the image, a proper short or long range order is not present, in agreement with the XRD observations. The apex of the

Figure 4.3: Bright-field TEM images of a 110 nm PbTiO$_3$ film on SrTiO$_3$ showing the presence of wedge-shaped a-domains. (a) Overview image in which also some dislocation contrast within the film is visible; (b) More detailed view of wedge-shaped a-domains.
wedge-shaped a-domains is not always located at the substrate-film interface. It has been observed that domains start from dislocations within the film that stand off the interface.

High-resolution TEM images of the same sample are shown in Fig.4.4. Despite the overall wedge shape it can be clearly seen in the image that the domain walls are predominantly formed by parallel (101) planes of the a- and c-domains. Walls are in this way strain free. However, in order to form the wedge shape, steps formed by (100) and (001) are present in the domain wall. A clear example of a relative large step is given in Fig.4.4b (and another clear example of steps is shown in Fig.4.8b). These steps are not strain-free and the reasons for them to arise will be presented in the discussion.

On the basis of Fourier transforms taken from the high resolution images around a-domains, see the example in Fig.4.6, more details about the crystal structures in the two types of domains and their mutual orientation can be obtained. It is found that, within experimental accuracy, the a- and c-axis of both a- and c-domains are still orthogonal. The predicted tilt of the unit cell within the a-domain with respect to the one in the c-matrix of the lead titanate film, calculated from $90^\circ - 2 \tan^{-1}(a/c) \approx 3.5^\circ$, is not achieved in the case of SrTiO$_3$ substrates, but $4.7 \pm 0.5^\circ$ is found experimentally. The experimental c/a ratio is 1.07 ± 0.01 for the c-domain and 1.09 ± 0.01 for the a-domain, which in the latter case is significantly larger than the theoretical value of 1.063.

Figure 4.4: High-Resolution TEM images showing details of the a-domains in the 110 nm PbTiO$_3$ film on SrTiO$_3$ with in (a) region near the top of the film and in (b) region near the bottom of the film, indicating the wedge shape of the a-domains. The domain walls are formed by parallel (101) planes of the a- and c-domains which match strain free. The wedge shape is introduced by (100) and (001) steps in the domain walls, which are not strain free. A relative large step can be identified and is indicated in Fig.4.4b.
However, the experimentally found larger tilt is consistent with the larger c/a ratio. A similar observation of a too large tilt between a- and c-domains has been reported previously and was explained in terms of a vicinal (tilted) surface before growth that produces unequal populations in the possible orientations of the a-domains [27]. This explanation would imply that we measured in ‘uphill’ a-domains that became predominantly populated. The miscut of the SrTiO$_3$ substrate we used was 0.1-0.3° indicating that unit cell high steps occur about each 100 nm lateral scale. The observed a-domain density is in rough agreement with this step density due to the miscut substrate. The miscut of the DyScO$_3$ substrates we used was smaller, i.e. 0.05-0.1°.

A cross-sectional bright field TEM image of a 30 nm PbTiO$_3$ film on DyScO$_3$ substrates with 5 nm SrRuO$_3$ intermediate layer is shown in Fig.4.7. Regions with parallel oriented and nearly regularly spaced a-domains can be observed. The volume fraction of a-domains is found to be clearly higher for the PbTiO$_3$ films on DyScO$_3$ than for these films on SrTiO$_3$; about 20-25 vol.% versus less than 10 %. Based on the lattice constants at room temperature a smaller mismatch holds for a c-oriented PbTiO$_3$ film on SrTiO$_3$ than on DyScO$_3$, about -0.26% and -1.4%, respectively. Even when the strains are relaxed at the growth temperature, after cooling the mismatch remains smaller for SrTiO$_3$ than for DyScO$_3$. These misfits correspond to a tensile strain within the film that can be relieved by the formation of a-domains. Due to the larger mismatch in case of the DyScO$_3$ substrate a higher volume fraction of a-domains can be expected. If PbTiO$_3$ films on SrTiO$_3$ are grown under conditions closer to thermodynamic equilibrium, a-domains are not observed at all [19] (see also introduction).

A careful analysis of PbTiO$_3$ on atomically flat DyScO$_3$ substrates indicates that the a-domains have a clear tendency of having a width of about 7 nm [26] (see Figure 4.5a below), but in rare cases in the above sample even domains with a width of only 2 nm have been observed (see Fig 4.5b). The distance between neighboring a-domains is typically 27 nm (see Fig 4.5a), however, some clear variations in distances (typically ±10 nm) are also observed within the sample. In the similar sample, where a 30 nm SrRuO$_3$ intermediate layer was used, the preferred width of 7 nm of the a-domains and a periodic spacing of about 27 nm between them was observed to hold more strongly [26].
Substrate influence on the shape of domain structure in PbTiO$_3$ thin films

Figure 4.5: (a) TEM bright field image of PTO film on DSO substrate showing periodic domains of uniform width with c domain (27 nm) and a domain (6 nm) (b) HRTEM showing non periodic a domain with a width of 2 nm in the same PTO film on DSO substrates.

Also in the XRD measurements clear proof of a very similar ordered distance between a-domains could be found on the basis of satellite peaks (cf. Fig.4.2b). These differences are probably related to a different substrate quality, i.e. variations in substrate treatment, since the presence of steps in the substrate disturbs the domain periodicity.

High-resolution TEM images of the sample with the 30 nm and 5 nm intermediate SrRuO$_3$ layer are shown in Fig.4.8a and 4.8b, respectively. In general, the two domain walls of the a-domain tend to be quite parallel for PbTiO$_3$ on DyScO$_3$ (cf. Fig.4.7 and 4.5a); the domains have clearly less wedge shape than in case of the SrTiO$_3$ substrate. However, the example given in Fig.4.8b, where the intermediate SrRuO$_3$ layer is 5 nm, shows clear steps in the domain wall. Although the statistics are poor, we observed that in case of only 5 nm intermediate SrRuO$_3$ layer steps in the domain wall are present, whereas such steps were not detected in case of the 30 nm SrRuO$_3$ layer. The c/a ratio within the PbTiO$_3$ derived from HRTEM images of c-domains is 1.07 (± 0.01) which is in agreement with the theoretical value of 1.063. We obtained 3.8° for the tilt between the unit cells in the a- and c-domains which is also close to the theoretical value of 3.5°. Interestingly, we found clear differences in functional properties, as measured with Piezo-response Force Microscopy, for these different types of PbTiO$_3$ films on DyScO$_3$ that we attributed to this different step density in the domain walls [28].
Figure 4.6: Fourier Transform taken from a selected part (256x256 pixels) around an a-domain in a HRTEM image. Fig (a & b) shows the c-domain orientation and the a-domain. From such transforms it can be inferred that (within the accuracy limits) the a- and c-axes are still orthogonal in the a- and c-domains, that the c/a ratio is 1.07 ± 0.01 and 1.09 ± 0.01 for the c- and a-domains, respectively, and that their mutual tilt is $4.7 \pm 0.5^\circ$.

Figure 4.7: Bright-field TEM image of a 30 nm PbTiO$_3$ film on DyScO$_3$ (with 5 nm intermediate SrRuO$_3$ layer) showing the presence of a nearly regularly spaced array of a-domains within the PbTiO$_3$ film.

The most striking effect observed in the present work is the difference in the shape of the a-domains in the PbTiO$_3$ films depending on the substrate type; on SrTiO$_3$ the domains have always clearly wedge shape, whereas on SrRuO$_3$/DyScO$_3$ they show a clearly more uniform width. An exaggerated schematic representation of the two cases is
shown in Fig. 4.9. The corresponding difference in step density in the domain wall can be explained by the difference in stiffness of the substrates (in conjunction with sufficient adhesion across the substrate film interface).

For the c-domains the (001) plane is parallel to the interface, but for the a-domains in principle the tilt of 3.5° holds between the substrate surface and the (100) (or (010)) plane. The ‘defect’ accounting for this local misorientation can in analogy be called a misfit disclination [9]. The strains associated with this disclination create the tendency to minimize the width of the a-domains. However, for strain accommodation within the film a-domains are required. Overall, a strain-energy balance will hold. In fact, this balance will prevent the formation of a-domains below a critical thickness in accordance with theory [29] and experiments [26].

![Figure 4.8: High-Resolution TEM images showing details of the a-domains in the 30 nm PbTiO$_3$ films on DyScO$_3$. (a) Two closely spaced a-domains with uniform width of about 5 nm in the PbTiO$_3$ film with 30 nm intermediate SrRuO$_3$ layer. (b) Example of a wedge-shaped a-domain in the PbTiO$_3$ film with 5 nm intermediate SrRuO$_3$ layer.](image)

Above the critical thickness these domains can develop, but nevertheless the interface strains will tend to keep the domains in most cases thinner near the interface than in the bulk. To minimize domain-wall energy in principle thick a-domains would be expected, but these are not found due to the interfacial clamping strain. Away from the interface the a-domains have the tendency to have a width corresponding to $c/\sin\alpha$ [26], where α is the tilt mentioned several times above (which is $90°-2\tan^{-1}(a/c)$). In this way the planes parallel to the interface in the c-domains on both sides of the a-domain match coherently.
with the slightly tilted plane in the \(a \)-domain. If the clamping strain energy at the interface of an \(a \)-domain is higher than the strain energy associated with steps in the domain wall, then a wedge-shaped \(a \)-domain with smaller width near the interface will result. Apparently this situation holds in case of the SrTiO\(_3\) substrate. In case of DyScO\(_3\) with SrRuO\(_3\) as intermediate layer the interface clamping strain energy is apparently less and the steps in the domain wall tend to run all the way to the interface and form domains with nearly uniform width. This difference in clamping strain energy is due to a difference in stiffness of the substrate, where a higher stiffness causes more strain energy.

Therefore, knowledge of the elastic constants of SrTiO\(_3\) and DyScO\(_3\)/SrRuO\(_3\) can give support to the above scenario. From the dependence of the electric constants on electric field [30], it appears that SrTiO\(_3\) is not completely ionic but that the TiO\(_3\) building blocks are partially covalently bound. On the other hand the scandium group

![Figure 4.9: Schematic representation of the wedge-shaped \(a \)-domains in PbTiO\(_3\) films on SrTiO\(_3\) on the left and \(a \)-domains with uniform width in PbTiO\(_3\) films on DyScO\(_3\) on the right.](image)

having the outer electronic configuration \(d^{1}\,s^{2} \) loses its d-electron character in the III oxidation state and the scandium group can be regarded as forming a transitional region between the s-elements and the main d block. Likewise, the behaviour of the lanthanide elements such as Dy \((4f^{10}5d^{0}6s^{2})\) is that of a III state and the behaviour is very similar to that of the scandium group. It is therefore expected that the ionicity of DyScO\(_3\) is higher than of SrTiO\(_3\). Because covalent bonds are stiffer than ionic bonds we expect that
DyScO$_3$ is more compliant than SrTiO$_3$. Similarly, one might expect that the metallic (conducting) character of SrRuO$_3$ implies a relative soft material.

Interestingly, these qualitative arguments give the right sequence when quantitative stiffness data are considered. Most data is available for SrTiO$_3$. Based on single crystal elastic constants a Young’s modulus E (along the cube axis) ranging from 265 to 303 GPa and a shear modulus G ranging from 119 to 127 GPa has been reported in four independent experiments [25, 30, 31]. Nanoindentation experiments gave a somewhat lower value for E: 225±14 GPa [32]. For SrRuO$_3$ only a single reference was found pertaining to a polycrystalline sample giving $E = 161$ GPa and $G = 60.1$ GPa [33]. These values are much lower than the ones for SrTiO$_3$, cannot be attributed to anisotropy (i.e. polycrystal versus single crystal) and indicate that SrTiO$_3$ is indeed much stiffer than SrRuO$_3$. For DyScO$_3$ unfortunately it seems that data on elastic constants have not been published. Therefore, we performed nanoindentations with a calibrated MTS Nano Indenter$^®$ XP with a Continuous Stiffness Module (CSM). For DyScO$_3$ we obtained $E = 250±3$ GPa and for SrTiO$_3$ we found 279±4 GPa. Simultaneously the hardness values for DyScO$_3$ and SrTiO$_3$ were obtained: 12.3±0.3 GPa and 9.6±0.3 GPa, respectively. These results indeed show that SrTiO$_3$ is the stiffest material, DyScO$_3$ about 10% less stiff and SrRuO$_3$ is the most compliant one of the three.

Based on the relative stiffness of these three materials the experimental findings regarding the step density in the domain walls can now be fully understood. The high stiffness of SrTiO$_3$ causes a high interfacial clamping strain energy leading to wedge-shaped a-domains with small width near the interface. Since the typical width of an a-domain is 6 nm the deformation field due to the interfacial clamping strain will extend, according to St Venant’s principle [34], not more than a few times this value into the substrate. This means that when a 30 nm intermediate SrRuO$_3$ layer is used, the stiffness of the DyScO$_3$ is not relevant. On the other hand, when the intermediate SrRuO$_3$ layer has a thickness of only 5 nm also the stiffness of DyScO$_3$ comes into play. Based on these considerations it can now be understood that the a-domains in the PbTiO$_3$ on the 30 nm SrRuO$_3$ showed most uniform width because is makes use of the most compliant SrRuO$_3$ in reducing the stress fields in PbTiO$_3$ and that in case of the 5 nm SrRuO$_3$ film a higher step density in the domain walls is found (because it experiences the stiffer DyScO$_3$), but
the domains are most clearly wedge-shaped in case of SrTiO$_3$ being the stiffest material of the three.

Note that in all these cases it is assumed that the adherence between film and substrate is sufficient, because when the adherence is poor, the interfacial clamping strain will always be low, independent of the stiffness of the substrate, and a-domains with uniform width will result. In this respect it is also worth to mention that a strong adherence between PbTiO$_3$ and SrTiO$_3$ is facilitated by the continuation of the titanate sublattice across the interface. Finally, it is important to note that the present study on the shape of a-domains is not merely of structural interest, because the relative step density in the domain walls of the PbTiO$_3$ may also have a substantial impact on the functional properties of this ferroelectric material [28].

4.4 CONCLUSIONS

Domain structures of $c/a/c$ type have been observed in PbTiO$_3$ films on SrTiO$_3$ and DyScO$_3$ substrates, where the a-domains are present with a clearly higher volume fraction (20-25 vol.% versus less than 10 vol.%) and are more regularly spaced in the PbTiO$_3$ films on DyScO$_3$. The higher volume fraction can be directly related to the larger mismatch at the interface between PbTiO$_3$ and DyScO$_3$ than between PbTiO$_3$ and SrTiO$_3$.

A striking finding is that the shape of the a-domains depends sensitively on the substrate type. On SrTiO$_3$ wedge-shaped a-domains are found, whereas on DyScO$_3$ a-domains with generally uniform width are observed. The wedge shape of the a-domains is found to be introduced by (100) and (001) steps in the domain walls which further predominantly consist of parallel (101) planes of the adjacent a- and c-domains. These (101) planes match strain-free, whereas the steps in the wall cause local strains.

The reason for the developments of wedge-shaped a-domains can be understood taking the clamping strain at the interface into account. When the interfacial clamping strain energy is higher than the strain energy associated with steps in the domain wall, wedge-shaped a-domains will be formed. The different shapes of the a-domains on the different substrate types can be explained by the higher stiffness of SrTiO$_3$ compared to SrRuO$_3$/DyScO$_3$ causing for the former system a higher interfacial clamping strain.
energy and thus a higher probability that steps are formed in the domain wall reducing the domain width near the interface.
Chapter 4

References
